Arithmetics on Intel’s Sandy Bridge and Westmere CPUs: not all FLOPs are created equal
This paper presents a new arithmetic efficiency benchmark and uses it to compare the Intel Sandy Bridge E5-2680 CPU to the Intel Westmere X5690 CPU performance. The efficiency is measured for single and double precision floating point operations: addition, multiplication, division, square root and the exponential function, and for 32- and 64-bit integer operations: addition, multiplication and division. The SSE2 and AVX instruction sets, as well as scalar operations, in single-threaded and multi-threaded modes are covered. This benchmark eliminates the effects of memory bandwidth and latency by fitting the calculation in the L1 cache. The bandwidth of the L1 cache and main memory (RAM) are estimated for reference, and the LINPACK benchmark result is reported. Results show that the E5-2680 CPU performs floating point addition and multiplication dramatically faster (up to 2.6x) than the X5690 model. However, the floating point division and square root are the new model’s weak spots. AVX floating point operations addition and multiplication are up to 2.0x faster than the SSE2; [...]