You are viewing archived content (2011-2018). For current research, visit research.colfax-intl.com

Multithreaded Transposition of Square Matrices with Common Code for Intel Xeon Processors and Intel Xeon Phi Coprocessors

In-place matrix transposition, a standard operation in linear algebra, is a memory bandwidth-bound operation. The theoretical maximum performance of transposition is the memory copy bandwidth. However, due to non-contiguous memory access in the transposition operation, practical performance is usually lower. The ratio of the transposition rate to the memory copy bandwidth is a measure of the transposition algorithm efficiency.

This paper demonstrates and discusses an efficient C language implementation of parallel in-place square matrix transposition. For large matrices, it achieves a transposition rate of 49 GB/s (82% efficiency) on Intel Xeon CPUs and 113 GB/s (67% efficiency) on Intel Xeon Phi coprocessors. The code is tuned with pragma-based compiler hints and compiler arguments. Thread parallelism in the code is handled by OpenMP, and vectorization is automatically implemented by the Intel compiler. This approach allows to use the same C code for a CPU and for a MIC architecture executable, both demonstrating high efficiency. For benchmarks, an Intel Xeon Phi 7110P coprocessor is used.

Complete paper:  Colfax_Transposition-7110P.pdf (513 KB)

Source code for Linux: Xeon-Phi-Transposition-Benchmark.tgz (5 KB)