You are viewing archived content (2011-2018). For current research, visit research.colfax-intl.com

NeuralTalk2

Machine Learning on 2nd Generation Intel® Xeon Phi™ Processors: Image Captioning with NeuralTalk2, Torch

June 20, 2016

  In this case study, we describe a proof-of-concept implementation of a highly optimized machine learning application for Intel Architecture. Our results demonstrate the capabilities of Intel Architecture, particularly the 2nd generation Intel Xeon Phi processors (formerly codenamed Knights Landing), in the machine learning domain. Download as PDF:  Colfax-NeuralTalk2-Summary.pdf (814 KB) or read online below. Code: see our branch of NeuralTalk2 for instructions on reproducing our results (in Readme.md). It uses our optimized branch of Torch to run efficiently on Intel architecture. See also: colfaxresearch.com/get-ready-for-intel-knights-landing-3-papers/ 1. Case Study It is common in the machine learning (ML) domain to see applications implemented with the use of frameworks and libraries such as Torch, Caffe, TensorFlow, and similar. This approach allows the computer scientist to focus on the learning algorithm, leaving the details of performance optimization to the framework. Similarly, the ML frameworks usually rely on a third-party library such as Atlas, CuBLAS, [...]