You are viewing archived content (2011-2018). For current research, visit research.colfax-intl.com

Articles by Andrey

Configuration and Benchmarks of Peer-to-Peer Communication over Gigabit Ethernet and InfiniBand in a Cluster with Intel Xeon Phi Coprocessors

March 11, 2014

Intel Xeon Phi coprocessors allow symmetric heterogeneous clustering models, in which MPI processes are run fully on coprocessors, as opposed to offload-based clustering. These symmetric models are attractive, because they allow effortless porting of CPU-based applications to clusters with manycore computing accelerators. However, with the default software configuration and without specialized networking hardware, peer-to-peer communication between coprocessors in a cluster is quenched by orders of magnitude compared to the capabilities of Gigabit Ethernet networking hardware. This situation is remedied by InfiniBand interconnects and the software supporting them. In this paper we demonstrate the procedures for configuring a cluster with Intel Xeon Phi coprocessors connected with Gigabit Ethernet as well as InfiniBand interconnects. We measure and discuss the latencies and bandwidths of MPI messages with and without the advanced configuration with InfiniBand support. The paper contains a discussion of MPI application tuning in an InfiniBand-enabled cluster with Intel Xeon Phi [...]

Primer on Computing with Intel Xeon Phi Coprocessors

March 6, 2014

Geant4 is a high energy physics application package for simulation of elementary particle transport through matter. It is used in fundamental physics experiments, as well as in industrial and medical applications. For example, the ATLAS detector at LHC and the Fermi Gamma-Ray Space Telescope rely on Geant4 simulations, DNA damage due to ionizing radiation is studied by a derivative project Geant4-DNA, and radiotherapy planning can benefit from calculations with Geant4. Geant4 has long been employing distributed-memory parallelism in the MPI framework. However, due to the trend of increasing ratio of core count to memory size in modern computing systems, and due to the need to process larger geometry models, Geant4 is undergoing modernization through inclusion of thread parallelism in shared memory. This effort is led by SLAC researchers Dr. Makoto Asai and Dr. Andrea Dotti (see, e.g., slides 1 and slides 2). A beneficial by-product of such modernization is the possibility to use the Intel Many Integrated Core (MIC) architecture of Intel Xeon Phi coprocessors for Geant4 [...]

“Heterochromic” Computer and Finding the Optimal System Configuration for Medical Device Engineering

January 27, 2014

Designing a computing system configuration for optimal performance of a given task is always challenging, especially if the acquisition budget is fixed. It is difficult, if not impossible, to analytically resolve all of the following questions: How well does the application scale across multiple cores? What is the efficiency and scalability of the application with accelerators (GPGPUs or coprocessors)? Should measures be taken to prevent I/O bottlenecks? Is it more efficient to scale up a single task or partition the system for multiple tasks? What combination of CPU models, accelerator count, and per-core software licenses gives the best return on investment? Rigorous benchmarking is the most reliable method of ensuring the “best bang for buck”, however, it requires access to the computing systems of interest. Colfax takes pride in being able to offer interested customers opportunities for deducing the optimal configuration for specific tasks. Recently we received a request from Peter Newman, Systems Engineer at Carestream Health, for evaluating the performance of the [...]

Parallel Computing in the Search for New Physics at LHC

December 2, 2013

In the past few months we have had the pleasure of collaborating with Prof. Valerie Halyo of Princeton University on modernization of a high energy physics application for the needs of the Large Hadron Collider (LHC). The objective of our project is to improve the performance of the trigger at LHC, so as to enable real-time detection of exotic collision event products, such as black holes or jets. For the numerical algorithm of the new trigger software, the Hough transform was chosen. This method allows fast detection of straight or curved tracks in a set of points (detector hits), which could be the traces of new exotic particles. The nature of the numerical Hough transform is highly parallelizable, however, existing implementations did not use hardware parallelism or used it sub-optimally. Colfax’s role in the project was to optimize a thread-parallel implementation of the Hough transform for multi-core processors. The result of our involvement was a code capable of detecting 5000 tracks in a synthetic dataset 250x faster than prior art, on a multi-core desktop CPU. By [...]

Accelerating Public Domain Applications: Lessons from Models of Radiation Transport in the Milky Way Galaxy

November 25, 2013

Last week I had the privilege of giving a talk at the Intel Theater at SC’13. I presented a case study done with Stanford University on using Intel Xeon Phi coprocessors for accelerating a new astrophysical library HEATCODE (HEterogeneous Architecture library for sTochastic COsmic Dust Emissivity). If this talk can be summarized in one sentence, that will be “One high performance code for two platforms is reality“. Indeed, the optimizations performed in order to optimize HEATCODE for the MIC architecture lead to a tremendous performance increase on the CPU platform. As a consequence, we have developed a high performance library which can be employed and modified both by users who have access to Xeon Phi coprocessors, and by those only using multi-core CPUs. The paper introducing HEATCODE library with details of the optimization process is under review at Computer Physics Communications. The preliminary manuscript can be obtained from arXiv, and the slides of the talk are available on this page (see links above and below). The open source code will be made available [...]

Heterogeneous Clustering with Homogeneous Code: Accelerate MPI Applications Without Code Surgery Using Intel Xeon Phi Coprocessors

October 17, 2013

This paper reports on our experience with a heterogeneous cluster execution environment, in which a distributed parallel application utilizes two types of compute devices: those employing general-purpose processors, and those based on computing accelerators known as Intel Xeon Phi coprocessors. Unlike general-purpose graphics processing units (GPGPUs), Intel Xeon Phi coprocessors are able to execute native applications. In this mode, the application runs in the coprocessor’s operating system, and does not require a host process executing on the CPU and offloading data to the accelerator (coprocessor). Therefore, for an application in the MPI framework, it is possible to run MPI processes directly on coprocessors. In this case, coprocessors behave like independent compute nodes in the cluster, with an MPI rank, peer-to-peer communication capability, and access to a network-shared file system. With such configuration, there is no need to instrument data offload in the application in order to utilize a heterogeneous system comprised of processors and coprocessors. That said, an [...]

Multithreaded Transposition of Square Matrices with Common Code for Intel Xeon Processors and Intel Xeon Phi Coprocessors

August 12, 2013

In-place matrix transposition, a standard operation in linear algebra, is a memory bandwidth-bound operation. The theoretical maximum performance of transposition is the memory copy bandwidth. However, due to non-contiguous memory access in the transposition operation, practical performance is usually lower. The ratio of the transposition rate to the memory copy bandwidth is a measure of the transposition algorithm efficiency. This paper demonstrates and discusses an efficient C language implementation of parallel in-place square matrix transposition. For large matrices, it achieves a transposition rate of 49 GB/s (82% efficiency) on Intel Xeon CPUs and 113 GB/s (67% efficiency) on Intel Xeon Phi coprocessors. The code is tuned with pragma-based compiler hints and compiler arguments. Thread parallelism in the code is handled by OpenMP, and vectorization is automatically implemented by the Intel compiler. This approach allows to use the same C code for a CPU and for a MIC architecture executable, both demonstrating high efficiency. For benchmarks, an Intel Xeon Phi 7110P [...]

Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture

June 7, 2013

Cosmic dust absorbs starlight in the optical and ultraviolet ranges, and re-emits it in the infrared range. This process is crucial for radiative transport in our Galaxy. I am participating in a project to develop a computational tool for Galactic radiative transport simulation with stochastic light absorption and re-emission on small dust grains. This project has resulted in the development of a library called HEATCODE (HEterogeneous Architecture library for sTochastic COsmic Dust Emissivity) for fast calculation of the stochastic dust heating process using Intel Xeon Phi coprocessors. I presented HEATCODE and shared my experiences with the development and optimization of applications for Xeon Phi coprocessors in a talk at the Applied Mathematics and Statistics Department at UCSC. The slides from this talk can be downloaded here (see below). The full source code of the application, along with a detailed description of the optimization process, will soon be submitted for peer-reviewed publication, and will become publicly available. Slides from the talk: [...]

How to Write Your Own Blazingly Fast Library of Special Functions for Intel Xeon Phi Coprocessors

May 3, 2013

Statically-linked libraries are used in business and academia for security, encapsulation, and convenience reasons. Static libraries with functions offloadable to Intel Xeon Phi coprocessors must contain executable code for both the host and the coprocessor architecture. Furthermore, for library functions used in data-parallel contexts, vectorized versions of the functions must be produced at the compilation stage. This white paper shows how to design and build statically-linked libraries with functions offloadable to Intel Xeon Phi coprocessors. In addition, it illustrates how special functions with scalar syntax (e.g., y=f(x)) can be implemented in such a way that user applications can use them in thread- and data-parallel contexts. The second part of the paper demonstrates some optimization methods that improve the performance of functions with scalar syntax on the multi-core and the many-core platforms: precision control, strength reduction, and algorithmic optimizations. Complete paper:  Colfax_Static_Libraries_Xeon_Phi.pdf (426 [...]

Cache Traffic Optimization on Intel Xeon Phi Coprocessors for Parallel In-Place Square Matrix Transposition with Intel Cilk Plus and OpenMP

April 25, 2013

Numerical algorithms sensitive to the performance of processor caches can be optimized by increasing the locality of data access. Loop tiling and recursive divide-and-conquer are common methods for cache traffic optimization. This paper studies the applicability of these optimization methods in the Intel Xeon Phi architecture for the in-place square matrix transposition operation. Optimized implementations in the Intel Cilk Plus and OpenMP frameworks are presented and benchmarked. Cache-oblivious nature of the recursive algorithm is compared to the tunable character of the tiled method. Results show that Intel Xeon Phi coprocessors transpose large matrices faster than the host system, however, smaller matrices are more efficiently transposed by the host. On the coprocessor, the Intel Cilk Plus framework excels for large matrix sizes, but incurs a significant parallelization overhead for smaller sizes. Transposition of smaller matrices on the coprocessor is faster with OpenMP. COMMENTS: If you are interested in this paper, make sure to also read a follow-up publication (improved [...]
1 2 3 4