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Foreword to the First Edition

We live in exciting times; the amount of computing power available for sciences and engi-
neering is reaching enormous heights through parallel computing. Parallel computing is driving
discovery in many endeavors, but remains a relatively new area of computing. As such, soft-
ware developers are part of an industry that is still growing and evolving as parallel computing
becomes more commonplace.

The added challenges involved in parallel programming are being eased by four key trends
in the industry: emergence of better tools, wide-spread usage of better programming models,
availability of significantly more hardware parallelism, and more teaching material promising to
yield better-educated programmers. We have seen recent innovations in tools and programming
models including OpenMP and Intel Threading Building Blocks. Now, the Intel R© Xeon Phi

TM

coprocessor certainly provides a huge leap in hardware parallelism with its general purpose
hardware thread counts being as high as 244 (up to 61 cores, 4 threads each).

This leaves the challenge of creating better-educated programmers. This handbook from Col-
fax, with a subtitle of “Handbook on the Development and Optimization of Parallel Applications
for Intel Xeon Processors and Intel Xeon Phi Coprocessors” is an example-based course for the
optimization of parallel applications for platforms with Intel Xeon processors and Intel Xeon Phi
coprocessors.

This handbook serves as practical training covering understandable computing problems for
C and C++ programmers. The authors at Colfax have developed sample problems to illustrate
key challenges and offer their own guidelines to assist in optimization work. They provide easy
to follow instructions that allow the reader to understand solutions to the problems posed as well
as inviting the reader to experiment further. Colfax’s examples and guidelines complement those
found in our recent book on programming the Intel Xeon Phi Coprocessor by Jim Jeffers and
myself by adding another perspective to the teaching materials available from which to learn.

In the quest to learn, it takes multiple teaching methods to reach everyone. I applaud these
authors in their efforts to bring forth more examples to enable either self-directed or classroom
oriented hands-on learning of the joys of parallel programming.

James R. Reinders
Co-author of “Intel R© Xeon Phi

TM
Coprocessor High Performance Programming"

c© 2013, Morgan Kaufmann Publishers
Intel Corporation
March 2013
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Preface to the Second Edition

A lot has happened in Intel’s “parallel universe” since the publication of the first
edition of this book in March 2013. The family of Intel Xeon Phi coprocessors has grown
to three series: 3100, 5100 and 7100, offering a range of performance tiers and prices.
Active-cooling Intel Xeon Phi coprocessors were introduced, allowing workstation users
to take advantage of the Intel Many Integrated Core (MIC) architecture. Plans were
released for future Intel MIC architecture products, based on the Knights Landing chip,
and capable of acting as a stand-alone CPU. In the CPU domain, Intel Xeon processors
based on the Haswell architecture were released, supporting a new instruction set AVX2
and new functionality.

On the software tools side, the Intel Parallel Studio XE 2015 suite was improved to
accommodate the new parallel framework standards: OpenMP 4.0 and MPI 3.0. The
evolution of Intel VTune Amplifier XE has added many useful functions for automated
diagnostics of performance issues. Intel compilers produce more user-friendly optimiza-
tion reports than before, and have become even smarter about automatic vectorization
and other optimizations.

The work in the users’ domain did not stand still, either. With a large number of
case studies and research articles on applications for the Intel MIC architecture, it is
accurate to say that the developer ecosystem has been established. We are proud to say
that Colfax has made a considerable contribution to this progress with the first edition
of “Parallel Programmin and Optimization with Intel Xeon Phi Coprocessors”. In the
years 2013 and 2014, over 1000 science and industry experts at tens of locations across
North America have been students of the Colfax Developer Training based on this book.
Their experience and feedback, along with the innovations in the Intel tools, have built
a solid case for the publication of the second edition of “Parallel Programming and
Optimization with Intel Xeon Phi Coprocessors”.

Among the numerous new features of the second edition, the ones that stand out are:

1. The details unveiled by Intel of the present and future MIC processors, including
Knights Landing;

2. Discussion of configuration and system administration of clusters with Intel Xeon
Phi coprocessors, including InfiniBand support, bridged network configuration
and storage setup;
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3. Additional applications based on case studies of our research in 2013–2014
included in the text as references, as well as practical exercises;

4. Console listings, example codes and hyperlinks to online manuals accurate as of
Intel Parallel Studio XE 2015, Intel MPSS 3.4.1 and CentOS 7.0 Linux;

5. New programming models made available in OpenMP 4.0;

6. Deeper review of the Intel Math Kernel Library support for the MIC architecture;

7. More convenient page format and font size for on-screen reading, and

8. Numerous updates to the text improving the clarity and depth of the discussion.

We hope that you find this book to be a valuable resource on “all things Xeon Phi”,
and, as always, we value your feedback. The HPC research department of Colfax
International can be reached by email at phi@colfax-intl.com, and the latest updates on
our work can be found at research.colfaxinternational.com.
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Preface to the First Edition

Welcome to the Colfax Developer Training! You are holding in your hands or
browsing on your computer screen a comprehensive set of training materials for this
training program. This document will guide you to the mastery of parallel programming
with Intel R© Xeon R© family products: Intel R© Xeon R© processors and Intel R© Xeon PhiTM

coprocessors. The curriculum includes a detailed presentation of the programming
paradigm for Intel Xeon product family, optimization guidelines, and hands-on exercises
on systems equipped with Intel Xeon Phi coprocessors, as well as instructions on using
Intel R© software development tools and libraries included in Intel R© Parallel Studio XE.

These training materials are targeted toward developers familiar with C/C++ program-
ming in Linux. Developers with little parallel programming experience will be able to
grasp the core concepts of this subject from the detailed commentary in Chapter 3. For
advanced developers familiar with multi-core and/or GPU programming, the training
offers materials specific to the Intel compilers and Intel Xeon family products, as well
as optimization advice pertinent to the Many Integrated Core (MIC) architecture.

We have written these materials relying on key elements for efficient learning: practice
and repetition. As a consequence, the reader will find a large number of code listings in
the main section of these materials. In the extended Appendix, we provided numerous
hands-on exercises that one can complete either under an instructor’s supervision, or
autonomously in a self-study training.

This document is different from a typical book on computer science, because we
intended it to be used as a lecture plan in an intensive learning course. Speaking in
programming terms, a typical book traverses material with a “depth-first algorithm”,
describing every detail of each method or concept before moving on to the next method.
In contrast, this document traverses the scope of material with a “breadth-first” algorithm.
First, we give an overview of multiple methods to address a certain issue. In the
subsequent chapter, we re-visit these methods, this time in greater detail. We may go
into even more depth down the line. In this way, we expect that students will have
enough time to absorb and comprehend the variety of programming and optimization
methods presented here. The course road map is outlined in the following list.

• Chapter 1 presents the Intel Xeon Phi architecture overview and the environment
provided by the MIC Platform Software Stack (MPSS) and Intel Parallel Studio
XE on Many Integrated Core architecture (MIC). The purpose of Chapter 1 is
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to outline what users may expect from Intel Xeon Phi coprocessors (technical
specifications, software stack, application domain).

• Chapter 2 allows the reader to experience the simplicity of Intel Xeon Phi usage
early on in the program. It describes the operating system running on the coproces-
sor, with the compilation of native applications, and with the language extensions
and CPU-centric codes that utilize Intel Xeon Phi coprocessors: offload and virtual-
shared memory programming models. In a nutshell, Chapter 2 demonstrates how
to write serial code that executes on Intel Xeon Phi coprocessors.

• Chapter 3 introduces Single Instruction Multiple Data (SIMD) parallelism and
automatic vectorization, thread parallelism with OpenMP and Intel Cilk Plus, and
distributed-memory parallelization with MPI. In brief, Chapter 3 shows how to
write parallel code (vectorization, OpenMP, Intel Cilk Plus, MPI).

• Chapter 4 re-iterates the material of Chapter 3, this time delving deeper into the
topics of parallel programming and providing example-based optimization advice,
including the usage of the Intel Math Kernel Library. This chapter is the core of
the training. The topics discussed in this Chapter 4 include:

i) scalar optimizations;
ii) improving data structures for streaming, unit-stride, local memory access;

iii) guiding automatic vectorization with language constructs and compiler hints;
iv) reducing synchronization in task-parallel algorithms by the use of reduction;
v) avoiding false sharing;

vi) increasing arithmetic intensity and reducing cache misses by loop blocking
and recursion;

vii) exposing the full scope of available parallelism;
viii) controlling process and thread affinity in OpenMP and MPI;

ix) reducing communication through data persistence on coprocessor;
x) scheduling practices for load balancing across cores and MPI processes;

xi) optimized Intel Math Kernel Library function usage, and other.

If Chapter 3 demonstrated how to write parallel code for Intel Xeon Phi coproces-
sors, then Chapter 4 shows how to make this parallel code run fast.

• Chapter 6 summarizes the course and provides pointers to additional resources.

Throughout the training, we emphasize the concept of portable parallel code. Portable
parallelism can be achieved by designing codes in a way that exposes the data and task
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parallelism of the underlying algorithm, and by using language extensions such as
OpenMP pragmas and Intel Cilk Plus. The resulting code can be run on processors as
well as on coprocessors, and can be ported with only recompilation to future generations
of multi- and many-core processors with SIMD capabilities. Even though the Colfax
Developer Training program touches on low-level programming using intrinsic functions,
it focuses on achieving high performance by writing highly parallel code and utilizing
the Intel compiler’s automatic vectorization functionality and parallel frameworks.

The handbook of the Colfax Developer Training is an essential component of a
comprehensive, hands-on course. While the handbook has value outside a training
environment as a reference guide, the full utility of the training is greatly enhanced by
students’ access to individual computing systems equipped with Intel Xeon processors,
Intel Xeon Phi coprocessors and Intel software development tools. Please check the Web
page of the Colfax Developer training for additional information: http://www.colfax-
intl.com/xeonphi/

Welcome to the exciting world of parallel programming!
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List of Abbreviations

ALU Arithmetic Logic Unit

AO Automatic Offload

AVX Advanced Vector Extensions (SIMD standard)

BLAS Basic Linear Algebra Subprograms

CAO Compiler Assisted Offload

CCL Coprocessor Communication Link

CFD Computational Fluid Dynamics

CLI Command Line Interface

CPI cycles per instruction

CPU Central Processing Unit, used interchangeably with the terms “processor” and
“host” to indicate the Intel Xeon processor, as opposed to the Intel Xeon Phi
coprocessor

CRI Core Ring Interconnect

DAPL Direct Access Programming Library

DFFT Discrete Fast Fourier Transform

DGEMM Double-precision General Matrix-Matrix Multiply

DMA Direct Memory Access

DSS Direct Sparse Solver

DTD Distributed Tag Directory

ECC Error Correction Code

FFT Fast Fourier Transform
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FMA Fused Multiply-Add

FP Floating-point

FPGA Field Programmable Gate Array

GCC GNU Compiler Collection

GDDR Graphics Double Data Rate memory

GFLOP Gigaflop, 109 floating point operations.

GFLOP/s Performance metric. Unless stated otherwise, refers to theoretical peak
performance of the multiply and add operation(s), or to the performance of the
HPC Linpack Benchmark

GPGPU General-Purpose Graphics Processing Unit

GUI Graphical User Interface

HPC High Performance Computing

I/O Input/Output

IMCI Initial Many-Core Instructions

IP Internet Protocol

ISA Instruction Set Architecture

ITAC Intel Trace Analyzer and Collector

KNC Knights Corner

KNL Knights Landing

LAPACK Linear Algebra Package

LRU Least Recently Used, a cache replacement policy

MESI Modified/Exclusive/Shared/Invalid, a cache coherency protocol

MKL Math Kernel Library
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MMB Maximum Memory Bandwidth

MMIO memory-mapped I/O

MMX Multimedia Extensions (SIMD standard)

MPI Message Passing Interface

MPSS Manycore Platform Software Stack

NFS Network File Sharing Protocol

NUMA Non-Uniform Memory Access

OEM Original Equipment Manufacturer

OFED OpenFabrics Enterprise Distribution

OpenCL Open Computing Language

OS operating system

PARDISO Parallel Direct Sparse Solver

PCIe Peripheral Component Interconnect Express

PFLOP Petaflop, 1015 floating point operations. See also GFLOP

PMU Performance Monitoring Unit

PSM Performance Scaled Messaging

QPI Quick Path Interconnect

RAM Random Access Memory

RCI ISS Iterative Sparse Solvers based on Reverse Communication Interface

RCP Recommended Customer Price

RDMA Remote Direct Memory Access

RNG Random Number Generator
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ScaLAPACK Scalable Linear Algebra Package

SIMD Single Instruction Multiple Data

SMP Symmetric Multiprocessor

SSE Streaming SIMD Extensions (SIMD standard)

SSH Secure Shell protocol

SVML Short Vector Math Library

TD Tag Directory

TDP thermal design power

TFLOP Teraflop, 1012 floating point operations. See also GFLOP

TLB Translation Lookaside Buffer

TMI Tag Matching Interface

TPP Theoretical Peak Performance

TSX Transactional Synchronization Extensions

VML Vector Mathematical Library

VSL Vector Statistical Library
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CHAPTER 1
Introduction

This chapter introduces the Intel manycore architecture and positions Intel
Xeon Phi coprocessors in the context of parallel programming.

Even though the focus of this book is on Intel Xeon Phi coprocessors, we
will also briefly discuss the Intel Xeon family CPUs. This is necessary to
put the performance characteristics of Intel Xeon Phi coprocessors in proper
perspective.

Our approach to comparing CPUs and the manycore architecture builds
upon the first question that the designer of a computing system may ask:
does it make more sense spend the budget for setup costs and operational
expenses on all-CPU nodes, or purchase fewer nodes, but enhance them with
coprocessors? Naturally, technical specifications alone cannot be used to
answer this question. This question can be answered only by benchmarks
of specific applications in combination with power measurements, total cost
analysis, and additional factors such as development effort, available rack
space, administrative burden, etc.

This chapter will help to set expectations for the potential of the Intel
manycore architecture for the reader’s outstanding computing challenges.
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1.1. Intel Xeon Phi Coprocessors

1.1.1. Technology Overview

Intel Xeon Phi coprocessors have been designed by Intel Corporation as
a supplement to the Intel Xeon processor family. The coprocessors feature
the Intel manycore architecture, which enables fast and energy-efficient
execution of some High Performance Computing (HPC) applications.

In most Intel communications, the term “manycore”, refers to the archi-
tecture of the Intel Xeon Phi product family, while “multi-core” architecture
referes to the Intel Xeon family processors.

Figure 1.1: Left: multi-core Intel Xeon processors (CPUs), Right: manycore Intel Xeon Phi
coprocessor. Relative sizes are not to scale.

The manycore architecture may yield more performance per watt of power
and per dollar of setup costs than traditional multi-core CPUs. However,
not every application can be accelerated by manycore coprocessors. Intel
Xeon Phi coprocessors derive their high performance from multiple cores,
dedicated vector arithmetic units with wide vector registers, and cached
onboard GDDR5. High energy efficiency is achieved through the use of
low clock speed x86 cores with lightweight design suitable for parallel
HPC applications. Therefore, only highly parallel applications supporting
vectorized arithmetic with well-behaved (or negligible) memory traffic will
thrive on the manycore architecture.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition
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Figure 1.2: Examples of computing system solutions featuring the Intel Xeon Phi coprocessors.
Left: A Colfax Workstation CXP7450 with two Intel Xeon Phi coprocessors. Right: A Colfax
Server CXP9000 with eight Intel Xeon Phi coprocessors. Relative sizes not to scale.

First generation Intel Xeon Phi coprocessors based on the Knights Corner
(KNC) chip are end-point Peripheral Component Interconnect Express (PCIe)
devices. They can be installed on the PCIe bus and operated in coprocessor-
ready computing systems, including workstations (e.g., Figure 1.2, left) and
servers (e.g., Figure 1.2, right).

An Intel Xeon Phi coprocessor cannot operate without a CPU-based host
system, which is the reason for terming these products coprocessors. Because
they reside on the PCIe bus and have their own on-board RAM, coprocessors
do not share memory address space with the CPU. Consequently, the mere
presence of a coprocessor in a system does not automatically improve the
performance of applications running on the CPU. To utilize the MIC archi-
tecture, the application or the cluster execution manager must be aware of
the presence of a coprocessor.

The usage model of the second generation Intel MIC based on the Knights
Landing (KNL) chip will be different. The second generation chip will be
available as a standalone processor, as well as a PCIe-endpoint device. For
the standalone processor version, applications need not be coprocessor-aware
in order to be accelerated. However, a prerequisite for accelerated perfor-
mance is optimization of the application code for multi-core and manycore
architectures. See Section 1.4 for more information.
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4 CHAPTER 1. INTRODUCTION

1.1.2. Conventional Programming, Portable Code
This section describes the value proposition of the Intel MIC architecture.

Established Programming Models

Because of the similarity of the manycore and multi-core architectures,
an Intel Xeon Phi coprocessor can execute applications compiled from the
same C/C++ or Fortran code as an Intel Xeon processor. Furthermore,
Intel Xeon processors and Intel Xeon Phi coprocessors support the same
parallel frameworks and require similar code optimization methods. This is
a significant advantage of the Intel manycore architecture over computing
accelerator technologies (GPGPUs and FPGAs).

The process of application porting to GPGPUs typically involves dis-
carding and re-writing from scratch the compute-intensive pieces of code.
This process is time consuming and prone to the introduction of new bugs,
because the application cannot be tested until porting is complete.

In contrast, it is usually possible to port a code designed for many-core
systems to the MIC architecture. After that, the programmer can incremen-
tally adapt (optimize) the application to the coprocessor platform. Such easy
porting is very important for projects that require modernization of millions
lines of legacy scientific and industrial applications.

It is fair to say that Intel Xeon Phi coprocessors are easy to program
because they use the same languages, frameworks and principles as general-
purpose Intel architecture CPUs, which are familiar to the overwhelming
majority of developers. At the same time, Intel Xeon Phi coprocessors are
only useful in the context of parallel programming, which is not the comfort
zone for the majority of CPU application developers. This book aims to
assist the developers in understanding the programming methods required
to leverage parallelism in both Intel Xeon processors and Intel Xeon Phi
coprocessors.

Common Optimization Requirements

It is incorrect to think that the ability to run legacy code “out of the
box” on Intel Xeon Phi coprocessors means immediate acceleration. On
the contrary, in many cases, the performance of applications just ported to
the MIC architecture is disappointing, and code optimization is required.
Optimization is often a significantly greater effort than initial porting.
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At the same time, the optimization methods used in applications for Intel
Xeon Phi are the same methods that are used in applications for general-
purpose Intel architecture CPUs. Indeed, case studies show that a code
optimized for the MIC platform also runs significantly faster on a CPU
(for a synthetic example, see paper [1] illustrated in Figure 1.3; code for a
similar application is available among the Supplementary Code for Practical
Exercises as Lab 4.01 – see Section 6.2; for realistic examples, refer to [2]).
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Two Intel(R) Xeon(R) E5-2680 processors
One Intel(R) Xeon Phi(TM) B1QS-5110P coprocessor

Figure 1.3: The same C language code used for a simple N-body simulation on the CPU and on
a coprocessor. See white paper [1] for more information.
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Heterogeneous and Accelerated Computnig

From the development maintenance point of view, having a single code
for the main processor and for the coprocessor opens doors to heterogeneous
computing and public code distribution. A heterogeneous application may
utilize the CPU together with the MIC coprocessor, wasting no resources.
Public code with support for Intel Xeon Phi coprocessors has the advantage
that for users who do not own a coprocessor, the execution can seamlessly
fall back to the CPU.

If an application is developed from scratch, rather than ported from a
legacy C, C++ or Fortran code, then developers have additional options for
ensuring code portability. For example, the OpenCL parallel framework can
be used to design a single code for multiple platforms, including the Intel
MIC architecture. In practice, however, even though an OpenCL application
can run on a CPU as well as on a GPGPU or a MIC coprocessor, it has to be
tuned for each platform. At the same time, the similarity of the multi-core
CPU and the MIC architectures ensures that a high-level language code
optimized for the MIC architecture is also optimal for the CPU.

Portability and Future-Proofing

Portability is an important consideration for many developers. Ideally, a
high-level language code developed once should run, with minimal modifica-
tions, on other manufacturers’ processor architectures, as well as on older
and future computing platforms.

Intel Xeon Phi coprocessors are based on the basic architectural elements
common in Intel 64 and Itanium architectures, AMD x86 processors, Sun
SPARC, IBM Blue Gene, Power architecture, and other general purpose
processors: cores, threads, cached memory, vectors. Even though instruction
sets and quantitative aspects of technical specifications are not compatible
across these architectures, the approach to programming computers based
on these architectural elements is common.

Future Intel parallel architectures will evolve using the same architectural
elements (see Section 1.4). This ensures longevity of high-level language
codes for developed today’s Intel Xeon Phi coprocessors. See Section 1.4.3
an extended discussion of this topic.
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1.1.3. Heterogeneous Computing and Clustering
Programming models for Intel Xeon Phi coprocessors include native

execution and offload-based approaches. These approaches enable developers
to design a spectrum of hybrid computing models, ranging from multi-core-
hosted (i.e., only employing the CPU) to multi-core-centric (i.e., executing
on the host system with some operations performed on the coprocessor) to
symmetric (i.e., employing the host and the coprocessor on an equal basis)
and manycore-hosted (i.e., executing exclusively on a set of coprocessors).

The choice of work division between the host and the coprocessor is dic-
tated by the nature of the application. Highly parallel, vectorized workloads
(e.g., linear algebraic calculations) can be executed on the coprocessor as
well as on the host. However, serial segments of an application perform
significantly better on Intel Xeon processors, and so do applications with
stochastic memory access patterns. The overhead of data transport over the
PCIe bus should also be taken into consideration.

Figure 1.4 summarizes the development options for systems enabled with
Intel Xeon Phi coprocessors.

Figure 1.4: Intel architecture benefit: wide range of development options. Breadth, depth,
familiar models meet varied application needs. Diagram based on Intel materials.

Intel Xeon Phi coprocessors are Internet Protocol (IP)-addressable devices
running a Linux operating system (OS). This property enables straightfor-
ward porting of code written for the Intel Xeon architecture to the MIC
architecture. This, combined with code portability, makes Intel Xeon Phi
coprocessors a compelling platform for heterogeneous clustering. In hetero-
geneous cluster applications, host processors and MIC coprocessors can be
used on an equal basis as individual compute nodes.
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8 CHAPTER 1. INTRODUCTION

1.1.4. Intel Xeon Phi Product Family
Intel Xeon Phi coprocessors come in a range of models featuring different

thermal design power (TDP), different theoretical peak performance and
different memory capacities. Each model is identified by a 5-character code
as shown in Figure 1.5.

Performance shelf
7 - best performance
5 - best performance/watt
3 - best value

Intel® Xeon PhiTM coprocessor 7120P

Brand
(the family
of products) Generation

1=Knights
     Corner
2=Knights
     Landing

SKU
digits Product Line Suffix

A/P/X=active/passive/no cooling
D=dense form-factor

Figure 1.5: Five-character code identifying the model of an Intel Xeon Phi coprocessor.

The first character in the code stands for the performance shelf: 3, 5 or
7. The second character is the product generation. As of the writing of this
book (Feb 2015), only generation 1 (KNC) is available. Therefore, available
models can be organized into 3 groups: 3100, 5100 and 7100 series.

3100 Series is designed as the price-optimal group. Models in this series
contain fewer active cores, less onboard memory, and feature a lower
memory bandwidth than in other series. This series is a good choice
for compute-bound workloads.

5100 Series is optimized for performance per watt. 5100 Series coproces-
sors feature lower TDP, contain more memory and cores than the 3100
series, and perform better in memory bandwidth-bound and memory
capacity-bound workloads.

7100 Series is the top performing group. It has the greatest core count,
memory size and bandwidth of all series. It also comes at a higher
price than other series, and greater TDP than the 5100 series.

The third and fourth characters in the code are the SKU digits. These
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generally indicate the product stepping, and they increase as minor silicone-
level improvements are made.

Finally, the fifth character is a letter, which indicates the cooling solution
or special usage case of the model.

A stands for active cooling. These coprocessors come inside a heat sink with
a built-in and fan, and are suitable for usage in desktop workstations
(Figure 1.6, left). This cooling solution is not reliant on system fans,
and the built-in fan speed is controlled by an onboard sensor, which
allows these coprocessors cards to be quiet in the idle state.

P stands for passive cooling. These coprocessors have come in a heat sink,
but have no fan (Figure 1.6, right). They cannot be used in workstations
because of imminent overheating, and are designed for servers.

X indicates that no cooling solution is provided, i.e., there is no heat sink on
the card. These coprocessors can be used only with custom cooling
solutions such as liquid cooling, because normal airflow from common
system fans is not sufficient for heat removal.

D is the dense form factor model. It does not have a heat sink, and is smaller
in size than the X option. These models are designed for specialized
solutions capable of supporting a large density of thermal dissipation.

Figure 1.6: Active and passive cooling solutions of Intel Xeon Phi coprocessors.
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Model TDP
(W)

Cores Clock
(GHz)

Turbo
Boost

RAM
(GiB)

MMB
(GB/s)

DP TPP
(GFLOP/s)

RCP

3120P 300 57 1.100 no 6 240 1003.2 $1695
3120A 300 57 1.100 no 6 240 1003.2 $1695–1960
5120D 245 60 1.053 no 8 352 1010.9 $2759
5110P 225 60 1.053 no 8 320 1010.9 $2437–2649
7120X 300 61 1.238–1.333 1.0 16 352 1208.3 $4129
7120P 300 61 1.238–1.333 1.0 16 352 1208.3 $4129
7120D 270 61 1.238–1.333 1.0 16 352 1208.3 $4235
7120A 300 61 1.238–1.333 1.0 16 352 1208.3 $4129

Table 1.1: Models of Intel Xeon Phi coprocessors available as of May 2014. Columns contain:
model name, thermal design power (TDP) in Watts, number of physical cores, their clock
speed, Intel Turbo Boost technology support, onboard memory size in GiB, maximum memory
bandwidth (MMB) in GB/s, double precision (DP) theoretical peak performance (TPP) in
GFLOP/s, and RCP. RCP is price guidance for bulk purchases by direct Intel customers, subject
to change without notice, not a formal pricing offer from Intel or Colfax International.

Table 1.1 summarizes the currently available models of Intel Xeon Phi
coprocessors and their specifications. In this table, all quantities are obtained
from the Intel Xeon Phi Product Family page, except for the Theoretical
Peak Performance (TPP), which is estimated according to Equation (1.1):

TPP
GFLOP/s

=
Clock Speed

GHz
× FMA× SIMD Register Size

sizeof(TYPE)
× Cores. (1.1)

For Intel Xeon Phi coprocessors, FMA = 2 (the fused multiply-add operation
is performed in one cycle), SIMD register size is 512 bits (64 bytes), and the
size of double precision numbers is 64 bits (8 bytes). See Section 1.3 and
4.5 for additional discussion.
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1.1.5. Intel Xeon Processor E3, E5 and E7 Family
Only the Intel Xeon family server processors are considered in this book

in conjunction with Intel Xeon Phi coprocessors. Desktop and mobile device
product lines (Intel R© CoreTM , Intel R© AtomTM , Intel R© Pentium R©and Intel R©

Celeron R©) are not discussed, because

a) generally, there is no support for Intel Xeon Phi coprocessors in boards,
chipsets and BIOS software compatible with consumer CPUs,

b) the set of features, TDP, and cost of consumer processors are very different
from server CPUs, which is not suitable for a meaningful comparison.

Intel Xeon family adheres to the numbering scheme shown in Figure 1.7.

Product line
E7 - best performance
E5 - best performance/watt
E3 - best value

Intel® Xeon® processor E5-2670 v2

Brand
(the family
of products)

Wayness
(1,2,4 or 8)

Socket type
(2,4,6 or 8)

Processor SKU
(10, 20, ...)

Version
v1=Sandy Bridge
v2=Ivy Bridge
v3=Haswell

Figure 1.7: Codes identifying the model of an Intel Xeon CPU.

The product line (E3, E5 and E7) for Intel Xeon CPUs is similar to the
performance shelf for Intel Xeon Phi coprocessors: E3 is the lowest-cost
option, E5 is optimized for best power consumption, and E7 is the top
performing line.

Wayness is the maximum number of CPU sockets per node. Two digits
of the processor SKU places the CPU within its family. There differences
between different SKUs are mostly quantitative. The SKU determines the
number of cores, clock speed, maximum memory bandwidth, and cache size.

After the SKU, in some CPU models, an additional suffix “L” is present,
indicating a low power consumption model.

Finally, the version of the CPU (v1, v2 or v3) determines the type of
processor microarchitecture used in the chip: Sandy Bridge (v1), Ivy Bridge
(v2) or Haswell (v3). The difference between versions depends on whether
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the version update was a “tick” or a “tock”. For instance, Sandy Bridge
to Ivy Bridge development was a “tick”, i.e., a newer, smaller transistor
technology was used in v2. As a result, v2 CPUs may have more cores,
greater performance and lower power consumption than v1, however, the
instruction set is unchanged. In contrast, Ivy Bridge to Haswell update was
a “tock”, i.e., the same transistor technology as in Ivy Bridge was used to
produce an architecturally improved chip. As a result, v3 CPUs support
additional instruction sets (in this case, AVX2) and features (e.g., TSX), and
operate with a different chipset.

Model TDP
(W)

Cores Clock
(GHz)

Cache
(MiB)

MMB
(GB/s)

DP TPP
(GFLOP/s)

RCP

E5-2603 80 4 1.8 10 34.1 57.6 $198
E5-2690 135 8 2.9 20 51.2 185.6 $2057
E5-2603 v2 80 4 1.8 10 42.6 57.6 $202
E5-2697 v2 130 12 2.7 30 59.7 259.2 $2614
E5-2603 v3 85 6 1.6 15 68.0 76.8 $217
E5-2697 v3 145 14 2.6 35 51.0 291.2 $2706

Table 1.2: Some of the models of Intel Xeon processors available as of April 2015. Columns
as in Table 1.1. RCP is price guidance for bulk purchases by direct Intel customers, subject to
change without notice, not a formal pricing offer from Intel or Colfax International. Values are
per socket; double all values for a dual-socket CPU.

Of the multitude of Intel Xeon SKUs, the most important for the discus-
sion in this book are two-way multi-core CPUs. This is because their TDP
and cost are comparable to those of a single Intel Xeon Phi coprocessor (see
also Section 4.1.2).

Table 1.2 lists key technical specifications of a few selected two-way
models of Intel Xeon processors. Note that the quantities in Table 1.2 are
reported per socket, so for a two-way machine, they must be multiplied
by 2. DP TPP is estimated similarly to Equation (1.1), with SIMD Register
Size=256 bits, and an additional factor of ×2 to account for two ALUs
in Sandy Bridge and Ivy Bridge architectures, or for FMA in the Haswell
architecture (see Section 4.5).

For complete information on the technical specifications of other Intel
processors, refer to http://ark.intel.com/.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition
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1.2. MIC Architecture: Developer’s Perspective

Programming applications for Intel Xeon Phi coprocessors is not signifi-
cantly different from programming for Intel Xeon processors. Indeed, both
devices feature the x86 architecture, support for C, C++ and Fortran, and
common parallelization libraries. Therefore, only familiarity with multi-
core processor programming is required. However, in order to optimize
applications, it is helpful to know some of the architectural properties of the
coprocessor. Relevant properties are described in this section.

1.2.1. Knights Corner Die Organization
The KNC die is manufactured using the 22 nm process technology with

3-D Trigate transistors. This technology allows to fit 62 cores and up to
16 GiB of cached GDDR5 memory on a single die. In most production
coprocessor models, from 57 to 61 cores are active, and from 6 to 16 GiB of
RAM is available. The cores and GDDR5 memory controllers are connected
via a bi-directional Core Ring Interconnect (CRI) (see Figure 1.8).

CORE

L2

GBOX
(memory 

controller)

GBOX
(memory 

controller)

SBOX
PCIe v2.0
controller,

DMA engines
ADDRESS

DATA

COHERENCE

Core Ring
Interconnect (CRI)

GDDR5

GDDR5

GDDR5

GDDR5

TD TD TD TD

TD

TD

TD TD TD TD

TD

TD

GDDR5

GDDR5

GDDR5

GDDR5

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

COREL2

COREL2CORE L2

CORE L2 Distributed tag 
directory (DTD)

Figure 1.8: Knights Corner die organization. A bi-directional ring interconnects cores, tag
directories, onboard memory controllers and PCIe/DMA engines.

c© Colfax International, 2013–2015

http://www.colfax-intl.com/


14 CHAPTER 1. INTRODUCTION

The CRI consists of three bi-directional rings:

1. the data ring, as the name suggests, carries application data between cores
and memory controllers;

2. the address ring carries commands from cores to other devices for memory
fetches, and

3. the acknowledgement ring is used for cache coherency traffic.

In addition to cores, the CRI contains devices that allow the chip to operate
as a symmetric multiprocessor:

i) A distributed Tag Directory (TD): multiple TD devices maintain infor-
mation about cache lines in the L2 caches, and of their states. Together,
all TDs form a Distributed Tag Directory (DTD), responsible for main-
taining a global cache coherency.

ii) 6 to 8 GBOX units, which are memory controllers for onboard GDDR5
RAM. Each controller has two 32-bit channels delivering up to 5.5 GT/s.
The RAM has the Error Correction Code (ECC) capability.

iii) An SBOX (system box) unit, supporting a PCI Express v2.0 logic with
eight Direct Memory Access (DMA) channels for data transfer from
system to GDDR5 memory.

From the programmer’s perspective, this architecture is more non-uniform
than the symmetric architecture of an Intel Xeon CPU. Indeed, the latency
and bandwidth of communication between two cores depends on the distance
between them on the CRI. Therefore, applications for the MIC architecture
must, whenever possible, maintain good data locality and avoid synchroniza-
tion. This will be discussed in greater detail in Chapter 4.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition
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1.2.2. Core Specifications

Each of the 57 to 61 cores of a KNC chip has structure schematically
depicted in Figure 1.9.

Figure 1.9: The topology of a single Knights Corner core. Image credit: Intel Corporation.

Instructions in the executable code are processed on the core either on the
scalar, or on the vector arithmetic unit.

The purpose of the scalar unit is to maintain compatibility with applica-
tions for the x86 architecture. It allows, for instance, to run a Linux operating
system on the coprocessor. The scalar unit may also be used for compute-
intensive calculations, however, it is a severely sub-optimal way to use the
coprocessor, as the bulk of the compute power is in the vector unit. To put
a number on it, it is quoted (e.g., [3]) that the fraction of the chip area used
legacy x86 support is only 2%.

The vector unit, present in each core, has 512-bit wide registers and
supports the Initial Many-Core Instructions (IMCI) instruction set. This func-
tionality allows SIMD operations on up to 16 single precision floating-point
numbers, or up to 8 double precision numbers. The IMCI instructions in-
clude floating-point addition, multiplication and Fused Multiply-Add (FMA),
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division, reciprocal, trigonometric, exponential and logarithmic functions,
type conversion, bitwise operations, and other instructions; operations on 32-
and 64-bit integers are also supported. See Section 3.1.11 for more detail.

The cores of KNC are successors of the Intel Pentium processor cores.
Numerous improved features, however, differentiate KNC from Pentium:

i) Each x86 core on the Knights Corner chip has its own Performance
Monitoring Unit (PMU) with advanced features. It is able to count
metrics including the number of retired instructions, elapsed cycles,
memory controller events, vector unit utilization and statistics, remote
cache access statistics, and other. Performance is monitored at the
individual thread level.

ii) Advanced power management features in KNC include C3 and C6 states
(power conservation in shallow and deep idle cores), PC3 and PC6 states
(power conservation on the entire chip in shallow and deep idle states)
and Turbo mode in some models.

iii) Streaming store is a bandwidth-boosting feature in KNC for certain
memory-intensive workloads. It allows a core to write a cache line to
memory without reading it first.

iv) Each KNC core is running 4 hardware threads in a round-robin order.
Every hardware thread issues instructions every other cycle, and there-
fore, two hardware threads per core are necessary to utilize all available
cycles. Additional two hardware threads may improve performance in
the same situations where hyper-threading improves performance in
Intel Xeon processors.

v) Even though KNC cores are in-order, they do not stall upon all cache
misses. For read misses, the hardware thread triggering the miss is
stalled, while other threads can continue processing. Each KNC core
can handle up to 38 asynchronous prefetch requests for both read and
write instructions.

vi) KNC cores contain hardware prefetchers for moving data from the main
memory to the L2 cache, but no prefetchers for L2 to L1 traffic.

The Level-1 (L1) and Level-2 (L2) caches are embedded in the core.
The hierarchical cache structure is a significant component in the KNC
productivity. The details of cache organization and properties are discussed
in Section 1.2.3
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1.2.3. Memory Hierarchy and Cache Properties

Memory hierarchy in KNC features two levels of caches: the L1 cache
nearest to the processor (32 KiB per core) and the L2 cache (512 KiB) per
core. The caches are 8-way associative, fully coherent using the MESI
protocol, with a pseudo-LRU (Least Recently Used) replacement policy. The
cache properties of KNC are summarized in Table 1.3.

Parameter L1 (per core) L2 (per core)
Size 32 KiB data +

32 KiB instruction
512 KiB

Line size 64 B 64 B
Access time 1 cycle 11 cycles
Associativity 8-way 8-way
Set conflict 4 KiB 64 KiB
TLB Coverage 64×4KiB pages or

8×2MiB pages
64×4KiB pages or
64×2MiB pages

Prefetching Software Hardware and software

Table 1.3: Cache properties of the Knights Corner architecture.

Associativity

Eight-way associativity strikes a balance between the low overhead of
direct-mapped caches and the versatility of fully-associative caches. An
8-way set associative cache chooses, for each memory address, one of 8
ways of cache (i.e., cache segments) into which the data at that memory
address be placed. Within the way, the data can be placed anywhere.

Replacement Policy

The Least Recently Used policy is such behavior of a cache that when
a cache line has to be evicted from cache in order to load new data, a line
is evicted from least recently used set. LRU is implemented by dedicated
hardware units in the cache.
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Set Conflicts

To the developer, an important property of multi-way associative caches
with LRU is the possibility of set conflict. A set conflict may occur when the
code processes data with a certain stride in virtual memory. For KNC, the
stride is 4 KiB in the L1 cache and 64 KiB in L2 cache. With this stride, data
from memory must be mapped into same set, and, if LRU is not functioning
properly, some data may be evicted prematurely, causing performance loss.

Coherency and Tag Directory

A coherent cache guarantees that when data is modified in one cache,
copies of this data in all other caches will be correspondingly updated before
they are made available to the cores accessing these other caches. In KNC,
L2 caches are not truly shared between all cores; each core has its private
slice of the aggregate cache (see Figure 1.8). Therefore, the coherency of
the L2 cache comes at the cost of potential performance loss when data is
transferred across the ring interconnect.

To accelerate the coherency protocol, the information about the states of
cached lines are distributed across 64 isolated tag directories (TDs) operating
in parallel. There is a system-wide mapping that assigns any physical memory
address to a specific TD.

When a core requests a cache line, the local TD is checked first. If the
line address maps to the local TD, the chip receives the address, state and
owner (one of the L2 caches) of the line, and the coherency protocol is used
to continue work with this cache line. In this way, coherency checks are
parallelized on the hardware level.

The distributed L2 cache and distributed tag directory lead to another
consequence. In workloads with access to shared data, some cache lines may
be stored in L2 caches of multiple cores. On the one hand, this improves the
access time to these cache lines. On the other hand, it reduces the effective
usable size of the L2 cache.

Translation Lookaside Buffer (TLB)

Translation Lookaside Buffer, or TLB, is a cache residing on each core,
that speeds up the lookup of the physical memory address corresponding to
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a virtual memory address. Entries, or pages in TLB can vary in the amount
of memory that they map. The physical size of the TLB places restrictions
on the number of pages on the total address range stored in TLB. When
memory address accessed by the code is not found in TLB, the TLB entries
must be re-built in order to look up that address. This causes a data page
walk operation, which is fairly expensive compared to the misses in L1 and
L2 caches. Optimal TLB page properties depend on the memory access
pattern of the application. As with other cache function, TLB performance
can generally be improved by increasing the locality of data access in time
and space.

Prefetching

Another important property of caches is prefetching. During the program
execution, it is possible to request that data must be fetched into cache before
the core uses this data. This diminishes the impact of memory latency on
performance. Two types of prefetching are available in the KNC architecture:
software prefetching, when the prefetch instruction is issued by the code
in advance of the data usage, and hardware prefetching, when a dedicated
hardware unit in the cache learns the data access pattern and issues prefetch
instructions automatically. The L2 cache in KNC has a hardware prefetcher,
while the L1 cache does not. Normally, Intel compilers automatically in-
troduce L1 prefetch instructions into the compiled code. However, in some
cases it may be desirable to manually tune the prefetch distances or to dis-
able software prefetching when it introduces undesirable TLB misses. See
Section 4.5.6 for more information on this topic.

Additional Reading

A comprehensive source on microprocessor caches is the book “Computer
Architecture: a Quantitative Approach” by Hennessy and Peterson [4].
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1.2.4. Integration into the Host System through MPSS
From a developer’s perspective, an Intel Xeon Phi coprocessor is a com-

pute node with an IP address and a Linux operating system running on it.
That said, the coprocessor:
- responds to ping;
- runs an SSH (Secure Shell Protocol) server, which allows users to log into

the coprocessor and obtain a shell;
- hosts virtual or NFS filesystems with standard Linux ownership and per-

missions,
- and is capable of running other services such as Network File Sharing

Protocol (NFS) and Message Passing Interface (MPI).

Figure 1.10: MPSS, Manycore Platform Software Stack, contains a driver for the Intel Xeon Phi
coprocessor, a runtime environment for offload applications, and a Linux OS for the coprocessor.
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On the operating system level, the above mentioned functionality is pro-
vided by the Manycore Platform Software Stack (MPSS), a suite of tools
including drivers, daemons, command-line and graphical tools. The role of
MPSS is to boot the coprocessor, load the Linux operating system, populate
the virtual file system, and to enable the host system user to interact with
Intel Xeon Phi coprocessor in the same way as the user would interact with
an independent compute node on the network.

Figure 1.10 illustrates the role of MPSS in the operation of an Intel Xeon
Phi coprocessor. User-level code for the coprocessor runs in an environment
that resembles a compute node. The network traffic is carried over the PCIe
bus instead of network interconnects.

User applications can be built in two ways:

1. For high performance workloads, Intel compilers can be used to compile
C, C++ and Fortran code for the MIC architecture. Intel compilers are not
a part of the MPSS; they are distributed in additional software suite Intel
Parallel Studio XE (see Section 1.1.2 and Section 1.2.7).

2. For the Linux operating system running on Intel Xeon Phi coprocessors,
a specialized version of GNU Compiler Collection (GCC) is available.
This specialized GCC is used to compile the Linux distribution for the co-
processor. However it is not able to compile code with vector instructions
for the MIC architecture, which makes it unsuitable for high performance
computing applications.
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1.2.5. Networking with Coprocessors in Clusters

Intel Xeon Phi coprocessors do not have onboard Ethernet or InfiniBand
ports. However, because Intel Xeon Phi coprocessors run an operating
system, they are capable of supporting network protocols and communicating
with hosts and peers over virtualized Ethernet and InfiniBand fabrics.

The virtual Ethernet fabric with TCP/IP stack support is included in the
minimal installation of MPSS (see Section 1.5.3). The virtual fabric works
by creating virtual network interfaces (mic0, mic1, etc.) in the host OS and
in the coprocessor OS. Packets sent through these interfaces travel across the
PCIe bus, however, this not visible to user applications.

By default, the IP network is configured in the “static pair” topology, so
that coprocessors on the system form a private network, in which the host and
each coprocessor have an IPv4 address. CPU to MIC is possible within the
compute node (Figure 1.11, left). With packet forwarding enabled, MIC to
MIC communication also becomes possible. However, in this configuration,
TCP/IP packets cannot leave the host OS.
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Figure 1.11: Virtualized Ethernet fabric supporting the TCP/IP protocol. Left: communication
within the private network of a compute node. Right: network bridging puts coprocessors on the
external private network.

It is also possible to configure network bridging in software, and have the
coprocessors join the private network of the host. In this setup, messages
from/to Intel Xeon Phi coprocessors travel through the PCIe bus, and get
routed by their host OS to/from the NIC (Figure 1.11, right). In this way, it is
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possible to establish peer-to-peer connections between Intel Xeon Phi copro-
cessors installed in different machines. This powerful functionality makes all
Intel Xeon Phi coprocessors act as independent compute nodes. This allows
the developer to take a cluster application designed for CPU-based nodes
and run it without modification on MIC-based nodes (see Section 2.1.5).

The virtualized TCP/IP fabric provided by MPSS is useful for adminis-
trative tasks, and it can also support data traffic in computing applications.
However, as of MPSS 3.4.1, the TCP/IP performance is orders of magnitude
slower than the physical limitations of the PCIe bus.

A solution to this bottleneck is the InfiniBand functionality in MPSS:
1. Virtual InfiniBand interface ib-scif allows the host and the coproces-

sor to exchange messages via DMA with latencies and bandwidths close
to the PCIe limitations (Figure 1.12, left). Peer-to-peer communication
between coprocessors in a system over ib-scif is also possible.

2. For machines with physical InfiniBand HCAs, Coprocessor Communica-
tion Link (CCL) or Performance Scaled Messaging (PSM) allows Remote
Direct Memory Access (RDMA) transfers between coprocessors in dif-
ferent nodes (Figure 1.12, right). CCL is used for Mellanox-branded
interconnects, and PSM for Intel True Scale interconnects.
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Figure 1.12: Virtualized InfiniBand in MPSS allows DMA transfers between local coprocessors
(left) and RDMA (via an InfiniBand HCA) between coprocessors in other compute nodes (right).

CCL and PSM are provided by a special branch of the OpenFabrics
Enterprise Distribution (OFED) software suite (Section 1.5.5).
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1.2.6. File I/O on Coprocessors
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Figure 1.13: RAM disk

The default configuration of MPSS creates
a RAM disk with the tmpfs filesystem in the
coprocessor’s memory (Figure 1.13). This RAM
disk stores the operating system files, user ap-
plications and third-party libraries. Applications
can store scratch data and input/output files in
this filesystem. The data stored in the filesys-
tem takes up coprocessor memory, reducing the
amount available for applications. The memory-
based filesystem is not persistent: all stored data
is cleared when the coprocessor reboots.

Intel Xeon Phi coprocessors can also assume control over the host’s
physical drives and partitions (Figure 1.14) using the VirtIO block device
functionality (see Section 1.5.20 for more detail). VirtIO extends the amount
of disk space that the coprocessor can access, and allows read and write
access to persistent data storage devices. The performance of VirtIO-shared
filesystems is lower than that of the RAM disk.

Finally, thanks to the virtualization of networking on Intel Xeon Phi
coprocessors (Section 1.2.5), it is possible to mount network-attached storage
inside the coprocessor OS (Figure 1.15). The common NFS protocol is
supported over the virtualized TCP/IP fabric, and the scalable Lustre protocol
is available over the virtualized InfiniBand fabric.
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Figure 1.14: VirtIO
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Figure 1.15: Network storage
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1.2.7. Common Software Development Tools
Intel supports the cross-compatibility of the multi-core and manycore

platforms by maintaining common software development and runtime tools
for processors and coprocessors, including

i) Compilers: Intel C, C++ and Fortran compilers;
ii) Optimization tools: Intel VTune Amplifier XE and Intel Intel Trace

Analyzer and Collector (ITAC);
iii) Mathematics support: Intel Math Kernel Library (MKL);
iv) Parallelization libraries: Intel MPI and Intel OpenMP,

and others. Figure 1.16 shows some of the tools supporting both platforms.

XCPU XMIC XCPU XMIC XCPU XMIC XCPU XMIC

XCPU XMIC XCPU XMIC XCPU XMIC XCPU XMIC

Figure 1.16: Most Intel software development products support multi-core Intel Xeon CPUs as
well as the Intel MIC architecture.
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Common development tools for the Intel Xeon and Intel Xeon Phi product
families are available as a bundle in Intel Parallel Studio XE (Figure 1.17).

Intel Parallel Studio XE comes in three editions: composer, professional
and cluster. Composer is the basic edition, and it includes the Intel compilers
and optimized libraries like Intel MKL. Professional edition includes every-
thing for a single node development. In addition to everything in composer,
it also includes optimization tools such as Intel VTune Amplifier XE. Cluster
is the full edition. It includes everything in professional as well as libraries
necessary for cluster development, such as Intel MPI. Table Table 1.4 shows
the packaging of the three editions. For a full listing of available features in
each edition, refer to the product page for Intel Parallel Studio XE.

Figure 1.17: Intel software development tool suite for shared memory and distributed memory
application design. Intel Xeon processors and Intel Xeon Phi coprocessors are supported by all
three suite editions: composer, professional and cluster.
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Software \ Edition Composer Professional Cluster
Intel C, C++ and Fortran compilers x x x
Intel Math Kernel Library (MKL) x x x
Intel Threading Building Blocks (TBB) x x x
Intel Performance Primitives (IPP) x x x
Intel VTune Amplifier XE x x
Intel Inspector XE x x
Intel Advisor XE x x
Intel MPI Library x
Intel Trace Analyzer and Collector (ITAC) x

Table 1.4: Tools included in the three editions of Intel Parallel Studio XE 2015.

Intel compilers and product suites can be purchased directly from Intel or
from one of the authorized resellers. Colfax International is an authorized
reseller offering discounts for bundling software licenses with hardware pur-
chases, and academic discounts for eligible customers. For more information,
refer to http://www.colfax-intl.com/nd/xeonphi/ or contact sales@colfax-
intl.com.
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1.2.8. Intel Xeon Processors versus Intel Xeon Phi Copro-
cessors: Developer Experience

The following is an excerpt from an article “Programming for the Intel
Xeon family of products (Intel Xeon processors and Intel Xeon Phi copro-
cessors)” by James Reinders, Intel’s Chief Evangelist and Spokesperson for
Software Tools and Parallel Programming [5].

Forgiving Nature: Easier to port, flexible enough for initial
base performance
Because an Intel Xeon Phi coprocessor is an x86 SMP-on-a-chip,
it is true that a port to an Intel Xeon Phi coprocessor is often
trivial. However, the high degree of parallelism of Intel Xeon
Phi coprocessors requires applications that are structured to use
the parallelism. Almost all applications will benefit from some
tuning beyond the initial base performance to achieve maximum
performance. This can range from minor work to major restruc-
turing to expose and exploit parallelism through multiple tasks
and use of vectors. The experiences of users of Intel Xeon Phi
coprocessors and the “forgiving nature" of this approach are gen-
erally promising but point out one challenge: the temptation to
stop tuning before the best performance is reached. This can
be a good thing if the return on investment of further tuning is
insufficient and the results are good enough. It can be a bad thing
if expectations were that working code would always be high
performance. There is no free lunch! The hidden bonus is the
“transforming- and-tuning” double advantage of programming in-
vestments for Intel Xeon Phi coprocessors that generally applies
directly to any general-purpose processor as well. This greatly
enhances the preservation of any investment to tune working
code by applying to other processors and offering more forward
scaling to future systems.
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Transformation for Performance
There are a number of possible user-level optimizations that have
been found effective for ultimate performance. These advanced
techniques are not essential. They are possible ways to extract ad-
ditional performance for your application. The “forgiving nature"
of Intel Xeon Phi coprocessors makes transformations optional
but should be kept in mind when looking for the highest perfor-
mance. It is unlikely that peak performance will be achieved
without considering some of these optimizations:

- Memory Access and Loop Transformations (e.g., cache block-
ing, loop unrolling, prefetching, tiling, loop interchange, align-
ment, affinity)

- Vectorization works best on unit-stride vectors (the data being
consumed is contiguous in memory). Data Structure Transfor-
mations can increase the amount of data accessed with unit-
strides (such as AoS (Array of Structures) to SoA (Structure
of Arrays) transformations or recoding to use packed arrays
instead of indirect accesses).

- Use of full (not partial) vectors is best, and data transformations
to accomplish this should be considered.

- Vectorization is best with properly aligned data.
- Large Pages Considerations
- Algorithm selection (change) to favor those that are paralleliza-

tion and vectorization friendly.

Detailed description of Intel Xeon Phi coprocessor programming models
can be found in Chapter 2. A thorough exploration of optimization techniques
mentioned in this quote is undertaken in Chapter 4.
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1.3. Applicability of the MIC Architecture

Not all algorithms and applications are expected to be highly efficient
on Intel Xeon Phi coprocessors even with the best optimization effort. For
a number of applications, general-purpose processors will remain a better
option. This section discusses the properties of applications and algorithms
that identify applications as MIC-friendly or not.

1.3.1. Task Parallelism

Intel Xeon Phi coprocessors contain up to 61 cores clocked at approxi-
mately 1 GHz, whereas Intel Xeon processors of comparable TDP can have
up to 12 cores clocked at around 3 GHz (see Section 1.1.4 and Section 1.1.5).
A single lean, low-clock speed KNC cannot deliver better performance
than a hardware-rich, high-clock speed CPU core. In fact, the key to good
performance on Intel Xeon Phi coprocessors is parallelism.

Multiple cores can be utilized either by running multiple independent
processes (for instance, MPI ranks) or a single process with multiple parallel
threads. Coprocessor applications should have good scalability up to at least
100 processes or threads, considering the 4 hardware threads per KNC core.
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Figure 1.18: Task parallelism (multi-threading or running multiple independent processes) is a
prerequisite for good performance with Intel Xeon Phi coprocessors. Serial applications are best
executed on the CPU.
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Figure 1.18 is an illustration of the necessity for parallelism necessary
of Intel Xeon Phi utilization. It shows a synthetic performance of a serial
and of a perfectly scalable parallel application as a function of the number of
utilized cores on a multi-core CPU and on a MIC architecture coprocessor.
While single-core performance on the MIC architecture is lower than on a
CPU, having more cores allows the coprocessor to perform better.

Examples

1. Compilation of a programming language is an example of a task more
suited for Intel Xeon processors than for Intel Xeon Phi coprocessors,
because compilation involves inherently sequential algorithms.

2. Monte Carlo simulations are well-suited for Intel Xeon Phi coproces-
sors because of their inherent massive parallelism. See, however, a
comment in Section 1.3.2.
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1.3.2. Data-Parallel Component

Comparing the number of clock cycles per second issued by a 60-core
coprocessor (60 cores × 1 GHz) to the same metric of a two-socket host
system with 8-core processors (2 × 8 × 3.4 GHz), one can see that the
coprocessor is making only some 10% more clock cycles than the host.
However, an Intel Xeon Phi coprocessor can provide significantly greater
arithmetic performance than the host system. Why?

The answer is vector operations. While Sandy Bridge cores support AVX
instructions with support for 256-bit wide SIMD registers, KNC cores sup-
port IMCI instructions with 512-bit wide SIMD registers. Neglecting other
aspects of performance, such as memory bandwidth, pipelining and transcen-
dental arithmetic performance, an Intel Xeon Phi coprocessor architecture
has the capability to perform roughly twice as many arithmetic operations
per second as an Intel Xeon CPU.
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Figure 1.19: Theoretical peak arithmetic performance of an Intel Xeon Phi coprocessor and
an Intel Xeon processor of comparable TDP for scalar/vectorized and single/multi-threaded
applications.
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The flip-side of this architectural difference is also true. Suppose a poten-
tially vectorizable calculation is running in scalar (i.e., non-SIMD) mode on
a Sandy Bridge architecture CPU in single precision. This calculation is ex-
periencing up to 256 / (8*sizeof(float))=8-fold performance penalty
for failure to employ vector arithmetic. On KNC, the penalty for the lack of
vectorization is a factor or 512 / (8*sizeof(float))=16.

Therefore, if a compute-bound application does not employ vectorization,
it is unlikely to exhibit better performance on an Intel Xeon Phi coprocessor
than on an Intel Xeon processor. See Section 3.1 for more information about
vectorization.

Figure 1.19 is a visual pointer to the need for SIMD parallelism (vector-
ization) in KNC workloads.

Examples

1. Monte Carlo algorithms may be well-suited for execution on Intel
Xeon Phi coprocessors if they either use vectors for calculations inside
of each Monte Carlo iteration, or perform multiple simultaneous Monte
Carlo iterations using multiple SIMD lanes.

2. For common linear algebraic operations, there exist SIMD-friendly
algorithms and implementations. These calculations are well-suited
for Intel Xeon Phi coprocessors.
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1.3.3. Memory Access Pattern

Memory streaming in Intel Xeon Phi coprocessors is fast. The theoretical
limit of memory bandwidth is 384 GB/s and practical performance is up to
a half of that. This is 2-3x as fast as the memory bandwidth in a two-way
system with Intel Xeon processors. Therefore, for applications in which
memory access pattern is streamlined, Intel Xeon Phi coprocessors can yield
better performance than Intel Xeon processors.

However, streaming memory bandwidth is irrelevant in cases where mem-
ory access pattern is complicated. In these cases, performance is limited by
memory access latency or cache performance.
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Figure 1.20: Performance with streaming and random memory access.

Figure 1.20 illustrates the difference that randomness in the memory
access pattern makes in the performance of an Intel Xeon processor and an
Intel Xeon Phi coprocessor. The first set of bars illustrates the performance
of the industry-standard STREAM benchmark, the “triad” test. In this
benchmark, memory is read and written in a contiguous pattern. The second
and third set of bars demonstrate the “triad” operation on randomly scattered
blocks of memory (one thread per block). The second set of bars is for
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4 kilobyte blocks, and the third is for 1 kilobyte blocks. While the MIC
architecture has clear advantage in the streaming case, for random accesses
it performs only as good as, or even much worse, than the CPU.

At the same time, the KNC architecture has specialized instructions for
strided memory accesses. Fixed-stride write accesses, called “scatters”, and
fixed-stride read accesses, called “gathers”, are optimized to deliver greater
bandwidth than just random accesses.

Considering the above facts, one can only expect a better performance
from an Intel Xeon Phi coprocessor than from an Intel Xeon processor in
two cases:
a) the data set is so small, or the arithmetic intensity (number of operations

on every word fetched from memory) is so high that memory performance
is irrelevant — the compute-bound case, or

b) memory access pattern is streamlined enough so that the application is
limited by memory bandwidth and not memory latency — the bandwidth-
bound case.

Multi-threading is as important for bandwidth-bound applications as it is for
compute-bound workloads, because all available memory controllers must
be utilized. On Intel Xeon Phi coprocessors, special measures on thread
binding to cores must be taken in order to optimize for bandwidth, just like
with Intel Xeon CPUs. See also Section 4.5 for a discussion of memory and
cache traffic tuning.

Examples

1. Monte Carlo calculations with a small size of geometry or physics
data may have small memory footprints. Consequently, they are not
sensitive to the memory performance;

2. Some stencil operations found in Computational Fluid Dynamics
(CFD), image processing, and heat transport simulations have stream-
ing memory access pattern. These algorithms are a good match for the
Intel Xeon Phi coprocessor architecture.

3. Applications with complex data structures (e.g., graphs with relatively
small amount of data in the vertices) may need to re-arrange or pack
data in such a way that data locality is improved in the actual data
access pattern.
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1.3.4. PCIe Bandwidth Considerations

When data needs to be transferred across the PCIe bus from the host to
the coprocessor, or between coprocessors, consideration should be given to
the data transfer time. Depending on how much work will be done on the
coprocessor with the data before the result is returned, and depending on
how quickly this work will be done, the usage of the coprocessor may or
may not be justified.

Ratio of Arithmetic Operations to Data Size

The following technical characteristics can be used to estimate the benefit
of coprocessor usage: a practical PCIe v 2.0 bandwidth of ≈6 GB/s, a
practical arithmetic performance of 750 GFLOP/s in double precision, and
a practical memory bandwidth on the coprocessor of 150 GB/s. The above
numbers yield the following “rules of thumb” for identifying situations when
the PCIe overhead is insignificant:

a) for compute-bound calculations, if the coprocessor performs many more
than than

Na =
750 GFLOP/s

6 GB/s/(8 bytes per number)
≈ 1000 (1.2)

lightweight floating-point operations (additions and multiplications) per
data element, then the data transport overhead is insignificant;

b) for compute-bound calculations with expensive arithmetic operations
such as division and transcendental functions, the arithmetic intensity
threshold at which the communication overhead is justified is lower than
1000 operations per transferred floating-point number;

c) for bandwidth-bound calculations, if the data in the coprocessor memory
is read many more than

Ns =
150 GB/s

6 GB/s
≈ 25 times (1.3)

in streaming fashion, then the time of data transport across the PCIe bus
will be insignificant compared to the execution time on the coprocessor.
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Arithmetic Complexity

In this context, it is informative to establish a link between the complexity
of an algorithm and its ability to benefit from Intel Xeon Phi coprocessors.
Namely,

a) if the data size is n, and the arithmetic complexity (i.e., the number of
arithmetic operations) of the algorithm scales as O(n), such an algorithm
may experience a bottleneck in the data transport. This is because the
coprocessor performs a fixed number of arithmetic operations on every
number sent across the PCIe bus. If this number is too small, the data
transport overhead is not justifiable.

b) for algorithms in which the arithmetic complexity scales faster than O(n)
(e.g., O(n log n) or O(n2)), larger problems are likely to be less limited
by PCIe traffic than smaller problems, as the arithmetic intensity in this
case increases with n. The stronger the arithmetic complexity scaling, the
less important is the communication overhead.

Overlapping Communication with Computation

Overlapping data transfer with work on another piece of the data set
can potentially increase overall performance by up to a factor of two. To
mask data transfer, the asynchronous transfer and asynchronous execution
capabilities of Intel Xeon Phi coprocessors can be used. More details are
provided in Section 2.2.5.

Data Persistence and Manycore-Hosted Applications

In some cases, data traffic can be reduced or eliminated if some of the
data is retained on the coprocessor between offloads. For instance, read-only
physics data, or results of one iteration of a simulation used in the subsequent
iteration can be retained. This is discussed in Section 2.2.4.

In other cases, if the host CPU is not used in the application, it is possible
to have the data living on the coprocessor from initialization until output and
destruction. In this case, it may be possible to eliminate data traffic across
the PCIe bus completely, except for scheduling or boundary value exchange
traffic. This can be achieved through native programming of coprocessors
and manycore-hosted MPI applications, as discussed in Section 2.1.
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Examples

1. Computing a vector dot-product, when one or both vectors need to be
transferred to the coprocessor, is an inefficient use of Intel Xeon Phi
coprocessors, because the complexity of the algorithm is O(n), and
only 2 arithmetic operations per transferred floating-point number are
performed. The PCIe communication overhead is expected to be too
high, and such a calculation can be done more efficiently on the host;

2. Computing a matrix-vector product with a square matrix, when only
the vector must be transferred to the coprocessor, is expected to have a
small PCIe communication overhead if the vector size is large enough
(so that the communication latency is unimportant). The algorithm
complexity is O(n2), and therefore each transferred floating-point
number will be used n times.

3. FFTs require O(n log n) operations on every data element, and it is a
bandwidth-bound calculation. Therefore, larger FFTs experience less
communication overhead than smaller ones.
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1.4. Preparing for Future Parallel Architectures

This section summarizes information on upcoming Intel manycore prod-
ucts and provides advice on preparing computing applications for the future.

1.4.1. Exascale Computing for the Rest of Us
Intel Xeon Phi coprocessors based on the Knights Corner microarchi-

tecture are the first generation of Intel products designed specifically for
accelerated HPC. However, future highly parallel processors are already in
the development pipeline.

“Exascale” is a milestone in computer science anticipated in 2018, where a
computing system with a power consumption under 20 MW is able to achieve
a performance of 1 exaflop/s (1018 floating-point operations per second).
This will require a reduction in the energy cost of arithmetic operations by
a factor of ≈30 compared to today’s typical performance metrics. It will
also necessitate the development of memory subsystems and interconnects
capable of supporting such performance. In the arena of supercomputing, the
path to Exascale will be paved by specialized processors designed for power
efficiency and high degree of parallelism, rather than by general-purpose
CPUs designed for flexibility in parallel/sequential processing.
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Figure 1.21: By 2018, the trend of CPU-based supercomputing hits the Exascale performance
target, but not the energy target. However, highly parallel processors (GPGPUs and MIC
architecture) can help to bridge the energy gap.
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Figure 1.21 shows historical data of the Top 500 Supercomputer Sites
rankings. Two metrics relevant to Exascale are shown in this plot. Rmax, plot-
ted with red markers, is the maximum performance, in TFLOP/s, achieved
in the HPC LINPACK Benchmark on the top-ranked system. The other
metric, shown with a blue region, is the range of energy cost of operation
in #1 through #10 systems in Top 500. The energy cost was calculated as
Rmax/P , where P is the power consumption reported to the Top 500 list. We
also plotted trend lines based on historical data for performance and power
efficiency.

The trend lines in Figure 1.21 show that achieving exaflop performance
(1018 FLOP/s) is a realistic goal. However, fitting an exaflop performance
system into the 20 MW power envelope requires better power efficiency than
the trend predicts in 2018. It is important that these trend lines are based,
predominantly, on CPU-powered systems. A breakthrough technology, such
as specialized parallel processors, can break the trend and close the power
gap. Consequently, progress in science and technology dependent on big
HPC – genomics research, molecular biology, weather modeling, computa-
tional fluid dynamics, plasma physics, and other fields – is dependent upon
developers continually learning to leverage parallel architectures, including
the manycore platform.

At the same time, one does not have to be a prospective Exascale user in
order to wonder about the future of high performance platforms. Progress
driven by the Exascale challenge will echo on smaller computing resources.
Indeed, as of today, vector processors have permeated from big HPC to
smaller computing systems, ranging from professional desktop workstations
to private computing clusters. This makes computing systems of teraflop per
second performance readily available in the form of a GPGPU or an Intel
Xeon Phi coprocessor. Likewise, the Exascale era will, in all probability,
make petaflop per second computing equally affordable and wide-spread.

Consequently, for software developers, scientists and computing system
architects on all scales of computing, it is important to understand how the
next generation of parallel processors will affect their workflow and research
opportunities.
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1.4.2. Second Generation MIC Processor, KNL
The second generation of the Intel manycore architecture will be based

on a chip codenamed Knights Landing manufactured with a 14 nm transistor
process. The new features expected in KNL are (see disclosures):

1. The second generation chip will be a manycore processor product with
more than 60 cores in a 2D mesh architecture, capable of achieving over
3 TFLOP/s in double precision at over 10 GFLOP/J.

2. It will be available in the socket version, i.e., as a standalone bootable
processor capable of running an OS.

3. The processor will also be available as a PCIe-connected coprocessor.
4. Second generation MIC processors will have on-package high-bandwidth

memory (16 GiB at launch), delivering over 5x the bandwidth of DDR4
for the STREAM benchmark (over 400 GB/s).

5. The on-package memory can be used as a cache for the system memory,
or used in a flat memory model.

6. Single-thread performance will be improved by up to 3x over the first
generation; multiple hardware threads per core will be used.

7. The processor will support Intel Advanced Vector Extensions 512 (AVX-
512) instruction set and feature two VPUs per core.

Figure 1.22: Second generation MIC processor codenamed Knights Landing will be available
in the socket version (i.e., as a stand-alone CPU).

Even though at the time of the writing of this book (May 2014), official
public information on the second generation is limited, the specification of the
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AVX-512 instruction set has been released [6], and Intel has communicated
the intent to support existing frameworks (MKL, MPI, OpenMP, OpenCL,
as well as Intel Cilk Plus and TBB) with KNL [7]. This information, along
with the above mentioned facts and historical trends in Intel products, allow
to draw the following two conclusions:

I. Modernization of computing applications for today’s Intel Xeon Phi
coprocessors is the way to prepare them for Knights Landing.

II. At the same time, developers need to be careful in their choice of
programming models. In some cases, incompatibility between first
generation (KNC) and second generation (KNL) architectures may
impede application porting to the future architecture.

In support of the first statement, note the following facts. 60+ cores with
multiple hardware threads will support AVX-512. This is architecturally
similar to KNC with up to 61 cores, 4 hardware threads per core, and the
IMCI instruction set (see Section 3.1.2). Both instruction sets (IMCI and
AVX-512) support 512-bit long vectors and perform operations on single
and double precision floating point numbers and integers. Basic arithmetic
operations, common transcendental functions, rounding, type conversion
and other common vector operations are supported in both instruction sets.
Furthermore, on-package high-bandwidth memory is a feature similar to the
onboard GDDR5 RAM in first generation Intel Xeon Phi coprocessors (see
Section 1.1.1). It is likely that additional usage models of the on-package
memory (e.g., the cache model) will expand the range of options available
to parallel applications. Still, it will likely be easier to tune a “cache-aware”
application optimized for KNC for an additional level of cache in KNL than
to optimize a “cache-ignorant” code for data locality in either architecture
(see Section 4.5).

The second statement follows from the specification of AVX-512. This
instruction set is a superset of IMCI and also backward compatible with
the Instruction Set Architecture (ISA) of Intel Xeon processors (SSE, SSE2
and AVX). This means that binaries compiled for Intel Xeon processors
can be run on the second generation Intel Xeon Phi processors without
recompilation. However, the 256-bit Intel Xeon instructions will not take
advantage of the new architecture with 512-bit vectors. That means that at
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least a recompilation pass will likely be required in order to port applications
from Intel Xeon CPUs to the second generation MIC platform. Furthermore,
applications compiled for the first generation of Intel Xeon Phi coprocessors
will not be binary compatible with the second generation and have to be
recompiled. This leads us to a discussion of programming models that
simplify code portability to future architectures. See next section for details.
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1.4.3. Future-Proof Development Options

Legacy applications that were designed for CPUs in a “future-proof” way
have better chances of benefiting from the manycore architecture than ap-
plications “hard-wired” to older platforms. Likewise, today’s applications
developed for Knights Corner architecture will scale to future Knights Land-
ing only if they are designed with portability in mind.

The key to “future-proofing” is using as high level framework as possible
for performance-critical parts of the application. For example, an application
that relies on BLAS library functions may be accelerated on Intel Xeon Phi
coprocessors after linking to the Intel MKL (see Section 5.1). Applications
that rely on automatic vectorization by the compiler can be re-compiled
with a modern compiler and experience improved performance (see further
discussion in Section 4.3). In contrast, applications designed with assembly
or intrinsic functions may not be able to run on future architectures, and will
have to be re-written.

Ease of use

Fine control

Threading Options Vector Options

Intel Math Kernel Library

Array Notation: 
Intel Cilk Plus

Auto vectorization

Semi-auto vectorization:
#pragma (vector, ivdep, simd)

OpenCL*

C/C++ Vector Classes
(F32vec16, F64vec8)

Intel Math Kernel Library MPI*

Intel Threading Building Blocks

Intel Cilk Plus

OpenMP*

Pthreads*

D
 e
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 t 

h

Figure 1.23: Implementation of thread and data parallelism in applications for Intel Xeon
processors and Intel Xeon Phi coprocessors designed with Intel software development tools.
Diagram based on materials designed by Intel.
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Figure 1.23 demonstrates the variety of choices for thread and data paral-
lelism implementations in the design of applications for Intel Xeon and Intel
Xeon Phi platforms. Depending on the specificity and computing needs of the
application, the depth of programmer’s control over the code may be chosen
from high-level library function calls to low-level threading functionality
and Single Instruction Multiple Data (SIMD) instructions. This choice is
available in both multi-core and manycore applications.

The focus of this book is on the “future-proof” approach to application
programming through the use of the highest-level frameworks. We demon-
strate how to design C/C++ codes in such a way that the Intel C Compiler and
Intel C++ Compiler can automatically implement thread and data parallelism,
with possibility of using recompilation to port the code the from CPU to
Intel Xeon Phi coprocessors, and to future manycore architectures. We also
discuss using the Intel MKL to rely on a library implementation of common
functions.

Even though little has been revealed about planned programming models
for Knights Landing, Intel has invested considerable effort into supporting the
innovations in OpenMP and MPI specifications and evolving the Intel C, C++
and Fortran compilers as well as Intel MKL. Furthermore, communications
from Intel state that automatic vectorization, OpenMP, MPI and MKL, will
become if not the leading, but at least reliably supported tools for future
platforms, including Knights Landing.

That said, we believe that porting and optimization of today’s CPU appli-
cations for Knights Corner using the methods that we propose an investment
into preparing these applications for Knights Landing and the subsequent
hardware innovations leading up to Exascale.
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1.5. System Administration with Intel Xeon Phi
Coprocessors

This section overviews the process of installing and configuring an Intel
Xeon Phi coprocessor and related software. Complete and current procedures
can be found in the document “Intel Manycore Platform Software Stack (Intel
MPSS) User’s Guide”. Procedures discussed in this section serve as reference
points to the administrator of a system with Intel Xeon Phi coprocessors.

1.5.1. Hardware Compatibility
In general, an Intel Xeon Phi coprocessor requires a system with a free x16

PCIe connector and a BIOS with support for memory-mapped I/O (MMIO)
address ranges above 4 GiB. In addition, there must be sufficient cooling,
either from the system fans, or from a combination of system fans and the
built-in active cooling solution fans on the coprocessor cards. Complete
thermal specifications are laid out in Xeon Phi Datasheet.

Ensuring the compatibility of a computing system with Intel Xeon Phi
coprocessors is generally the responsibility of the computing system Orig-
inal Equipment Manufacturer (OEM). Self-installation of Intel Xeon Phi
coprocessors into computing systems not validated for usage with these
devices is done at the user’s risk. If thermal or electrical specifications of the
host system are not met, the system or the coprocessor can be irreparably
damaged.

Computing systems enabled with Intel Xeon Phi coprocessors provisioned
by Colfax International come with Intel Xeon Phi coprocessors and related
software and drivers already installed. System configurations validated for
use with Intel Xeon Phi coprocessors can be found at http://www.colfax-
intl.com/nd/xeonphi/.
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1.5.2. Operating Systems
As of MPSS 3.4.1 (Oct 2014), the following operating systems are sup-

ported for Intel Xeon Phi coprocessor operation:

1. Red Hat* Enterprise Linux* 64-bit:
• RHEL 6.3 kernel 2.6.32-279
• RHEL 6.4 kernel 2.6.32-358
• RHEL 6.5 kernel 2.6.32-431
• RHEL 7.0 kernel 3.10.0-123

2. SUSE* Linux* Enterprise Server
• SLES 11 SP2 kernel 3.0.13-0.27-default
• SLES 11 SP3 kernel 3.0.76-0.11-default

3. Microsoft Windows:
• Windows 7 Enterprise SP1
• Windows 8/8.1 Enterprise
• Windows Server 2008 R2 SP1
• Windows Server 2012
• Windows Server 2012 R2

If an environment is not supported, it means that it has not been validated
by Intel. However, it does not mean that Intel MPSS is incompatible with
unsupported environments. In fact, we have had success with MPSS instal-
lation “out of the box” on all CentOS Linux versions corresponding to the
respective supported RHEL versions. Success with other distributions has
also been reported (see, e.g., [8]).

Throughout this book, we use MPSS 3.4.1 on CentOS 7.0 Linux, however,
most of the system administration procedures discussed here also apply to
RHEL 7.0.

Finally, a word of warning on the kernel version. The MIC architecture
driver operates as a kernel module. A kernel module must be compiled
specifically for the kernel operating on the system, otherwise it will not
work. For kernel versions listed above, correctly compiled kernel modules
are included in the MPSS distribution. However, if after the installation of
MPSS, the user updates the Linux kernel to a newer version, the MPSS will
usually stop working. In this case, the MIC module must be recompiled as
explained in Section 1.5.6.
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1.5.3. Installation and Minimal Configuration of MPSS
Drivers and administrative tools required for Intel Xeon Phi coprocessor

operation are included in the MPSS (Intel MIC Platform Software Stack)
package, which can be freely downloaded from the Intel MPSS Download
Page [9]. The role of MPSS is to boot the Intel Xeon Phi coprocessor, popu-
late its virtual filesystem and start the operating system on the coprocessor,
to provide connectivity protocols, and to enable management and monitoring
of the coprocessor using specialized tools.

Brief MPSS installation instructions can be found in the file readme.txt
and detailed instructions in the MPSS User’s guide. These files are included
in the MPSS archive. For minimal installation of MPSS version 3.4.1, the
required configuration steps are illustrated in Listing 1.1. In this and other
examples, lyra is the hostname of our machine, and vega is our Linux
username.

vega@lyra% su # become root (use ’sudo su’ if superuser)
root@lyra% tar xvf mpss-3.4.1-linux.tar # extract the MPSS archive
root@lyra% cd mpss-3.4.1 # go to the MPSS directory
root@lyra% mykernel=‘uname -r‘ # query you kernel version
root@lyra% cp modules/*${mykernel}*.rpm ./ # precompiled modules
root@lyra% yum install --nogpgcheck *.rpm # install MPSS RPMs
root@lyra% modprobe mic # load the MIC module
root@lyra% micctrl --initdefaults # initialize MPSS configuration
root@lyra% systemctl start mpss # start the MPSS service

Listing 1.1: Initial configuration of Intel Xeon Phi coprocessor. If an older version of MPSS is
already installed, it must be uninstalled prior to running these instructions.

The tool micctrl creates the system-wide MPSS configuration file
/etc/modprobe.d/mic.conf, per-card MPSS configuration files in
/etc/mpss/ and per-card directory trees of the Linux OS for the coproces-
sor as well as images of these trees in /var/mpss/. In addition, the hosts
file /etc/hosts are modified by MPSS. The IP addresses and hostnames
of Intel Xeon Phi coprocessors are placed into that file.

To start MPSS and boot coprocessors, system service mpss must be
started (Listing 1.1). This service can be stopped or restarted in order
to disable or re-enable MPSS. For more information on MPSS, refer to
Section 1.2.4 and to the MPSS User’s Guide [9].
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1.5.4. Controlling the MPSS service
To stop, start or restart the MPSS service, the command service may

be used on RHEL 6.x or systemctl on RHEL 7.x as shown in Listing 1.2
and Listing 1.3.

root@lyra% service mpss [stop | start | restart | status | unload]

Listing 1.2: Controlling the mpss service on RHEL 6.x.

root@lyra% systemctl [stop | start | restart | status | unload] mpss

Listing 1.3: Controlling the mpss service on RHEL 7.x.

By default, the MPSS service is not configured to start at boot time. To
enable or disable boot time loading of MPSS, use chkconfig on RHEL
6.x or systemctl on RHEL 7.x (see Listing 1.4 and Listing 1.5).

root@lyra% chkconfig mpss [ on | off ]

Listing 1.4: Controlling the loading of mpss after reboot on RHEL 6.x.

root@lyra% systemctl [enable | disable] mpss

Listing 1.5: Controlling the loading of mpss after reboot on RHEL 7.x.
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1.5.5. Integration of MPSS with InfiniBand: OFED
Minimal installation of MPSS, as laid out in Section 1.5.3, will provide

a virtualized TCP/IP fabric for communication between the host and the
coprocessor. This basic MPSS can be upgraded by installing a special
version of the OFED suite. OFED will introduce the following functionality:

1) OFED will provide a driver and management tools for InfiniBand HCAs
(colloquially referred to as “InfiniBand cards”) if they are installed in
the system. This will enable efficient communication based on RDMA
between hosts on the InfiniBand network.

2) The specialized OFED branch with MIC architecture support will provide
CCL or PSM. This software layer enables peer-to-peer RDMA communi-
cation between Intel Xeon Phi coprocessors on the network. Additional
system configuration may be necessary (see, e.g., Section 1.2.5 and [10])
in order to take advantage of CCL or PSM.

3) The special OFED for MIC will also create a virtual InfiniBand interface
ib-scif for rapid communication between the host and coprocessor(s)
within a single compute node or workstation.

Components 1) and 2) are only available in systems with physical Infini-
Band HCAs. However, 3) also applies to standalone compute nodes and
workstations, even if they do not have an HCA.

Installation of OFED over MPSS depends on the operating system, the
brand of InfiniBand cards and MPSS version. Refer to Intel MPSS User’s
Guide for details.
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1.5.6. Restoring MPSS Functionality after Kernel Updates
Intel MPSS integrates with the operating system by means of a kernel

module. This kernel module may become unfunctional after the vendor of
the operating systems provides an update to the Linux kernel. In this case,
starting MPSS will fail with the following error message:

Starting MPSS failed: module MIC not found.

and the Intel Xeon Phi coprocessor will be unavailable.
When this happens, there are two solutions:

A) Reboot the system, enter the boot menu and choose to boot the old
version of the Linux kernel. Alternatively, the choice of the old ker-
nel may be made permanent by modifying the Grub configuration file
/boot/grub/grub.conf. This method is a workaround, and should
only be used temporarily, until method B can be applied.

B) Rebuild the MIC kernel module.

To rebuild and install the MIC kernel module, superuser access is re-
quired. The steps illustrated in Listing 1.6 describe the rebuild process of the
kernel module. On RHEL, packages rpm-build, kernel-devel and
kernel-headers are required for this procedure. Note that if OFED is
installed, in case of kernel updates, the respective kernel modules must also
be recompiled. Refer to the Intel MPSS User’s guide [9] for details.

root@lyra% systemctl stop mpss
root@lyra% cd mpss-3.4.1/src
root@lyra% # Rebuild the MPSS kernel module:
root@lyra% rpmbuild --rebuild mpss-modules*.rpm
root@lyra% mykernel=‘uname -r‘ # query you kernel version
root@lyra% rpmdir=~/rpmbuild/RPMS/x64_64/mpss-modules
root@lyra% # Fetch the newly rebuilt module
root@lyra% cp ${rpmdir}/mpss-modules*${mykernel}*.rpm ./
root@lyra% yum remove mpss-modules\* # uninstall old modules
root@lyra% yum install mpss-modules*${mykernel}*.rpm # install new
root@lyra% systemctl start mpss # start MPSS
Starting MPSS Stack: [ OK ]

Listing 1.6: Restoring MPSS after Linux kernel update (rebuilding the MPSS kernel module).
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1.5.7. Installation of Intel Compilers

Separately from MPSS, a development workstation with an Intel Xeon
Phi coprocessor must have Intel software development tools installed. These
tools include Intel compilers, parallelization libraries and performance tuning
utilities. The products are not a part of the MPSS (see Section 1.2.7) and
must be purchased from Intel or from an authorized vendor.

Installation instructions are included with the downloadable software
suites. A text-based or GUI-based installer can be used for automatic installa-
tion of all the required components. During installation, the user is prompted
for a serial number or other license activation option in order to activate the
license and support for the tool (Figure 1.24). The serial number or license
file is provided to the user at the time of the purchase of the license.

Figure 1.24: Installation and activation of Intel Parallel Studio XE 2015.

To obtain access to the Intel Premier Support service1, the serial number
must be registered at the Intel Registration Center2 (Figure 1.25). The
username and password created during the registration process can then be
used for accessing the support service.

1http://premier.intel.com/
2http://registrationcenter.intel.com/
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Figure 1.25: Intel Registration Center: product download and updates.

After installation, it is important to set up the environment variables for
Intel Parallel Studio XE as shown in Listing 1.7.

vega@lyra% # Option 1: all Intel Cluster Studio tools at once:
vega@lyra% source /opt/intel/parallel_studio_xe_2015/psxevars.sh
vega@lyra%
vega@lyra% # Option 2: individual tools one by one:
vega@lyra% source /opt/intel/composerxe/bin/compilervars.sh intel64
vega@lyra% source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh
vega@lyra% source /opt/intel/inspector_xe/inspxe-vars.sh
vega@lyra% source /opt/intel/advisor_xe/advixe-vars.sh

Listing 1.7: Enabling environment variables for the intel64 architecture. The location of the
*-vars.sh scripts depends on the product suite type and version.

The setup of environment variables using the compilervars script can
be automated. The automation process depends on the operating system.
For example, on RHEL or CentOS, in order to automate loading the script
for an individual user, place the command shown in Listing 1.7 into the
file ~/.bashrc. For system-wide enablement, place these commands into
/etc/profile.d/intel.sh.
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1.5.8. Installing the OpenCL Runtime and CodeBuilder
Open Computing Language (OpenCL) is a standard for heterogeneous

architecture programming that allows to utilize computing accelerators (GPG-
PUs and coprocessors) and handle their parallel architecture. Specifically,
witn Intel Xeon Phi coprocessors, OpenCL can scale an application across
multiple coprocessors and their cores and vector units.

We do not discuss programming in OpenCL in this course, however, for
users wishing to work with OpenCL, we provide brief instructions for getting
started.

Two pieces of software are necessary to use OpenCL with coprocessors:

1. OpenCL Runtime for Intel CPU and Intel Xeon Phi Coprocessors and
2. Intel Code Builder for OpenCL API

Installation of these products is straightforward. The default installation
location of the OpenCL runtime is /opt/intel/opencl and the default
location of Code Builder is /opt/intel/opencl-sdk.

After installation, OpenCL applications may be compiled using either the
Intel C++ compiler or the GNU C++ compiler. To link the OpenCL runtime
library, pass the compiler argument -lOpenCL. To include OpenCL headers,
include <CL/cl.h>.

Listing 1.8 demonstrates the compilation and runtime output of an exam-
ple application that queries the OpenCL environment.

Optimization of OpenCL applications for Intel Xeon Phi coprocessors is
discussed in the OpenCL Design and Programming Guide for the Intel Xeon
Phi Coprocessor.
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vega@lyra% g++ -lOpenCL -o platformInfo PlatformInfo.cc
vega@lyra% ./platformInfo

Number of platforms: 1
Number of OpenCL devices: 5

Device name: Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz
Device vendor: Intel(R) Corporation
Device type: CPU
OpenCL version supported by the device: OpenCL 1.2 (Build 8)
OpenCL software driver: 1.2.0.8
Parallel compute units: 48
Global memory cache size (bytes): 262144
Global memory cache size (bytes): 134990622720
Local memory cache size (bytes): 32768
Maximum number of work-items in a work-group: 8192
Maximum dimensions that specify the global and local work-item: 3
Maximum number of work-items in each dimension: 8192 8192 8192

Device name: Intel(R) Many Integrated Core Acceleration Card
Device vendor: Intel(R) Corporation
Device type: accelerator
OpenCL version supported by the device: OpenCL 1.2 (Build 8)
OpenCL software driver: 1.2
Parallel compute units: 240
Global memory cache size (bytes): 262144
Global memory cache size (bytes): 12200046592
Local memory cache size (bytes): 32768
Maximum number of work-items in a work-group: 8192
Maximum dimensions that specify the global and local work-item: 3
Maximum number of work-items in each dimension: 8192 8192 8192

// ... (skipped output for 3 more accelerator cards like above)

Listing 1.8: Compilation and execution of a sample OpenCL application.
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1.5.9. Quick Functionality Check

To verify that an Intel Xeon Phi coprocessor is installed in the system,
boot the system and use the Linux tool lspci. Depending on the model of
the coprocessor and its location on the PCIe bus, the output may be different,
but it will look similarly to Listing 1.9.

vega@lyra% lspci | grep -i "co-processor"
01:00.0 Co-processor: Intel Corporation Xeon Phi coprocessor 3120

series (rev 20)

Listing 1.9: Using lspci to check whether an Intel Xeon Phi coprocessor is installed in the
computing system.

When MPSS is running, to verify its functionality and configuration, use
the tool miccheck:

root@lyra% miccheck
MicCheck 3.3-r1
Copyright 2013 Intel Corporation All Rights Reserved

Executing default tests for host
Test 0: Check number of devices the OS sees in the system ... pass
Test 1: Check mic driver is loaded ... pass
Test 2: Check number of devices driver sees in the system ... pass
Test 3: Check mpssd daemon is running ... pass

Executing default tests for device: 0
Test 4 (mic0): Check device is in online state and its postcode is

FF ... pass
Test 5 (mic0): Check ras daemon is available in device ... pass
Test 6 (mic0): Check running flash version is correct ... pass
Test 7 (mic0): Check running SMC firmware version is correct ...

pass
Status: OK

Listing 1.10: Checking the configuration of MPSS.

In case miccheck reports that the flash version and/or SMC firmware
version is incorrect, a flash operation must be performed using the MPSS
tool micflash (see documentation for details).
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To verify that the compilers have been successfully installed, run the
commands show in Listing 1.11. Here, icc is the Intel C Compiler, icpc
is the Intel C++ Compiler, and ifort is the Intel Fortran Compiler. If Intel
MPI library is installed, the setup of its environment can be checked by
probing its wrapper scripts mpii*

vega@lyra% icc -v
icc version 15.0.1 (gcc version 4.8.2 compatibility)
vega@lyra% icpc -v
icpc version 15.0.1 (gcc version 4.8.2 compatibility)
vega@lyra% ifort -v
ifort version 15.0.1
vega@lyra% mpiicc -v
mpiicc for the Intel(R) MPI Library 5.0 Update 2 for Linux*
Copyright(C) 2003-2014, Intel Corporation. All rights reserved.
icc version 15.0.1 (gcc version 4.8.2 compatibility)
vega@lyra% mpiicpc -v
mpiicpc for the Intel(R) MPI Library 5.0 Update 2 for Linux*
Copyright(C) 2003-2014, Intel Corporation. All rights reserved.
icpc version 15.0.1 (gcc version 4.8.2 compatibility)
vega@lyra% mpiifort -v
mpiifort for the Intel(R) MPI Library 5.0 Update 2 for Linux*
Copyright(C) 2003-2014, Intel Corporation. All rights reserved.
ifort version 15.0.1

Listing 1.11: Verifying the installation of the Intel compilers and Intel MPI compiler wrappers.
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1.5.10. Overview of Intel MPSS Tools
After installation of MPSS, the system administrator will find a number of

utilities for the management and diagnostics of Intel Xeon Phi coprocessors:

micctrl is a comprehensive configuration tool for the Intel Xeon Phi
coprocessor operating system,

miccheck is a set of diagnostic tests for the verification of the Intel Xeon
Phi coprocessor configuration,

micflash is an Intel Xeon Phi flash memory agent.

micinfo is a system information query tool,

micrasd is a host daemon logger of hardware errors reported by Intel
Xeon Phi coprocessors,

micsmc is a utility for monitoring the physical parameters of Intel Xeon Phi
coprocessors: model, memory, core rail temperatures, core frequency,
power usage, etc.,

micnativeloadex a utility for transferring and running native Intel
Xeon Phi applications along with their dependencies.

These tools are placed in /usr/bin and /usr/sbin, and are included
in the environment variable PATH in most Linux installation. Some of these
utilities require superuser privileges.

As usual, the usage and arguments of these tools can be obtained by
running the any of the tools with the argument --help or by using man, as
illustrated in Listing 1.12.

vega@lyra% micctrl --help
...
vega@lyra% man micsmc

Listing 1.12: Obtaining help information on MPSS utilities.

These tools are discussed in the next several sections.
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1.5.11. miccheck: Basic Troubleshooting

miccheck runs a set of diagnostic tests in order to verify the configura-
tion of an Intel Xeon Phi coprocessor system. Its functionality was illustrated
in Section 1.5.9.

The following list summarizes the aspects of configuration that miccheck
can probe, and possible solutions to failures.

1. Are Intel Xeon Phi coprocessors detected on the PCIe bus? If no co-
processors are detected, either the system does not have any coprocessors,
or it may indicate a hardware problem. You can try reseating the copro-
cessor(s) in their slots, or moving them to a different available PCIe slot.
If that does not help, contact the OEM of the workstation or compute
node.

2. Is the driver (i.e., module mic) loaded? If not, it may indicate a
kernel version conflict (see Section 1.5.6), or modprobe mic has not
been executed.

3. Has the driver detected all coprocessors that show up on the PCIe
bus? If not, it may indicate hardware/software incompatibility. Contact
Intel Premier Support.

4. Is service mpss running? If not, it may be stopped or unfunctional.
Try service mpss start or refer to Section 1.5.9.

5. Does the loaded driver version correspond to the installed MPSS ver-
sion? Driver mismatch may occur after an upgrade of MPSS. In this case,
an easy solution to load the correct driver is a system reboot.

6. Are all coprocessors online and reporting post code FF? If not, the
boot process may have stalled. Check /var/log/messages and
/var/log/mpssd for details.

7. Is the RAS daemon available in devices? If not, it may indicate mis-
configured MPSS. If restarting MPSS does not help, a clean configuration
may solve the problem (micctrl --cleanconfig and micctrl
--initdefaults)).
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8. If the running flash version of the device(s) correct for the installed
MPSS? If not (which may occur after MPSS upgrade), the coprocessors
may need to be flashed (Section 1.5.13).

9. Is the running SMC firmware version of the coprocessor(s) correct
for the installed MPSS? If not (which may occur after MPSS upgrade),
the coprocessors may need to be flashed with correct SMC firmware
(Section 1.5.13).

10. Can coprocessors be pinged? If not, either the coprocessor OS has not
booted (try service mpss restart), or there is a problem with the
network configuration of the coprocessor (see Section 1.5.21).

11. Can current user establish SSH connections with coprocessors? If
not, it may indicate a problem with user accounts and/or SSH keys in the
coprocessor filesystem (Section 1.5.17).

In MPSS 3.4.1, by default, only a subset of tests is run on all Intel Xeon
Phi coprocessors. However, additional tests and subsets of tests and devices
can be selected. Run miccheck --help for details.

For more advanced troubleshooting, refer to the Intel MPSS for Linux:
Troubleshooting Flow Chart.
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1.5.12. micctrl: Coprocessor OS Configuration
The micctrl command is the power state and system configuration

administration tool. Functions of micctrl include power state commands,
configuration file creation and parsing, and modification of individual con-
figuration parameters, such as user accounts, networking setup, authentica-
tion, and other. This section provides an overview and explanation of the
micctrl functionality. Run micctrl --help for more details. Starting
from MPSS 3.5, Appendix B in MPSS User’s Guide also covers command
line arguments of micctrl.

Booting and Rebooting the coprocessor

The coprocessor can be put in one of the following states using micctrl:

“ready” state means that the coprocessor has passed initial power on pro-
cess, the bootstrap µOS has been loaded from the SMC, and is listening
for commands to download and boot the Linux operating system.

“online” state means that the coprocessor has booted the Linux operating
system and is ready for user applications.

There are also transitional situations (“booting” or “shutdown”) between
the above states. The following arguments of micctrl allow to query and
modify the state of the coprocessor.

-b or --boot boot (i.e., place in the “online” state) one or more Intel
Xeon Phi coprocessors in the “ready” state. The MPSS service must
be running;

-S or --shutdown shutdown (i.e., place in the “ready” state) of one or
more coprocessors currently in the “online” state;

-R or --reboot reboot one or more coprocessors currently in the “online”
state (gentle method);

-r or --reset reset one or more Intel Xeon Phi coprocessors currently
in the any state (rough method) and place them in the “ready” state;

-s or --status show the boot state of Intel Xeon Phi coprocessors in the
system;

-w or --wait wait for one or more Intel Xeon Phi coprocessors to not be
in either the booting or shutdown states.
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Global Configuration Manipulation

Configuration of Linux on Intel Xeon Phi coprocessors is controlled by
a set of configuration files in /etc/mpss/. These files determine the
configuration of the boot image in /var/mpss. The following arguments
of micctrl allow global manipulation of configuration and images:
--initdefaults Initialize the defaults in Intel Xeon Phi coprocessor

configuration files. Used once after MPSS software installation. Cre-
ates configuration files in /etc/mpss unique to each coprocessor
and the directory tree in /var/mpss. The MPSS service must not be
running.

--resetconfig Propagates configuration changes to the image files.
Used after changes are made to configuration files. The MPSS service
must not be running.

--resetdefaults Reset the configuration files back to default. Used if
hand editing of files has created undesirable effects. The MPSS service
must not be running.

--cleanconfig Completely remove all configuration information. Must
be followed by micctrl --initdefaults.

--config Display a human-readable overview of the current configuration
of Intel Xeon Phi coprocessors.

User Account Configuration

Specific parameters of configuration can be modified by micctrl. A
very important subset of this functionality is user account management.

When micctrl --initdefaults is initially run, all user accounts
present on the host system are replicated in the coprocessor OS image.
However, if subsequently the administrator adds or deletes new users on the
host, these changes do not automatically make it to the coprocessor. The
following arguments of micctrl help to propagate these changes.
--useradd | --userdel Add or delete a user in coprocessor OS image.
--groupadd | --groupdel Add or delete a Linux group in OS image.
--passwd Set a user’s password on the Intel Xeon Phi coprocessor.
--sshkeys Update a user’s SSH keys for passwordless login.
--ldap | --nis Setup or disable LDAP or NIS support for coprocessors.
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Network Configuration

The assignment of IP addresses and, possibly, network bridging on Intel
Xeon Phi coprocessors can be controlled via micctrl:

--addbridge | --delbridge | --modbridge Add, delete or modify a Linux
network bridge to establish virtualized connection of Intel Xeon Phi
coprocessors with the host NICs.

--network Set the network topology (static pair, static bridged or DHCP
bridged) and global configuration parameters (IP addresses, and net-
masks, MTU values, gateway).

--addnfs | --remnfs Add or remove an NFS import directive to the file(s)
/etc/fstab in the Intel Xeon Phi filesystem.

--mac Set the MAC address for a coprocessor. By default, MAC addresses
are randomly generated and assigned to coprocessors when micctrl
--initdefaults is executed. However, in large clusters, MAC
address collisions may occur. This argument allows the administrator
to have explicit control over the coprocessors’ MAC addresses.

Miscellaneous Configuration Parameters

Other arguments of micctrl allow the administrator to control various
parameters, including:

- Location of configuration files other than default;
- Verbosity level during micctrl operation;
- Non-default root device (specific initramfs disk, NFS root)
- Automatic booting;
- Power management options;
- System log location;

and others.
Examples of micctrl usage are available in Sections 1.5.17, 1.5.19,

1.5.20 and 1.5.21. Complete list of arguments is displayed by micctrl
--help; details on any specific argument --arg can be obtained by running
micctrl --arg --help.
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1.5.13. micflash: Coprocessor Firmware Updates
The primary purpose of the micflash tool is to update the firmware in

Intel Xeon Phi coprocessor’s flash memory. This typically needs to be done
after MPSS is updated.

Prior to using the micflash utility, the Intel Xeon Phi coprocessor
must be put in the ready state. After flashing, the host system must be
restarted. micflash can automatically detect how many coprocessors are
installed and what their silicon stepping is. Then it locates the corresponding
flash image file and writes it in the coprocessors’ flash memory. The basic
procedure for flashing the coprocessor is shown in Listing 1.13.

root@lyra% service mpss stop
Shutting down Intel(R) MPSS: [OK]
root@lyra% micctrl -r
mic0: resetting
mic1: resetting
root@lyra% micctrl -w
mic0: ready
mic1: ready
root@lyra% micflash -update -device all
No image path specified - Searching: /usr/share/mpss/flash
mic0: Flash image: /usr/share/mpss/flash/EXT_HP2_C0_0390-02.rom.smc
mic1: Flash image: /usr/share/mpss/flash/EXT_HP2_C0_0390-02.rom.smc
mic0: Flash update started
mic1: Flash update started
...
Please restart host for flash changes to take effect
root@lyra% reboot

Listing 1.13: micflash updates aIntel Xeon Phi coprocessor’s current status.

In addition, micflash can save and retrieve the current flash image ver-
sion. For a complete list of micflash functions, run micflash -help.

WARNING: Multiple instance of micflash should never be allowed to
access the same Intel Xeon Phi coprocessor simultaneously!

Be careful when manually selecting the flash image file. An incorrect
flash image may completely incapacitate (“brick”) the device!
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1.5.14. micinfo: Coprocesssor, Firmware, Driver Info

The micinfo tool can be used in order to obtain detailed information
about the Intel Xeon Phi coprocessor, installed system and the driver version.
To obtain complete information, make sure that service mpss is running,
and run micinfo as the root user.

vega@lyra% sudo micinfo
MicInfo Utility Log
Copyright 2011-2013 Intel Corporation All Rights Reserved.
...
System Info

HOST OS : Linux
OS Version : 2.6.32-431.el6.x86_64
Driver Version : 3.3-0.1.rc1
MPSS Version : 3.3
Host Physical Memory : 132052 MB

Device No: 0, Device Name: mic0
Version

Flash Version : 2.1.02.0390
SMC Firmware Version : 1.16.5078
SMC Boot Loader Version : 1.8.4326
uOS Version : 2.6.38.8+mpss3.3

...

Listing 1.14: Example of micinfo tool output.

Using -listdevices option provides a list of the Intel Xeon Phi
coprocessors present in the system.

vega@lyra% micinfo -listdevices
...
deviceId | domain | bus# | pciDev# | hardwareId
---------|----------|------|---------|-----------

0 | 0 | 83 | 0 | 225D8086
1 | 0 | 84 | 0 | 225D8086

-------------------------------------------------

Listing 1.15: Listing available Intel Xeon Phi coprocessors with micinfo utility.
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To request detailed information about a specific device, the command line
argument -deviceinfo <number> should be used. Additionally, the
information displayed by this command can be narrowed down by including
the option -group <group name>. Where valid group names are:

- Version
- Board
- Core
- Thermal
- GDDR

For instance, the following shell command returns the information about
the total number of cores on the first Intel Xeon Phi coprocessor, current
voltage and frequency:

vega@lyra% sudo micinfo -deviceinfo 0 -group Thermal
MicInfo Utility Log
Copyright 2011-2013 Intel Corporation All Rights Reserved.
...

System Info
HOST OS : Linux
OS Version : 2.6.32-431.el6.x86_64
Driver Version : 3.3-0.1.rc1
MPSS Version : 3.3
Host Physical Memory : 132052 MB

Device No: 0, Device Name: mic0

Thermal
Fan Speed Control : On
Fan RPM : 2700
Fan PWM : 50
Die Temp : 57 C

Listing 1.16: Printing out detailed information about the thermal status of the first Intel Xeon
Phi coprocessor.
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1.5.15. micrasd: Reliability Monitor, Error Logging
micrasd is an application running on the host system to handle and log

the hardware errors reported by Intel Xeon Phi coprocessors. It can be run as
a service daemon. This tool requires administrative privileges.

The following command starts micrasd:

root@lyra% service micras start
Enable daemon mode.
Enable Maintenance mode test and repair.
Finish parsing options.
Fri May 30 12:06:18 2014 MICRAS INFO

: /usr/bin/micrasd: Running in Daemon Mode.
[ OK ]

Listing 1.17: micras log Intel Xeon Phi coprocessor errors handler.

The errors will be logged into the file /var/log/micras.log with
the tag “MICRAS”.
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1.5.16. micsmc: Real-Time Monitoring Tool

The micsmc tool returns information about the physical parameters of
the Intel Xeon Phi coprocessor: processor, memory, core rail temperatures;
core frequency and power usage. micsmc can also be used for viewing error
logs, monitoring and connection to Intel Xeon Phi coprocessors, viewing
and managing log files; root/admin users can manage per-coprocessor or
per-node settings, such as ECC, Turbo Mode, and power states.

The micsmc tool operates in two modes: Graphical User Interface (GUI)
mode and Command Line Interface (CLI) mode. To invoke the GUI mode,
micsmc should be executed without any additional parameters (see Fig-
ure 1.26).

Figure 1.26: The GUI mode of the micsmc tool illustrating the execution of a workload on a
system with two Intel Xeon Phi coprocessors.
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The CLI mode is activated with command-line arguments. This mode
produces similar information, but in a one-shot operation, which allows
usage in a script environment. micsmc invoked in the CLI mode accepts
the following arguments:

-c or --cores returns the average and per core utilization levels for each
available board in the system.

-f or --freq returns the clock frequency and power levels for each avail-
able board in the system.

-i or --info returns general system info.

-m or --mem returns memory utilization data.

-t or --temp returns temperature levels for each available board in the
system.

--pwrenable [cpufreq|corec6|pc3|pc6|all] enables speci-
fied respective power management features, disables unspecified

--pwrstatus Returns and the status of power management features for
each coprocessor,

--turbo [status|enable|disable] returns or modifies the Turbo
Mode status on all coprocessors

--ecc [status|enable|disable] returns or modifies the ECC sta-
tus on all coprocessors

-a or --all results in the processing of all valid options, excluding these:
--help, --turbo, and --ecc.

-h or --help displays command specific help information.

Example output in the CLI mode is shown in Listing 1.18.
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vega@lyra% micsmc -a mic0
mic0 (info):

Device Series: ... Intel(R) Xeon Phi(TM) coprocessor x100 family
Device ID: ....... 0x225d
Number of Cores: . 57
OS Version: ...... 2.6.38.8+mpss3.3
Flash Version: ... 2.1.02.0390
Driver Version: .. 3.3-0.1.rc1 (root@yocto-182-65)
Stepping: ........ 0x2
Substepping: ..... 0x0

mic0 (temp):
Cpu Temp: ................ 55.00 C
Memory Temp: ............. 44.00 C
Fan-In Temp: ............. 35.00 C
Fan-Out Temp: ............ 44.00 C
Core Rail Temp: .......... 43.00 C
Uncore Rail Temp: ........ 42.00 C
Memory Rail Temp: ........ 42.00 C

mic0 (freq):
Core Frequency: .......... 1.10 GHz
Total Power: ............. 93.00 Watts
Low Power Limit: ......... 315.00 Watts
High Power Limit: ........ 375.00 Watts
Physical Power Limit: .... 395.00 Watts

mic0 (mem):
Free Memory: ............. 5454.86 MB
Total Memory: ............ 5740.88 MB
Memory Usage: ............ 286.02 MB

mic0 (cores):
Device Utilization: User: 0.00%, System: 0.09%, Idle: 99.91%
Per Core Utilization (57 cores in use)

Core #1: User: 0.00%, System: 0.25%, Idle: 99.75%
Core #2: User: 0.00%, System: 0.25%, Idle: 99.75%

...

Listing 1.18: micsmc output: system information, health, utilization.
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1.5.17. User Management on Intel Xeon Phi Coprocessors
About Linux SSH Leys

The Linux OS on the Intel Xeon Phi coprocessor supports SSH access for
all users, including root, using public key authentication. For each user,
the public SSH key files found in the user’s /home/user/.ssh directory
(or for /root/.ssh for the root user). Listing 1.19 demonstrates the
creation of a new user john and generation of his SSH key pair.

The SSH key pair consists of two files: the public key stored in the
file /home/john/.ssh/id_rsa.pub and the private key stored in
/home/john/.ssh/id_rsa. The private key must be securely stored
in john’s home directory. The public key, on the contrary, may be freely
shared with anybody. When an administrator wants to give john access to a
server (in our case, to an Intel Xeon Phi coprocessor), the administrator adds
the public key to the file /home/john/.ssh/authorized_keys on
the server (i.e., on the coprocessor). During authentication, the SSH server
will verify, using encrypted traffic, that john’s private key (stored on his
machine) matches the authorized public key (stored on the server or copro-
cessor).

An additional, optional security feature for an SSH key is the passphrase.
The user must enter the passphrase to use the key pair. This protects the
user’s security in case their private key file is stolen. However, it is safe to
leave the passphrase blank if the theft of the private key file is not a likely
security threat in the system.

Public keys work as a secure replacement for passwords and allow conve-
nient passwordless logins. For Intel Xeon Phi coprocessors, SSH keys serve
as more than a convenience feature. They open doors to MPI clients trying
to access coprocessors in native applications, and therefore, are required for
this use case.
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root@lyra% adduser john
root@lyra% passwd john
Changing password for user john.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
root@lyra% su john
john@lyra% ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/john/.ssh/id_rsa):
Created directory ’/home/john/.ssh’.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/john/.ssh/id_rsa.
Your public key has been saved in /home/john/.ssh/id_rsa.pub.
The key fingerprint is:
e8:5f:9d:d1:07:7e:a8:42:9a:df:f0:7b:d2:fb:bd:6e john@lyra
The key’s randomart image is:
+--[ RSA 2048]----+
| |
| |
| . |
| . o o |
| . S . . + o|
| . + . + o |
| . o + +. |
| . o =. oE.|
| . . +++=+|
+-----------------+
john@lyra% cat /home/john/.ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA1OA7RRyNZYu2KKjMekXioCUS+3sQmjp
OFl606n45F8C2shzaZajqda1NduVnugiyInm/Z96wt5g2UJbd7g7Fb7Vf+7Vc/BBtO7
OiefK+slX+mmwkSyfvmslK+loJHlsK45ih9jrFWgMHa/TwZ1m4UNn2lAzNWS0KxbVA5
ifql7G7uptoJnGzypW8SoZFokEXTg3sOSNn4FouxRCR7jLwSUEch+vwx1vDEYtbPF9Z
YuRWgxBEJJ+fo7CMzIPOhRV9PaEzogADkU+y1DEAGuNON5//bhVU92hiRRKBhbVvjVx
QCM0YGb/VpVjBNwgHhzF96sTV4sGnyoVfEieVXOhjAQ== john@lyra

Listing 1.19: Creating a new user generating their SSH keys.
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Initial Configuration of User Accounts in MPSS

If MPSS has not been configured yet, then adding the user john to the
MIC filesystem will be performed automatically when the administrator exe-
cutes micctrl --initdefaults. Moreover, the micctrl utility will
automatically add john’s public key to his authorized_keys file, so
that john can log in to the coprocessor without a password. See Listing 1.20
for an illustration.

root@lyra% # Check whether john’s home directory is present in the
root@lyra% # MIC filesystem. It is not there at this stage.
root@lyra% ls /var/mpss/mic0/home/
micuser
root@lyra% micctrl --initdefaults
...
root@lyra% # What about now? Yes.
root@lyra% ls /var/mpss/mic0/home/
john micuser
root@lyra% ls /var/mpss/mic0/home/john/.ssh/
authorized_keys id_rsa id_rsa.pub
root@lyra% cat /var/mpss/mic0/home/john/.ssh/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA1OA7RRyNZYu2KKjMekXioCUS+3sQmjp
...
QCM0YGb/VpVjBNwgHhzF96sTV4sGnyoVfEieVXOhjAQ== john@lyra
root@lyra% # john’s public SSH key has made it to authorized_keys
root@lyra% # Can john log in to the coprocessor?
root@lyra% service mpss start
Starting Intel(R) MPSS: [ OK ]
mic0: online (mode: linux image: /usr/share/mpss/boot/bzImage-kni...
root@lyra% su john
john@lyra% ssh mic0
Warning: Permanently added ’mic0,172.31.1.1’ (RSA) to the list of
known hosts.
john@mic0% # We are on the coprocessor!

Listing 1.20: Creating a new user john and configuring MPSS from scratch to add this account
and its SSH keys to the MIC filesystem.

If home directory on the coprocessor is NFS-shared (see Section 1.5.19),
then micctrl will only create the user. To log in, the user’s public SSH
key must be in the authorized_keys file on the host.
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Adding Users to Already Configured MPSS

Suppose that now the administrator wants to add a new user account
mary. Listing 1.21 shows that adding the account to the host does not
propagate it to the coprocessor.

root@lyra% adduser mary
root@lyra% passwd mary
...
root@lyra% su mary
mary@lyra% ssh-keygen
...
root@lyra% # Is mary on the coprocessor, too? No.
root@lyra% ls /var/mpss/mic0/home/
john micuser

Listing 1.21: Creating a new user mary. The new account does not automatically propagate to
the MIC filesystem.

There are two ways to add mary to the coprocessor filesystem and allow
her to access it:

1. A drastic, but reliable method is to run micctrl --cleanconfig
and micctrl --initdefaults (Listing 1.22). This will add all host
users, including mary, to the coprocessor. However, any additional cus-
tomization of MPSS will be gone after --cleanconfig.

root@lyra% service mpss stop
Shutting down Intel(R) MPSS: [ OK ]
root@lyra% micctrl --cleanconfig
root@lyra% micctrl --initdefaults
...
root@lyra% service mpss start
Starting Intel(R) MPSS: [ OK ]
mic0: online (mode: linux image: /usr/share/mpss/boot/bzImage...

Listing 1.22: Reconfiguring MPSS from scratch to add a new user mary to the coprocessor
operating system.

The second method is to use micctrl --adduser to just add the new
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user, as shown in Listing 1.23. This will preserve the MPSS configuration.
Still, a restart of the MPSS service is required in this case.

root@lyra% service mpss stop
Shutting down Intel(R) MPSS: [ OK ]
root@lyra# id -u mary # Find mary’s userid
502
root@lyra# id -g mary # Find mary’s groupid
503
root@lyra% micctrl --adduser=mary --uid=502 --gid=503
root@lyra% # Is mary on the coprocessor, now? Yes!
root@lyra% ls /var/mpss/mic0/home/
john mary micuser
root@lyra% service mpss start
Starting Intel(R) MPSS: [ OK ]
mic0: online (mode: linux image: /usr/share/mpss/boot/bzImage-kni...
root@lyra% su mary
mary@lyra% ssh mic0
Warning: Permanently added ’mic0,172.31.1.1’ (RSA) to the list of
known hosts.
mary@mic0% # We are on the coprocessor!

Listing 1.23: Propagating a new user mary to already configured MPSS.

Note that we had to explicitly specify the userid and groupid of the new
user. Consistency between host and coprocessor usernames is required for
correct Linux permissions when the administrator NFS-shares directories,
including /home. See Section 1.5.19 for more information about NFS.
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1.5.18. SSH Client Configuration
In Listing 1.20 and Listing 1.23, the SSH client printed out a warn-

ing: “Permanently added ‘mic0,172.31.1.1’ (RSA) to the list of known
hosts”. This message indicates that the host has not had SSH sessions
with mic0 before, and therefore it added the server key from mic0 to the
list of known hosts in the file /home/john/.ssh/known_hosts (or
/home/mary/.ssh/known_hosts). In subsequent connections, this
message will not appear.

Note that this is not the default behavior. Normally, the SSH client asks
whether the user wishes to trust this new host. The user must answer “Y”
in the interactive prompt, and only then will the SSH session proceed. This
default behavior is undesirable in systems with many Intel Xeon Phi copro-
cessors, because MPI jobs on coprocessors will not run until all coprocessors
are present in the known hosts file.

To change the default behavior and enable mute adding of hosts to the
users’ known hosts file, we modified the global SSH client configuration file
and set “StrictHostKeyChecking no” in it. Note that this may be a
security threat in some systems.

An alternative way of dealing with the server key checking is a fine-
grained approach that disables strict host key checking only for certain
trusted hosts. See SSH documentation for more details.
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1.5.19. NFS Mounting a Host Export

Because the operating system on Intel Xeon Phi coprocessors is a regular
Linux operating system, it supports the NFS protocol. NFS-sharing a direc-
tory between a host (or a storage server) and coprocessors is a convenient
way to enable file I/O from applications running on the MIC architecture.

NFS export from the host to the coprocessor is configured in the same
way as NFS exports between regular Linux hosts. The root user on host
must allow export of the shared folder by including the respective line in the
/etc/exports file. In addition, the host firewall needs to be configured
to allow traffic from coprocessors on the following ports:

1) tcp/udp port 111 - RPC 4.0 portmapper
2) tcp/udp port 2049 - NFS server

Alternatively, if all traffic to and from Intel Xeon Phi coprocessors is trusted,
the administrator can configure the firewall to enable all traffic from interfaces
mic0, mic1, etc. For instance, on RHEL, with the firewall iptables, it
can be done by adding the following rules:

-A INPUT -s mic0 -j ACCEPT
-A INPUT -s mic1 -j ACCEPT
-A FORWARD -s mic0 -j ACCEPT
-A FORWARD -s mic1 -j ACCEPT

Listing 1.24: iptables rules to enable all TCP/IP traffic packets from coprocessors.

On the client, an NFS share can be mounted either manually using the
command mount, or automatically by including the corresponding line in
the file /etc/fstab. The latter task can be performed using micctrl.

Example

As an example, let us illustrate how to share the Linux home folder /home
with all Intel Xeon Phi coprocessors. The mount point on coprocessors will
be the same as on the host, i.e, /home.

First of all, let us ensure that all the necessary services are started (List-
ing 1.25). You will need to install the package nfs-utils if some of these
services are missing.
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root@lyra% service rpcbind status
rpcbind (pid 3495) is running...
root@lyra% service nfslock status
rpc.statd (pid 3624) is running...
root@lyra% service nfs status
rpc.svcgssd is stopped
rpc.mountd (pid 3864) is running...
nfsd (pid 3927 3926 3925 3924 3923 3922 3921 3920) is running...
rpc.rquotad (pid 3860) is running...
root@lyra%

Listing 1.25: Verifying the NFS server status on the host.

To enable sharing /home, in the host file /etc/exports the line
shown in Listing 1.26 must be present. This line should be added in a text
editor. Note that spaces (and absence of spaces) are important in the syntax
of this line, so it should be typed exactly as shown, except for the hostnames.
The hostnames should be chosen according to the system configuration. After
updating the file /etc/exports, the command exportfs -ra should
be executed in order to pass the modifications to the NFS server.

root@lyra% cat /etc/exports
/home mic0(rw,no_root_squash) mic1(rw,no_root_squash)
root@lyra% exportfs -ra

Listing 1.26: Text to append to /etc/exports on host.

Now we can attempt to log in and mount the home directory from the
coprocessor as shown in Figure 1.27. Note that in the arguments of mount,
the hostname host is a predefined hostname in /etc/hosts on each
coprocessor, pointing to the physical machine hosting the coprocessors.

Instead of mounting the share from the system hosting the coprocessor,
we could have mounted a directory from a remote host. This can be done
by replacing host with the IP address of the remote NFS server. Bridged
networking would need to be configured for that (Section 1.5.21).

If an error occurs at this stage, return to the host and verify the file
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/etc/exports and the firewall configuration.

root@lyra% ssh mic0
root@mic0% mount -t nfs host:/home/ /home
root@mic0% mount | grep home
host:/home/ on /home type nfs (rw,relatime,vers=3,rsize=1048576,
wsize=1048576,namlen=255,hard,proto=tcp,port=65535,timeo=70,
retrans=3,sec=sys,local_lock=none,addr=172.31.1.254)

Listing 1.27: Manually mounting /home on the coprocessor mic0.

The directory mounted as in Listing 1.27 will no longer be mounted
after the coprocessor reboots. To automatically mount /home when the
coprocessor boots, we can include the corresponding entry to /etc/fstab
in the coprocessor filesystem. This can be done using the tool micctrl:

root@lyra% service mpss stop
Shutting down Intel(R) MPSS: [ OK ]
root@lyra% sudo micctrl --addnfs=host:/home --dir=/home # Add entry
[Warning] mic0: Server host may not be reachable if the interface
is not routed out of the host
[Warning] Modified existing NFS entry for MIC card path ’/home’
[Warning] mic1: Server host may not be reachable if the interface
is not routed out of the host
[Warning] Modified existing NFS entry for MIC card path ’/home’
root@lyra% cat /var/mpss/mic0/etc/fstab # Verify fstab modification
rootfs / auto defaults 1 1
proc /proc proc defaults 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0
host:/home /home nfs defaults 1 1
root@lyra% service mpss start
Starting Intel(R) MPSS: [ OK ]
mic0: online (mode: linux image: /usr/share/mpss/boot/bzImage-kni...
root@lyra% ssh mic0 mount | grep home # Verify mount success
host:/home/ on /home type nfs (rw,relatime,vers=3,rsize=1048576,
wsize=1048576,namlen=255,hard,proto=tcp,port=65535,timeo=70,
retrans=3,sec=sys,local_lock=none,addr=172.31.1.254)

Listing 1.28: Automated procedure for creating a persistent NFS mount on a coprocessor.

For more information regarding the NFS service, refer to [11].
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1.5.20. Sharing a Local Disk with VirtIO Block Device

An alternative procedure for sharing files between the host and coproces-
sors is the use of the VirtIO Block Device support (see Figure 1.14). VirtIO,
as the name suggests, originates from platform virtualization tasks, where it
is used to export data storage devices to virtual machines. This technology
is similar to NFS in that it allows to read and write files in a directory on
a coprocessor, while these files are stored on physical media (a hard disk
drive) in the CPU-based host system. However, unlike NFS, VirtIO cannot be
used to export a filesystem on a remote host. Also, with VirtIO, the storage
device is not shared with the host, but completely given to the coprocessor;
unmounting is required for the host to access new files on the virtual disk.
On the positive side, as of MPSS 3.3, VirtIO can provide better file reading
performance than NFS. Also, VirtIO can be used to mount a swap partition,
which is not possible with NFS.

Host-side configuration of VirtIO is shown in Listing 1.29.

root@lyra% blk=/dev/mapper/vg_storage-lv_share
root@lyra% echo $blk >/sys/class/mic/mic0/virtblk_file

Listing 1.29: Host-side configuration for the export of an LVM volume to an Intel Xeon Phi
coprocessor using VirtIO.

Here /dev/mapper/vg_storage-lv_share is an example file-
name, indicating an LVM volume that we are sharing with the coprocessor
mic0. Besides an LVM volume, it is possible to share a regular file or a
physical device.

Coprocessor-side configuration involves a procedure shown in Listing 1.30.

root@mic0% modprobe mic_virtblk # Load the kernel module on MIC
root@mic0% mkdir /mnt/vda # Create the mount point
root@mic0% mkfs.ext2 /dev/vda # Format the exported virtual drive
root@mic0% mount -t ext2 /dev/vda /mnt/vda # Mount

Listing 1.30: Coprocessor-side configuration for mounting the virtual drive.

Note that while it is possible to format the virtual drive on the host
(by formatting the device listed in virtblk_file), formatting it on the
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coprocessor yields better performance.
Some of these configuration steps are persistent across coprocessor re-

boots. Namely, formatting the drive is necessary only once in the life of the
filesystem. Also, the kernel module mic_virtblk will be automatically
loaded after an MPSS reboot as long as virtblk_file on the host exists.
However, the creation of the mount point and mounting the virtual drive
(Listing 1.30) will not survive coprocessor reboot. Like with NFS, it is possi-
ble to automatically mount the device on the coprocessor. The procedure for
doing so is shown in Listing 1.31.

root@lyra% mkdir -p /var/mpss/mic0/mnt/vda
root@lyra% echo ’/dev/vda /mnt/vda ext2 defaults 0 0’ >> \
> /var/mpss/mic0/etc/fstab
root@lyra% service mpss restart
root@lyra% ssh mic0 mount | grep vda
/dev/vda on /mnt/vda type ext2 (rw,relatime,errors=continue)

Listing 1.31: Creating a persistent mount point and a mounting rule for the virtual drive on the
coprocessor.

To access from the host the files written on the coprocessor, unmount the
VirtIO device on the coprocessor and mount it on the host. Do the same to
copy files from the host onto the virtual drive for subsequent reading on the
coprocessor.

root@lyra% ssh mic0 umount /mnt/vda
root@lyra% mkdir -p /mnt/share
root@lyra% mount /dev/mapper/vg_storage-lv_share /mnt/share
root@lyra% ls /mnt/share/*

Listing 1.32: Unmounting the virtual drive on the host and mounting it on the coprocessor is
required for host-side manipulations with the drive filesystem.

Naturally, /dev/mapper/vg_storage-lv_share is again an ex-
ample of the device exported to the coprocessor; this name on your filesystem
may be different.
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1.5.21. Bridged Networking in Clusters with Coprocessors

As Section 1.2.5 explains, it is possible to configure the virtual network
interfaces (mic0, mic1, etc.) and the coprocessor OS in such a way that the
coprocessors join the private network of the hosts. This allows peer-to-peer
communication between coprocessors in different chassis, including access
to a remote NFS server and collective MPI communication.

We will assume that the private network of the cluster has a netmask
255.255.255.0, and compute nodes have IP addresses 10.33.0.1,
10.33.0.11, 10.33.0.21, etc. We will configure the coprocessor net-
work in such a way that coprocessors in the first compute node have IP
addresses 10.33.0.2 and 10.33.0.3; in the second compute node —
10.33.0.12 and 10.33.0.13, etc.

To set up this configuration, first, a network bridge must be created on
each compute node. This is done by creating a NIC configuration file shown
in Listing 1.33.

root@lyra% cat /etc/sysconfig/network-scripts/ifcfg-eno1
DEVICE=eno1
TYPE=Ethernet
NM_CONTROLLED=no
ONBOOT=yes
BRIDGE=br1
BOOTPROTO=none
HWADDR=00:1e:67:56:b5:a6 # System-specific value
root@lyra% cat /etc/sysconfig/network-scripts/ifcfg-br1
DEVICE=br1
TYPE=Bridge
ONBOOT=yes
DELAY=0
NM_CONTROLLED=no
BOOTPROTO=static
IPADDR=10.33.0.1 # IP on the private network
NETMASK=255.255.255.0 # Netmask of the private network
root@lyra% # In case of incorrect configuration, you may
root@lyra% # lose connection to the system at this step.
root@lyra% service network restart

Listing 1.33: Configuration files for a virtual bridge on a compute host.
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In this configuration, ifcfg-br1 is a new file that we created. With
this file, we are configuring the host system to use the virtual interface br1
to connect to the network, and self-assign the IP address 10.33.0.1. If
the cluster has a DHCP server, it is acceptable to connect br1 using DHCP
by setting BOOTPROTO=dhcp.

The file ifcfg-eno1 was created during the OS installation, and we
modified it by adding the line BRIDGE=br1 and removing the lines that
assign the IP address to this device. This procedure must be repeated on each
compute node, either manually, or using the cluster management software.

The second step in creating bridged networking for Intel Xeon Phi copro-
cessors is shown in Listing 1.34.

root@lyra% service mpss stop
root@lyra% micctrl --addbridge=br1 --type=external \
> --ip=10.33.0.1 --netbits=24
root@lyra% micctrl --network --bridge=br1 \
> --ip=10.33.0.2:10.33.0.3
root@lyra% service mpss start

Listing 1.34: Configuring coprocessors on compute nodes to connect to an external network
bridge. This makes coprocessors on remote machines IP-addressable.

The command micctrl --network ... has changed the IP ad-
dresses of the two coprocessors present in this system. This change will be
reflected in /etc/hosts.

Now that the coprocessors of this machine have IP addresses on the same
subnet as the hosts, it is possible to ping, SSH into them and send MPI
messages to them from remote machines on this subnet.

Further details on network configuration with Intel Xeon Phi coprocessors
can be found in Chapter 5 of [12].
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1.5.22. Peer to Peer Communication between Coprocessors
By default (i.e., if OFED is not installed), coprocessors will use the

TCP/IP protocol for communication with each other. As the communication
goes through the host OS, in order for two or more coprocessors in a system to
exchange TCP/IP packets, it is necessary to enable TCP/IP packet forwarding
in the host OS or create an internal bridge with micctrl.

It is a good idea to enable packet forwarding or set up an internal bridge
even if OFED is installed, because the user may force MPI applications to
use TCP/IP instead of InfiniBand by setting I_MPI_FABRICS=tcp (see
Section 2.4). This can be done for debugging or benchmarking purposes.

Packet Forwarding in Static Pair Topology

When using the static pair topology (default MPSS network configuration),
in order to check whether IP packets can travel from one coprocessor to
another, log in to the coprocessor and try to ping another coprocessor. If
this test fails, packet forwarding is likely disabled on the host.

To enable packet forwarding, edit the file /etc/sysctl.conf and
ensure that the following line is present (or change 0 to 1 in it):

net.ipv4.ip_forward = 1

Listing 1.35: Enabling packet forwarding in the host file /etc/sysctl.conf to allow peer
to peer communication between coprocessors.

Edits of file /etc/sysctl.conf will become effective after a system
reboot. To enable enable packet forwarding for the current session (i.e.,
without reboot), use the command shown in Listing 1.36.

vega@lyra% sudo /sbin/sysctl -w net.ipv4.ip_forward=1

Listing 1.36: Enabling packet forwarding on the host.

If a firewall is used, make sure that it is not blocking the forwarding of
packets from coprocessors (see Listing 1.24).
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Internal Bridge Topology

Instead of exposing the system to potentially harmful traffic, the admin-
istrator may enable peer to peer communication between coprocessors in a
single system by setting up a network bridge. An example procedure for this
is shown in Listing 1.37.

vega@lyra% sudo su
root@lyra% systemctl stop mpss
root@lyra% micctrl --addbridge=br1 --type=internal \
> --ip=192.168.100.1
root@lyra% micctrl --network=static --bridge=br1 \
> --ip=192.168.100.2:192.168.100.3
root@lyra% service mpss start
root@lyra% service mpss start
root@lyra% ifconfig br1 | head -2
br1 Link encap:Ethernet HWaddr 4C:79:BA:26:08:F9

inet addr:192.168.100.1 Bcast:192.168.100.255
Mask:255.255.255.0

root@lyra% cat /etc/hosts | grep lyra
192.168.100.2 lyra-mic0 mic0 #Generated-by-micctrl
192.168.100.3 lyra-mic1 mic1 #Generated-by-micctrl

Listing 1.37: Setting up an internal bridge.

In the above procedure, a private subnet 192.168.100.255/24 is
created within the host. The host and both coprocessors can communicate
with each other in this subnet.
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1.5.23. Manual Customization of the coprocessor OS
The tool micctrl has a large number of functions to modify the de-

fault configuration of MPSS. However, for fine-grained control, or just for
reliability reasons, some administrators may prefer to manually manipulate
configuration files instead of using micctrl.

The configuration files controlling MPSS are:

1. Static configuration files in /etc/mpss. These include:

- Global configuration file /etc/mpss/default.conf containing
the location of the MIC filesystem image, network configuration and
crash/timeout options;

- Per-coprocessor configuration files /etc/mpss/mic*.conf con-
taining boot and network options for Intel Xeon Phi coprocessors;

- Additional configuration files /etc/mpss/conf.d/* containing
overlays for additional packages on coprocessors.

2. OS file trees and images in /var/mpss. These include:

- Per-coprocessor filelists /var/mpss/mic*.filelist and trees
/var/mpss/mic*

- Per-coprocessor filesystem images /var/mpss/mic*.image.gz,
which are copied to coprocessors and used during the MPSS boot
process.

The relationship between static configuration files and OS file trees and
images is that the former are used to generate the latter. If the administrator
changes anything in /etc/mpss, these changes must be propagated to
/var/mpss by running micctrl --resetconfig.

Any changes in /var/mpss (either performed manually, or using the
micctrl tool) are reflected in the image files automatically and become
effective upon coprocessor reboot.
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CHAPTER 2
Programming Models

In Chapter 1, we introduced the MIC architecture without going into
the details of how to program Intel Xeon Phi coprocessors. This chapter
demonstrates the utilization of the Intel Xeon Phi coprocessor from user ap-
plications written in C or C++. It focuses on transferring data and executable
code to the coprocessor. Parallelism will be discussed in Chapter 3, and
performance optimization in Chapter 4.

There are two classes of programming models for Intel Xeon Phi copro-
cessors: offload and native models. Offload applications are those in which
the process is launched on the host CPU and later communicates with the
coprocessor on the local machine (Figure 2.1, left). Native applications, in
contrast, start on the coprocessor directly (Figure 2.1).

Figure 2.1: Classes of programming models for Intel Xeon Phi coprocessors.

Within each of these two classes, applications differ in the way they
share resources and scale across a cluster, and in programming language
extensions used to perform offload. Section 2.1 discusses native applications,
and Sections 2.2, 2.3 and 2.5 introduce three different offload approaches.
Scaling across heterogeneous clusters is discussed in Section 2.4.
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2.1. Native Applications and MPI

Intel Xeon Phi coprocessors run a Linux operating system, with a vir-
tual filesystem, a multi-user environment, and support for traditional Linux
services, including SSH and NFS. These services allow the programmer
to run applications directly on an Intel Xeon Phi coprocessor, without the
involvement of the host. This does not mean that an application compiled
for an Intel Xeon CPU will run on an Intel Xeon Phi coprocessor. Rather,
it means that it is possible to compile an application for an Intel Xeon Phi
coprocessor from the same source code as the CPU application. Then the
executable and its dependent libraries must be transferred to, or shared with,
the coprocessor’s filesystem. This approach to utilizing coprocessors is called
native programming.

2.1.1. Using Compiler Argument -mmic to Compile Native
Applications for Intel R© Xeon PhiTM Coprocessors

To compile a C, C++ or Fortran code as an executable for the Intel Xeon
Phi architecture, Intel compilers must be invoked with the argument -mmic.
A “Hello World” code for the coprocessor is shown in Listing 2.1.

Note that for consistency, throughout this book we treat all code as C++,
however, a lot of of our examples do not use object-oriented programming
and can be compiled, with minimal modifications, as C.

1 #include <cstdio>
2 #include <unistd.h>
3 int main(){
4 printf("Hello world! I have %ld logical processors.\n",
5 sysconf(_SC_NPROCESSORS_ONLN ));
6 }

Listing 2.1: This C++ language code (“Native-Hello.cc”) can be compiled for execution
on the host as well as on an Intel Xeon Phi coprocessor.

First, let us run this code on the host CPU. The compilation procedure
and runtime output are shown in Listing 2.2. Here, icpc is the executable
for the Intel C++ Compiler. The name of the executable is not specified, so
the compiler sets it to the default name a.out.
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vega@lyra% icpc Native-Hello.cc # Compile file for the CPU
vega@lyra% ./a.out
Hello world! I have 48 logical processors.

Listing 2.2: Compiling and running the “Hello World” code on the host.

In a similar way, the same code can be compiled to run on the Intel Xeon
Phi architecture. Listing 2.3 demonstrates that. In this case, an additional
argument -mmic is passed to the compiler. Note that the code fails to run
on the host, because it is not compiled for the Intel Xeon architecture.

vega@lyra% icpc Native-Hello.cc -mmic # Compile for the MIC
vega@lyra% ./a.out
-bash: ./a.out: cannot execute binary file

Listing 2.3: Compiling native application for Intel Xeon Phi coprocessors.

The next step is to run the native application on an Intel Xeon Phi co-
processor. We will demonstrate this in the next section, after discussing the
options for establishing secure shell sessions with coprocessors.
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2.1.2. Running Native Applications on Using SSH
Intel Xeon Phi coprocessors run a Linux operating system with an SSH

server (see also Section 1.5.3). When the MPSS is configured, the list of
Linux users and their SSH keys on the host are transferred to the Intel Xeon
Phi coprocessor filesystem. By default, the first Intel Xeon Phi coprocessor
in the system is resolved to the hostname mic0, as specified in the file
/etc/hosts.

That said, we can transfer the executable a.out to the coprocessor using
the secure copy tool scp, as shown in Listing 2.4. After that, we can log
into the coprocessor using ssh and use the shell to run the application on the
coprocessor. Running this executable produces the expected “Hello world”
output, and the number of logical processors is correctly detected as 244.

vega@lyra% scp a.out mic0:~/
a.out 100% 10KB 10.4KB/s 00:00
vega@lyra% ssh mic0
user@mic0% pwd
/home/user
user@mic0% ls
a.out
user@mic0% ./a.out
Hello world! I have 244 logical processors.

Listing 2.4: Transferring and running a native application on an Intel Xeon Phi coprocessor.

An alternative way to transfer the compiled application to the coprocessor
is to put the executable in a directory shared with the coprocessor. The
common protocol NFS can be used to share a directory with the coprocessor
(see Section 1.5.19).

Note that the application must still be compiled on the host. It is not
possible to log in to mic0 and compile the code from the coprocessor,
because the Intel C++ Compiler executable itself is compiled for the CPU
architecture.
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2.1.3. Running Native Applications with micnativeloadex

A part of the MPSS tool suite, the micnativeloadex utility, is a
tool for running native applications on Intel Xeon Phi coprocessors. It
uses the SSH protocol to copy a native binary to a specified Intel Xeon Phi
coprocessor and execute it. In addition, micnativeloadex automatically
checks library dependencies for the application, and, if they can be located,
these libraries are also copied to the device prior to execution. By default,
the output from the application running remotely on the Intel Xeon Phi
coprocessor is redirected back to the local host console. This redirection
can be enabled or disabled using the environment variable MIC_PROXY_IO
(see Section 2.2.10).

The default search for path dependent libraries is set using the environment
variable SINK_LD_LIBRARY_PATH. This environment variable works just
like the variable LD_LIBRARY_PATH for normal Linux applications. To
only display the list of dependencies, micnativeloadex should be run
with the command line argument -l.

To demonstrate how this tool works, consider a native application that
uses the Intel OpenMP library (Listing 2.5).

1 #include <omp.h>
2 #include <cstdio>
3 int main(){
4 printf("Hello world! I have %ld logical processors.\n",
5 omp_get_max_threads()); // function from the OpenMP library
6 }

Listing 2.5: Sample application Native-Hello2.cc with a dependency on the OpenMP
library.

vega@lyra% icpc -mmic -qopenmp -o Native-Hello2 Native-Hello2.cc
vega@lyra% micnativeloadex ./Native-Hello2
The remote process indicated that the following libraries could not
be loaded: libiomp5.so
...

Listing 2.6: Using micnativeloadex to run a native application on a coprocessor.
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This time, we compile this application with the argument -qopenmp
in order to enable dynamic linking of the Intel OpenMP library1. We also
specify the name of the executable file by supplying the argument -o. List-
ing 2.6 shows the compilation procedure and the result of this operation.
Here, micnativeloadex reports that it was unable to locate the library
file libiomp5.so for the coprocessor architecture. We must add the file
location to SINK_LD_LIBRARY_PATH, as shown in Listing 2.7.

vega@lyra% locate libiomp5.so
/opt/intel/composer_xe_.../compiler/lib/ia32/libiomp5.so
/opt/intel/composer_xe.../compiler/lib/intel64/libiomp5.so
/opt/intel/composer_xe.../compiler/lib/mic/libiomp5.so
vega@lyra% SINK_LD_LIBRARY_PATH=\
>/opt/intel/composer_xe.../compiler/lib/mic
vega@lyra% micnativeloadex ./Native-Hello2
Hello world! I have 240 logical processors.

Listing 2.7: Using SINK_LD_LIBRARY_PATH to help micnativeloadex to run a native
application on an Intel Xeon Phi coprocessor.

We used the Linux tool locate to find the file libiomp5.so. This
file was found in the file tree of the Intel Composer XE tool. The direc-
tory compiler/lib contains subdirectories ia32, intel64 and mic
for 32-bit and 64-bit Intel architecture and for the Intel MIC architecture,
respectively. We included the MIC path into SINK_LD_LIBRARY_PATH,
which enabled micnativeloadex to locate the corresponding file to the
coprocessor. The application was executed successfully.

Note that if we were using the SSH approach of Section 2.1.2, then we
would have to manually locate and transfer libiomp5.so to the coproces-
sor. An alternative to micnativeloadex and manual copying of libraries
is NFS-sharing directories containing Intel libraries and user libraries for the
MIC architecture as discussed in Section 1.5.19.

1Older versions of Intel compilers used -openmp. Starting with Intel compilers version
15.0, that argument was deprecated along with all other arguments begining with -o. The
argument -o is now reserved for specifying the output file name. The new correct spelling
of the OpenMP linkage argument is -qopenmp
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2.1.4. Monitoring the Coprocessor Activity with micsmc

To demonstrate how the Intel Xeon Phi coprocessor activity can be mon-
itored, and at the same time to show how POSIX threads (Pthreads) can
be used to execute parallel codes on coprocessors, below we construct a
Pthreads-based workload. The source code shown in Listing 2.8 spawns as
many threads as there are logical processors in the system, and each thread
executes an infinite loop in function Spin(void*). This application does
not perform any useful calculations, but it keeps all cores occupied to produce
activity that we will monitor. Naturally, this code is suitable for both the host
(an Intel Xeon processor) and the target (an Intel Xeon Phi coprocessor).

1 #include <cstdio>
2 #include <unistd.h>
3 #include <pthread.h>
4

5 void *Spin(void *arg) {
6 while(1); // Go into an infinite loop
7 pthread_exit(NULL);
8 }
9

10 int main (int argc, char *argv[]){
11 const int n = sysconf(_SC_NPROCESSORS_ONLN);
12 printf("Spawning %d threads that do nothing. \
13 Use ^C to terminate.\n", n);
14 fflush(0); // Flush stdout for proxy console I/O
15 for (int i = 1; i < n; i++) {
16 pthread_t thr; // Create (n-1) threads
17 pthread_create(&thr, NULL, Spin, NULL);
18 }
19 Spin(NULL); // Hang the main thread
20 pthread_exit(NULL);
21 }

Listing 2.8: This C code (“Native-Spin.cc”) illustrates how the Pthreads library can be
used to produce parallel applications on Intel Xeon Phi coprocessors.

The output in Listing 2.9 illustrates the compilation and running of the
code Native-Spin.cc on a coprocessor. The code enters an infinite
loop and never terminates, so the execution must be terminated by pressing
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Ctrl+C. However, while the program is running, we can monitor the Intel
Xeon Phi coprocessor load.

vega@lyra% icpc -lpthread -o Native-Spin -mmic Native-Spin.cc
vega@lyra% micnativeloadex ./Native-Spin
Spawning 240 threads that do nothing. Use ^C to terminate.
^C

Listing 2.9: Running Native-Spin.cc as a native workload for Intel Xeon Phi coprocessors.

Prior to running spin, in a separate terminal, we can launch the mon-
itoring utility by executing “micsmc”. This action initiates the graphical
graphical user interface for monitoring the load on the coprocessor, tem-
perature, reading logs and error messages, and controlling some of the
coprocessor’s settings.

Figure 2.2 illustrates how the load on the coprocessor increases for the du-
ration of the execution of the workload code, and drops afterwards. Memory
usage, power consumption and processor temperature are also displayed.

Figure 2.2: The interface of the micsmc utility: the load on the Intel Xeon Phi coprocessor.
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Figure 2.3 shows additional functionality of micsmc: power settings
control and information panel. Much of this information and controls are
also available via the MPSS command line tools.

Figure 2.3: The interface of the micsmc utility. Power control and information.

See Section 1.5.10 for more information on micsmc.
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2.1.5. MPI Applications on Intel Xeon Phi Coprocessors

The ability of Intel Xeon Phi coprocessors to run native applications and
the IP-addressability feature of coprocessors make it possible to seamlessly
integrate Intel Xeon Phi coprocessors into applications that employ the
traditional solution for cluster computing, MPI. This section describes how
to compile a native application for Intel Xeon Phi coprocessors with MPI
and run it on the coprocessor.

About the MPI Protocol

MPI, or Message Passing Interface, is a high-level communication pro-
tocol for high performance computing applications in distributed memory
systems. This protocol provides an API for exchanging data (messages)
between processes participating in a collective job. All aspects of communi-
cation on the hardware and OS level are handled by the implementation of
MPI, allowing the programmer to focus on the parallel algorithm and data
traffic patterns.

For information about using MPI to express parallel algorithms in dis-
tributed memory, refer to Section 3.4.

Intel MPI

Intel’s proprietary implementation of MPI is available as the Intel MPI
Library. Intel MPI version 5 implements version 3.0 of the MPI protocol.

The Intel MPI Reference Guide [13] contains more detailed information
about using Intel MPI.

Setting Up

Intel MPI library is available as a stand-alone Intel software product, or
as a part of the Intel Parallel Studio XE. In this section, we assume that Intel
MPI is used on a single compute node (or workstation) with one or more
Intel Xeon Phi coprocessor.

After installing MPI, environment variables should be set by calling a
script included in the Intel MPI distribution (Listing 2.10):
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vega@lyra% source /opt/intel/impi/5.0.1.035/intel64/bin/mpivars.sh

Listing 2.10: Setting Intel MPI environment variables on the host. The location of the initializa-
tion script changes with Intel MPI library version.

The above procedure enables the running of MPI processes on the CPU,
but not on coprocessors. For native coprocessor applications with MPI, the
Intel MPI binaries and libraries need to be made available to the Intel Xeon
Phi coprocessor. There are two ways to achieve this:

1) A straightforward, but not recommended method, is to copy certain files
from /opt/intel/impi to the coprocessor.

2) A better method is to NFS-share the required files with the coprocessor
or coprocessors. The administrator may share /opt/intel/impi
or even /opt/intel with all coprocessors in the system. The pro-
cedure for NFS-sharing directories with a coprocessor is described in
Section 1.5.19.

We will assume that the latter method is used, and that all the required files
are available to the coprocessor.

Usage

MPI applications must be compiled with special wrapper applications:
mpiicc for C, mpiicpc for C++ or mpiifort for Fortran codes. To
launch the resulting executable as a parallel MPI application it should be
run using a wrapper script called mpirun. MPI executables can also be
executed as usual applications, but parallelization does not occur in this case.
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“Hello World” with MPI on the Host

Listing 3.64 shows a “Hello World” example of MPI usage. When this
application is run in the MPI environment, multiple processes execute this
code. Each of these processes is assigned an identification number, known
as rank, which can be used by the programmer to determine the role of each
process in the application. MPI processes exchange information by passing
messages in a variety of ways. Message passing is discussed in more detail
in Section 3.4.

1 #include <mpi.h>
2

3 int main (int argc, char *argv[]) {
4 int rank, size, namelen;
5 char name[MPI_MAX_PROCESSOR_NAME];
6 MPI_Init (&argc, &argv);
7 MPI_Comm_size (MPI_COMM_WORLD, &size);
8 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
9 MPI_Get_processor_name (name, &namelen);

10 printf ("Hello World from rank %d running on %s!\n", rank, name);
11 MPI_Barrier(MPI_COMM_WORLD);
12 if (rank == 0) printf("MPI World size = %d processes\n", size);
13 MPI_Finalize ();
14 }

Listing 2.11: Source code MPI-Hello.cc of a “Hello world” program with MPI.

To compile and run the source file from Listing 2.11, we use the procedure
demonstrated in Listing 2.12; node1 is the local hostname.

user@node1% mpiicpc -o MPI-Hello MPI-Hello.cc # MPI compiler
user@node1% mpirun -host node1 -np 2 ./MPI-Hello
Hello World from rank 1 running on node1!
Hello World from rank 0 running on node1!
MPI World size = 2 processes

Listing 2.12: Compiling the “Hello World!” code with Intel MPI for the host system and running
it using two processes.
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Hello World with MPI on the Coprocessor

To compile the “Hello World” code for MPI on Intel Xeon Phi coproces-
sors, the -mmic compiler flag must be used, just like with non-MPI native
applications. No modification of the source code is required to use MPI on
coprocessors in this case. To run the application, the resulting executable file
must be copied to (or NFS-shared with) the Intel Xeon Phi coprocessor, and
then mpirun must be invoked on the host as shown in Listing 2.13.

user@node1% mpiicpc -mmic -o MPI-Hello.MIC MPI-Hello.cc
user@node1% sudo scp MPI-Hello.MIC mic0:~/
user@node1% export I_MPI_MIC=1
user@node1% mpirun -host mic0 -np 2 ~/MPI-Hello.MIC
Hello World from rank 1 running on node1-mic0!
Hello World from rank 0 running on node1-mic0!
MPI World size = 2 processes

Listing 2.13: Compiling and running a Hello World code with Intel MPI on an Intel Xeon Phi
coprocessor.

The difference between this case and the case shown in Listing 2.12 is
that we included the argument -host mic0 instead of -host node1.
According to /etc/hosts, the hostnames mic0 and node1-mic0 re-
solve to the first coprocessor in the system. This assignment is made by
the MPSS initialization script. In addition, we had to set the environment
variable I_MPI_MIC=1 in order to enable Intel MPI processes on the MIC
architecture.

Even though the code MPI-Hello.cc does not contain any explicit
message passing, it contains a call to MPI_Barrier(), which involves
some implicit communication. This function serves to ensure that the last
line of output (“MPI World size=... ) is always printed after all introductions
from MPI ranks.
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Additional Information

This concludes a brief introduction into using Intel MPI to compile and
run MPI applications on Intel Xeon Phi coprocessors. The discussion of MPI
will continue later in this book:

- In Section 2.4.3 we will demonstrate how to run MPI calculations on
multiple coprocessors or on the host and coprocessors simultaneously, and
how to execute applications on a cluster with a longer list of nodes;

- Subsequently, in Section 3.4, we will introduce message passing API,
which allows to effect cooperation between processes.

- Optimization in MPI is discussed in Section 4.7.
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2.2. Explicit Offload Model

Section 2.1 demonstrated how native codes for the MIC architecture may
be run directly on the coprocessor without the involvement of the host. This
is not the only way to use Intel Xeon Phi coprocessors. An alternative method
is the so-called “offload approach”, where an application begins execution on
the host, and at some point it employs the MIC architecture by transferring
only some of the data and functions to run on the coprocessor. This process
of data and code transfer to the coprocessor is generally called offload, and
applications using this procedure are known as offload applications. This
section describes a set of C/C++ language extensions for the explicit offload
model, and Section 2.3 introduces alternative extensions, the virtual-shared
memory model. Finally, Section 2.5 discusses the features of the OpenMP 4.0
specification designed specifically for offload applications.

2.2.1. “Hello World” Example in the Explicit Offload Model

The source code in the C++ language in Listing 2.14 demonstrates of-
floading a section of the host application to an Intel Xeon Phi coprocessor
using the statement #pragma offload.

1 #include <cstdio>
2 #include <unistd.h>
3

4 int main(int argc, char * argv[] ) {
5 printf("Hello World from main()! I see %d logical processors.\n",
6 sysconf(_SC_NPROCESSORS_ONLN ));
7 #pragma offload target(mic)
8 {
9 printf("Hello World from offload! I see %d logical processors.\n",

10 sysconf(_SC_NPROCESSORS_ONLN ));
11 }
12 printf("Bye\n");
13 }

Listing 2.14: Source code of Offload-Hello.cc example with an offload segment to be
executed on an Intel Xeon Phi coprocessor.

Line 6 in Listing 2.14 — #pragma offload target(mic) — in-
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dicates that the following segment of the code should be executed on an Intel
Xeon Phi coprocessor (i.e., “offloaded”).

This application must be compiled as a usual host application: no addi-
tional compiler arguments are necessary in order to compile offload applica-
tions. This code produces the following output:

vega@lyra% icpc -o Offload-Hello Offload-Hello.cc
vega@lyra% ./Offload-Hello
Hello World from main()! I see 48 logical processors.
Bye
Hello World from offload! I see 244 logical processors.

Listing 2.15: Output of the execution of Offload-Hello.cc.

In the default version implemented in Offload-Hello.cc, offload
is blocking, i.e., control returns to main() only after the offloaded code
returns.

In this context, it is worth mentioning that it is somewhat surprising that
the line “Bye” is the second printed line at runtime, even though in the
original code it is the third line. At the same time, it should be surprising
to the beginner reader that “Hello from offload” was printed at all, because
it was output into stdout of the OS. The explanation for the presence of
this line, as well as for the altered order of output, is the proxy console I/O
functionality discussed in Section 2.2.10. The output to the coprocessor’s
stdout is buffered and mirrored in the host console, and the consistency of
the order of output is therefore not guaranteed.

In this example, initiating offload with #pragma offload is trivial,
because all code and all data in the offload region exist only in the scope
of #pragma offload. However, when functions or data need to be
offloaded, offload programming will require more customization of the
offload directive.
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2.2.2. Offloading Functions
When user-defined functions are called in an offload region, they must be

declared with the qualifier __attribute__((target(mic))) (see
Listing 2.16). This qualifier tells the compiler to generate the MIC architec-
ture executable code for the function.

1 __attribute__((target(mic))) void MyFunction() {
2 printf("Hello from offload!\n");
3 }
4

5 // ...
6 #pragma offload target(mic)
7 {
8 MyFunction();
9 }

Listing 2.16: Offloading a function to an Intel Xeon Phi coprocessor.

If multiple functions must be declared with this qualifier, there is a short-
hand way to set and unset this qualifier inside a source file (see Listing 2.17).
This also useful when using #include to inline header files.

1 #pragma offload_attribute(push, target(mic))
2 void MyFunctionOne() { // This function has target(mic) set
3 printf("Hello World from coprocessor!\n");
4 }
5 void MyFunctionTwo() { // The target(mic) attribute is still active
6 fflush(0);
7 }
8 #pragma offload_attribute(pop)
9

10 //...
11 #pragma offload target(mic)
12 {
13 MyFunctionOne();
14 MyFunctionTwo();
15 }

Listing 2.17: Declaring multiple functions with the target attribute qualifier.
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2.2.3. Offloading Bitwise-Copyable Data
In this section, we will discuss the transfer of data to the coprocessor in

the explicit offload model.

Offloading Scope-Local Data

Local scalar variables and arrays of known size are automatically trans-
ferred to and from the coprocessor at the start and the end of the offload,
respectively. However this behavior can be modified by including them into
one of the clauses of the offload pragma: in, out, inout, or nocopy. In
the code in Listing 2.18, the value of N will be copied “in”, i.e., from host
to the coprocessor at the start of the offload. After offload, the contents of
data will be copied “out”, i.e., from the coprocessor back to the host.

1 void MyFunction() {
2 int N = 1000; // Local scalar
3 int data[N]; // Local array of known size
4 #pragma offload target(mic) in(N) out(data)
5 {
6 for (int i = 0; i < N; i++)
7 data[i] = i;
8 }
9 }

Listing 2.18: Offload of local scalars and arrays of known size using #pragma offload.

When data is stored in an array referenced by a pointer, the array size is
unknown at compile time. In this case, the programmer must indicate the
array length in a clause of #pragma offload, as shown in Listing 2.19.
The length is indicated in array elements and not bytes.

1 void MyFunction(const int N, int* data) {
2 #pragma offload target(mic) in(N) out(data: length(N))
3 {
4 for (int i = 0; i < N; i++)
5 data[i] = 0;
6 }
7 }

Listing 2.19: Offload of pointer-based arrays of unknown size
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Offloading Global and Static Variables

When an offloaded variable is used in the global scope or with the
static attribute, it must be declared with the same qualifier as an of-
floadable function, __attribute__((target(mic))):

1 int* __attribute__((target(mic))) data;
2

3 void MyFunction() {
4 static __attribute__((target(mic))) int N = 1000;
5 data = new int[N];
6 #pragma offload target(mic) in(N) out(data: length(N))
7 {
8 for (int i = 0; i < N; i++)
9 data[i] = 0;

10 }
11 }

Listing 2.20: Offload of global and static variables

Data Transfer without Computation

If it is necessary to send data to the coprocessor without launching any
processing of this data, either the body of the offloaded code can be left
blank (i.e., use “{}” after #pragma offload), or a special #pragma
offload_transfer can be used as shown in Listing 2.21.

1 #pragma offload_transfer target(mic) in(N) out(data: length(N))
2 // The above pragma does not have a body.
3 // Continuing on the host...

Listing 2.21: Transferring data to the coprocessor without computation.

This pragma is especially useful when combined with the clause signal.
This initiates an asynchronous data transfer, which can be used to overlap
communication with computation (on the host or on the coprocessor). See
Section 2.2.5 for a discussion of asynchronous data transfer.
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2.2.4. Data and Memory Persistence Between Offloads
By default, when an array is offloaded to the coprocessor, the following

operations are be performed:
(1) Allocate a memory buffer for the array on the coprocessor;
(2) Copy data from host array to the buffer on the coprocessor (for clauses

in and inout);
(3) Perform offloaded calculations;
(4) Copy data from coprocessor buffer to the host array (for clauses inout

and out);
(5) Free the memory buffer on the coprocessor.

In some cases, an offload region is called multiple times with the same
shape and size of some or all data structures. In this case, step (1) is necessary
only in the first offload instance, and step (5) – only in the last one. To
preserve a memory buffer allocated on a coprocessor, clauses alloc_if
and free_if may be used. These clauses are given arguments which, if
evaluated to 1, enforce the allocation or freeing of memory, respectively.
Listing 2.22 illustrates the usage of these clauses. Note how the character ‘\’
is used in order to make the specification of the pragma continue onto the
next line.

1 double *p=(double*)malloc(sizeof(double)*N);
2

3 // Allocate, but not free memory for array p
4 #pragma offload target(mic) in(N) \
5 inout(p : length(N) alloc_if(1) free_if(0))
6 {
7 // ... perform work
8 }
9

10 // Do not allocate, but free memory for array p
11 #pragma offload target(mic) in(N) \
12 inout(p : length(N) alloc_if(0) free_if(1))
13 {
14 // ... perform work
15 }

Listing 2.22: Illustration of memory buffer retention on coprocessor between offloads.
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Furthermore, for some data structures, the programmer may wish to skip
steps (2) or (4) or both.

- To skip the copy-in stage (2), but perform copy-out (4), use the out clause.
- To skip the copy-out stage (4), but perform copy-in (2), use in.
- To skip both the copy-in and copy-out, use either the nocopy clause, or
in with a length of 0.

The latter data persistence instruction must always be combined with
the memory-retaining clause free_if(0) in the previous offload and
alloc_if(0) in the current offload. Listing 2.23 illustrates data persis-
tence between offloads.

1 // Allocate, but not free memory for array p
2 #pragma offload target(mic) in(N) in(p : length(N) free_if(0))
3 {
4 // ... perform work
5 }
6

7 // Do not allocate memory for p, and re-use the data in it
8 #pragma offload target(mic) in(N) nocopy(p : length(N) alloc_if(0))
9 {

10 // ... perform work - same values in p as in first offload
11 }

Listing 2.23: Illustration data persistence on coprocessor between offloads.

Memory buffer retention and data persistence may be crucial in applica-
tions where data traffic takes a significant fraction of execution time. See
Section 2.2.4 for more information.
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2.2.5. Asynchronous Offload
By default, offload pragmas are synchronous, i.e., they block execution

on the host until the offloaded function returns. It is also possible to initiate
asynchronous (i.e., non-blocking) offload and data transfer in the explicit
offload model. Asynchronous data transfer opens additional possibilities for
optimization:

a) data transfer time can be masked;
b) the host processor and coprocessor can be employed simultaneously;
c) it provides a way to distribute work across multiple coprocessors.

Asynchronous data transfer is initiated by adding the specifier signal to
the offload pragma. After that, another offload pragma with the wait clause,
or #pragma offload_wait are used to catch the signal of the end of
the offload. Example in Listing 2.24 illustrates the use of asynchronous
transfer pragmas.

1 #pragma offload_transfer target(mic:0) signal(data) \
2 in(N) in(data: length(N))
3

4 // Execution will not block until transfer is completer.
5 // The function below will be run concurrently with data transfer.
6 SomeOtherFunction(otherData);
7

8 #pragma offload target(mic:0) wait(data) \
9 in(N) nocopy(data: length(N)) out(result: length(N))

10 {
11 //...this offload will be launched after the data is transferred
12 }

Listing 2.24: Illustration of asynchronous data transfer and wait clause.

In this code, #pragma offload_transfer initiates the transfer,
and specifier signal indicates that it should be asynchronous. With
asynchronous offload, SomeOtherFunction() will be executed con-
currently with data transport. In the second pragma statement, the specifier
wait(data) indicates that the offloaded calculation should not start until
the data transport signaled by data has been completed. Any pointer vari-
able can serve as the signal, not just the pointer to the array being transferred.
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Besides including the wait clause in an offload pragma, the compiler
supports the offload_wait pragma, which is illustrated in Listing 2.25.

1 #pragma offload_wait target(mic:0) wait(data)

Listing 2.25: Illustration of #pragma offload_wait.

Here, the host code execution will wait at this pragma until the transport
signaled by data has finished. This pragma is useful when it is not necessary
to initiate another offload or data transfer at the synchronization point.

Similarly to asynchronous data transfer, function offload can be done
asynchronously, as shown in Figure 2.26.

1 char* offload0;
2 char* offload1;
3

4 #pragma offload target(mic:0) signal(offload0) \
5 in(N) in(data0 : length(N)) out(result0 : length(N))
6 { // Offload will not begin until data is transferred
7 Calculate(data0, result0);
8 }
9

10 #pragma offload target(mic:1) signal(offload1) \
11 in(N) in(data1 : length(N)) out(result1 : length(N))
12 { // Offload will not begin until data is transferred
13 Calculate(data1, result1);
14 }
15

16 #pragma offload_wait target(mic:0) wait(offload0)
17 #pragma offload_wait target(mic:1) wait(offload1)

Listing 2.26: Illustration of asynchronous offload to different coprocessors.

In this code, two coprocessors are employed simultaneously using asyn-
chronous offloads. More information on managing multiple coprocessors in
a system with the explicit offload model can be found in Section 2.4.1.

Complete information about asynchronous transfer can be found in the
Intel C++ Compiler reference.
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2.2.6. Target-Specific Code

When the Intel compiler is building executable code for the MIC archi-
tecture, it defines the preprocessor macro __MIC__. For CPU code, this
macro is undefined. That applies to the native applications (with and without
the argument -mmic), as well as to offload codes (for the coprocessor and
the host versions of functions marked with the offload attribute). This macro
allows the programmer to “check” where the code is executed, and to write
different versions of code for the host and for the coprocessor.

The macro __MIC__ can be used to write multi-versioned codes in a
number of practical cases:

a) The values of tuning parameters in HPC algorithms may depend on
the amount of memory, cache size, and other parameters, which are different
between the host and the coprocessor platforms. These tuning parameters
can be multi-versioned using __MIC__:

1 #ifdef __MIC__
2 const int tileSize = 32; // Use the value 32 for MIC
3 #else
4 const int tileSize = 64; // Use the value 64 for CPU
5 #endif

b) When using intrinsics or assembly programming, __MIC__ can pro-
tect functions unavailable on either the host, or the target platform.

1 #ifdef __MIC__
2 for (int i = 0; i < n; i += 16) { // Intrinsics on MIC
3 __m512 Avec = _mm512_load_ps(A+i);
4 __m512 Bvec = _mm512_load_ps(B+i);
5 Avec = _mm512_add_ps(Avec, Bvec);
6 _mm512_store_ps(A+i, Avec);
7 }
8 #else
9 for (int i = 0; i < n; i++) { // Same code with automatic

10 A[i] = A[i] + B[i]; // vectorization on the CPU
11 }
12 #endif

c) It is often convenient to have diagnostic output reflect what platform
the code is running on.
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2.2.7. Optional and Conditional Offload, Fall-Back to Host

If no coprocessors are found in the system, the offload code can be
executed anyway, using the host processor instead of the coprocessor. This
can be achieved by adding the clause optional to the offload pragma.

1 #include <cstdio>
2 #include <unistd.h>
3 int main(int argc, char * argv[] ) {
4 printf("Hello World from main()! I see %d logical processors.\n",
5 sysconf(_SC_NPROCESSORS_ONLN ));
6 #pragma offload target(mic) optional
7 {
8 #ifdef __MIC__
9 printf("Hello from offload on MIC with %d logical processors.\n",

10 #else
11 printf("Hello from offload on CPU with %d logical processors.\n",
12 #endif
13 sysconf(_SC_NPROCESSORS_ONLN )); fflush(0);
14 }}

Listing 2.27: Offload-Fallback.cc: handling fall-back to host when offload fails.

In Listing 2.28, the code Offload-Fallback.cc is complied and
executed. In the first execution attempt, the coprocessor is available, and
offload occurs. In the second attempt, the MIC driver is intentionally disabled,
and offload fails. Execution proceeds nevertheless, only the code is run on
the host.

vega@lyra% icpc Offload-Fallback.cc -o Offload-Fallback
vega@lyra% ./Offload-Fallback
Hello World from main()! I see 48 logical processors.
Hello from offload on MIC with 244 logical processors.
vega@lyra% sudo systemctl stop mpss # Disabling coprocessors
vega@lyra% ./Offload-Fallback
Hello World from main()! I see 48 logical processors.
Hello from offload on CPU with 48 logical processors.

Listing 2.28: Compiling and running Offload-Fallback.cc.
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A related clause of the offload pragma allows to perform conditional
offload, i.e., to choose at runtime whether to perform offload or execute
the code on the CPU. This clause is if, and it takes one argument. If the
argument evaluates to a non-zero value or boolean “true”, the offload will be
sent to a coprocessor. If it evaluates to 0 or boolean “false”, the calculation
in the scope of the offload pragma will fall back to host CPU execution.

1 #pragma offload target(mic) if(N>1000)

Conditional offload can be used, for example, to prevent offload of a prob-
lem that is too small to pay off for the offload overhead (see Section 1.3.4),
or to distribute work between coprocessors and the CPU (see Section 2.4.1).
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2.2.8. Offload Diagnostics
It is possible to generate diagnostic output for offload applications. This

can be done using the Linux environment variable OFFLOAD_REPORT or
the function _Offload_report.

a) If OFFLOAD_REPORT is unset, no diagnostic output is produced (this is
the default behavior).

b) OFFLOAD_REPORT=1 prints information on the offload locations (lines
of code) and times.

c) OFFLOAD_REPORT=2, in addition, produces information regarding the
amount of data traffic.

d) OFFLOAD_REPORT=3 gives additional details: device initialization and
individual variable transfers.

Listing 2.29 demonstrates the report produced by setting the environment
variable OFFLOAD_REPORT=2.

vega@lyra% ./Offload-Fallback
Hello World from main()! I see 48 logical processors.
Hello from offload on MIC with 244 logical processors.
vega@lyra%
vega@lyra% export OFFLOAD_REPORT=2
vega@lyra% ./Offload-Fallback
Hello World from main()! I see 48 logical processors.
[Offload] [MIC 0] [File] Offload-Fallback.cc
[Offload] [MIC 0] [Line] 6
[Offload] [MIC 0] [Tag] Tag 0
Hello from offload on MIC with 244 logical processors.
[Offload] [HOST] [Tag 0] [CPU Time] 0.495117(seconds)
[Offload] [MIC 0] [Tag 0] [CPU->MIC Data] 0 (bytes)
[Offload] [MIC 0] [Tag 0] [MIC Time] 0.000366(seconds)
[Offload] [MIC 0] [Tag 0] [MIC->CPU Data] 0 (bytes)

Listing 2.29: Using the environment variable OFFLOAD_REPORT to monitor the execution of
an application performing offload to an Intel Xeon Phi coprocessor.
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2.2.9. Environment Variables and MIC_ENV_PREFIX
Default Behavior

Environment variables defined on the host are automatically forwarded to
the coprocessor when an offload application is launched.

Example: suppose the user sets on the host the environment variable
MYPARAMETER=myval. In the offloaded program, environment variable
MYPARAMETER on the coprocessor will have the value myval.

Avoiding Collisions with Host
To avoid environment variable name collisions on the host and the co-

processor, the the environment variable MIC_ENV_PREFIX can be used.
When this variable is set, only environment variables with names beginning
with the prefix are forwarded, and the prefix is stripped on the coprocessor.

Example: suppose the user sets MIC_ENV_PREFIX=PHI, and on the
host PHI_MYPARAMETER=val2. In the offloaded part of the application
running on the coprocessor, the environment variable MYPARAMETER will
have the value val2 (i.e., the variable name is stripped of “PHI_”, and the
variable value is passed to the coprocessor).

Alternative Syntax
It is also possible to set multiple environment variables on all coprocessor

by setting *_VAR=variable1=value1|variable2=value2|...,
where * is the value of MIC_ENV_PREFIX.

Example: suppose the user sets on host MIC_ENV_PREFIX=PHI and
PHI_VAR=MYPARAMETER=val3|MYOTHERPARAMETER=val4. In the
offload region, the variable MYPARAMETER will have the value val3, and
MYOTHERPARAMETER will have the value val4.

Specific Values for Specific Coprocessors
Finally, it is possible to set specific variables for pecific coprocessors by

using the prefix *_0, *_1, etc., where * is the value of MIC_ENV_PREFIX.
Example: with MIC_ENV_PREFIX=PHI, and PHI_0_MYPAR=val4,

and PHI_1_VAR=MYNEWPAR=val5|MYOTHERPAR=val6. In the of-
fload region on coprocessor mic0, the variable MYPAR will have the value
val4, and on mic1, MYNEWPAR=val5, and MYOTHERPAR=val6.
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Example
Listing 2.30 and Listing 2.31 demonstrate environment forwarding and

the effect of MIC_ENV_PREFIX.

1 #include <cstdio>
2 #include <cstdlib>
3

4 int main(){
5 #pragma offload target (mic)
6 {
7 char* mypar = getenv("MYPARAMETER");
8 if (mypar)
9 printf("MYPARAMETER=%s on the coprocessor.\n", mypar);

10 else
11 printf("MYPARAMETER is not defined on the coprocessor.\n");
12 } }

Listing 2.30: This code, Offload-Env.cc, prints the value of the environment variable
MYPARAMETER on the coprocessor.

vega@lyra% icpc Offload-Env.cc -o Offload-Env
vega@lyra% ./Offload-Env
MYPARAMETER is not defined on the coprocessor.
vega@lyra%
vega@lyra% export MYPARAMETER=val
vega@lyra% ./Offload-Env
MYPARAMETER=val on the coprocessor.
vega@lyra%
vega@lyra% export MIC_ENV_PREFIX=PHI
vega@lyra% ./Offload-Env
MYPARAMETER is not defined on the coprocessor.
vega@lyra%
vega@lyra% export PHI_MYPARAMETER=val2
vega@lyra% ./Offload-Env
MYPARAMETER=val2 on the coprocessor.

Listing 2.31: Effect of MIC_ENV_PREFIX on environment variable passing to the coprocessor.
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2.2.10. Proxy Console I/O
The example in Section 2.2.1 demonstrates that the code executing on

the coprocessor can output data to the standard output stream, and this data
appears on the host console. How does that happen?

When console output operations are called on an Intel Xeon Phi coproces-
sor, e.g. with printf(), they are buffered in the coprocessor OS and later
passed on (proxied) to the host console by the COI (Coprocessor Offload
Infrastructure), a daemon running on the coprocessor. The communication
scheme of the console proxy is shown in Figure 2.4.

Figure 2.4: Proxy console I/O diagram. Output to standard output and standard error streams on
the coprocessor is buffered and passed on to the host terminal. Image credit: Intel Corporation.

In the case of the “Hello World” code (Listing 2.14 and Listing 2.15),
buffering delays caused the stream from the coprocessor to be printed out
after the host had finished the last printf() function call (line 11 in
Listing 2.14).

The output buffer must be flushed using the fflush(0) function of the
stdio library in order to ensure consistent operation of the console proxy.
Without fflush(0) in the coprocessor code, the output of the printf
function might be lost if the program is terminated prematurely.

The proxy console I/O service is enabled by default. It can be disabled
by setting the environment variable MIC_PROXY_IO=0. Despite the name
"Proxy console I/O", the coi service proxies only the standard output and
standard error streams. Proxy console input is not supported.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition



2.2. EXPLICIT OFFLOAD MODEL 117

2.2.11. Review: Explicit Offload Model

The key language constructs used for the offload model programming
are listed below. For complete description, refer to the Intel C++ compiler
reference.

1. __attribute__((target(mic))) is a declaration qualifier
that indicates that the declared object (global/static variable or function) must
be compiled into the target code. Examples in Listing 2.32 show how the
non-scalar variable data can be made visible in the scope of the target code
and the function CountNonzero() can be compiled for the coprocessor.

1 __attribute__((target(mic))) int data[1000];
2 __attribute__((target(mic))) int MyFunction(void* arg);

Listing 2.32: Illustration of __attribute__((target(mic))) usage. Variables and
functions marked with this qualifier may be used in offloaded code.

2. #pragma offload_attribute(push, target(mic)) and
#pragma offload_attribute(pop) can be used instead of the qual-
ifier __attribute__((target(mic))) when multiple consecutive
elements in a source file need to be included in the offload code. Example in
Listing 2.33 specifies that several arrays and all of the variables and functions
declared in the header file myvariables.h should be accessible to the
coprocessor code.

1 #pragma offload_attribute(push, target(mic))
2

3 int* data; // Apply the offload qualifier to a pointer-based array,
4 int MyFunction(void* arg); // a function
5 #include "myvariables.h" // or even a whole file
6

7 #pragma offload_attribute(pop)

Listing 2.33: Illustration of offload_attribute(push) usage.

3. #pragma offload_transfer target(mic) requests that
certain non-scalar data must be copied to the coprocessor. This pragma
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takes a number of clauses to specify data traffic. These clauses are described
in Section 2.2.4.

1 #pragma offload_transfer target (mic:0) \
2 in(ptrdata : length(N) alloc_if(1) free_if(0))

Listing 2.34: Illustration of #pragma offload_transfer usage.

The code in Listing 2.34 requests that array data of N elements must
be transferred in, i.e., from the host to the coprocessor number 0, and that
the memory on the coprocessor must be allocated before the offload, but not
freed afterwards. The symbol “\” is used to break the pragma code into
several lines. This is a blocking operation, which means that code execution
will stop until the transfer is complete. It is also possible to request a non-
blocking (asynchronous) offload, using the signal clause, as described in
Section 2.2.4.

In this example, no operations will be applied to the transferred data.
To request some processing along with data transfer, #pragma offload
should be used, as described below.

4. #pragma offload target(mic) specifies that the code fol-
lowing this pragma must be executed on the coprocessor if possible. This
pragma takes a number of clauses to specify data traffic. These clauses are
described in Section 2.2.4. The function MyFunction() in Listing 2.35
will be offloaded to the coprocessor if one is available, or run on the host
otherwise.

1 #pragma offload target(mic) in(N) in(ptrdata : length(N)) optional
2 {
3 int ct = MyFunction(ptrdata);
4 }

Listing 2.35: Illustration of #pragma offload usage.
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2.3. Shared Virtual Memory Model

In the explicit offload model discussed in Section 2.2, the programmer
must explicitly set up data marshalling in order to send data to, or from, the
coprocessor. An alternative to this approach is the shared virtual memory pro-
gramming model, where data marshalling is neither necessary nor possible.
In the shared virtual memory model, the programmer uses special memory
allocators and offload calls, which allow the runtime system to automatically
transfer the data from host to the coprocessor and back. Furthermore, in this
model the memory addresses of virtual-shared heap objects are the same on
the host and on the coprocessor. The shared virtual memory model is only
available in C and C++; it is not available in Fortran.

The shared virtual memory approach has several advantages over the
explicit offload model:

1. When a large number of objects are shared with the coprocessor, the
shared virtual memory model may require less programming and debug-
ging effort than the data marshalling approach;

2. Shared virtual memory enables the sharing of complex (i.e., not bitwise-
copyable) objects, which the offload pragmas do not allow. For example,
C++ classes cannot be transferred using offload pragmas, but can be
shared with the coprocessor in the shared virtual memory model.

3. The runtime system monitors the shared virtual memory for changes.
When a part of an array in shared virtual memory is modified on the
host, this changes is propagated to the coprocessor at the start of the next
offload. When the coprocessor modifies shared virtual memory, changes
are propagated back to the host at the end of offload. Modified arrays are
not copied entirely, only the parts that were written to are synchronized.
The granularity of synchronization is the size of virtual memory pages.

4. Memory buffer retention and data persistence on the coprocessor are
maintained automatically, without the programmer’s involvement.

To use the shared virtual memory model, the programmer has to specify
what data and how it should be accessed by the target:
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- Programmer marks variables that need to be shared between the host
system and the target.

- The same shared variable can then be used in both host and coprocessor
code.

- Runtime system automatically maintains coherence at the beginning and
at the end of offload statements. Upon entry to the offload code, data
modified on the host are automatically copied to the target, and upon exit
from the offload call, data modified on the target are copied to the host.

The shared virtual memory model syntax is based on two keywords:
_Cilk_shared and _Cilk_offload. Note that, despite _Cilk being
a part of these keywords, the programmer is not limited to using Intel Cilk
Plus to parallelize the offloaded code. OpenMP, Pthreads, and other frame-
works can be used within the offloaded segment. See Section 3.2 for more
information about Intel Cilk Plus and OpenMP.
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2.3.1. Offloading Functions
Functions that may be offloaded to the coprocessor must be marked

with the keyword _Cilk_shared. This keyword is similar to the quali-
fier __attribute__((target(mic))) in the explicit offload model.
To offload a function to an Intel Xeon Phi coprocessor, place the key-
word _Cilk_offload before the offload call. This is the counterpart
of #pragma offload in the explicit offload model.

Below is an illustration of a “Hello World” program with one function
call in the shared virtual memory model.

1 #include <cstdio>
2

3 _Cilk_shared void MyFunction() {
4 #ifdef __MIC__
5 printf("Hello from Offload\n");
6 #else
7 printf("Offload failed, running on CPU\n");
8 #endif
9 }

10

11 int main() {
12 printf("Hello from Host\n");
13 _Cilk_offload MyFunction();
14 }

Listing 2.36: File Shared-Hello.cc, a “Hello World” program with the shared virtual
memory model of Intel Xeon Phi coprocessor programming.

vega@lyra% icpc -o Shared-Hello Shared-Hello.cc
vega@lyra% ./Shared-Hello
Hello from Host
Hello from Offload

Listing 2.37: Compiling and running Shared-Hello.cc.

Note that for all shared virtual memory model examples, we will use the
C++ language and the Intel C++ Compiler icpc.
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2.3.2. Sharing and Offloading Objects
The keyword _Cilk_shared must also be used to mark variables that

are meant to be shared with the coprocessor in the shared virtual mem-
ory model. A function marked with _Cilk_shared and offloaded with
_Cilk_offload may read and modify shared data on the coprocessor.
The modified values will be automatically synchronized between the host
and the coprocessor. Listing 2.38 illustrates the usage of this model.

1 #include <cstdio>
2 #define N 1000
3 _Cilk_shared int A[N];
4

5 void Initialize() { // Runs on host
6 for (int i = 0; i < N; i++)
7 A[i] = i;
8 }
9

10 _Cilk_shared void Modify() { // Runs on coprocessor
11 #ifdef __MIC__
12 for (int i = 0; i < N; i++)
13 A[i] = -A[i];
14 #else
15 printf("Offload to coprocessor failed!\n");
16 #endif
17 }
18

19 void Verify() { // Runs on host
20 bool errors = false;
21 for (int i = 0; i < N; i++) errors |= (A[i] != -i);
22 printf("%s\n", (errors ? "ERROR" : "CORRECT"));
23 }
24

25 int main(int argc, char *argv[]) {
26 Initialize();
27 _Cilk_offload Modify(); // Function call on coprocessor
28 Verify();
29 }

Listing 2.38: Example of using the shared virtual memory and offloading calculations with
_Cilk_shared and _Cilk_offload of the function call.
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2.3.3. Dynamic Allocation in Shared Virtual Memory
Dynamic memory shared between the host and the target must be allocated

and deallocated with the special functions listed below. Details are available
in the Intel C++ Compiler Reference Manual.

Allocators:

1 void *_Offload_shared_malloc(size_t size)
2 void *_Offload_shared_aligned_malloc(size_t size, size_t alignment)

Deallocators:

1 void *_Offload_shared_free(void* ptr)
2 void *_Offload_shared_aligned_free(void* ptr)

These allocators are similar to malloc and _mm_malloc with the
corresponding free and _mm_free. However, the pointers returned by
these special allocators are pointing to a special shared virtual address space.
In this space, the values of pointers on host are exactly the same as on the
coprocessor in the offload region.

Memory allocated using these special allocators is automatically moni-
tored for changes and synchronized between the host and the coprocessor at
the beginning and end of each offload instantiated with _Cilk_offload.

The aligned versions of allocators return memory addresses aligned on
a user-specified boundary. See Section 3.1.4 for more information on data
alignment.

There is a requirement is that the pointer variable that stores the pointer
must be shared itself. This is achieved by declaring, for example, a pointer
to an array of integers, as int* _Cilk_shared ptr.

Listing 2.39 demonstrates how pointer-based data can be dynamically
allocated and used on the target code, and Listing 2.40 demonstrates the
result.

c© Colfax International, 2013–2015

https://software.intel.com/en-us/node/522496
http://www.colfax-intl.com/


124 CHAPTER 2. PROGRAMMING MODELS

1 #include <cstdio>
2 #define N 10000
3 int* _Cilk_shared data; // Shared pointer to shared data
4 int _Cilk_shared sum; // Shared scalar
5

6 _Cilk_shared void ComputeSum() {
7 #ifdef __MIC__
8 printf("Address of data[0] on coprocessor: %p\n", &data[0]);
9 fflush(0);

10 sum = 0;
11 for (int i = 0; i < N; ++i)
12 sum += data[i]; // Compute sum on coprocessor
13 #else
14 printf("Offload to coprocessor failed!\n");
15 #endif
16 }
17

18 int main() {
19 data = (_Cilk_shared int*)_Offload_shared_malloc(N*sizeof(float));
20 for (int i = 0; i < N; i++) // Initialize data on host
21 data[i] = i;
22 printf("Address of data[0] on host: %p\n", &data[0]);
23 _Cilk_offload ComputeSum(); // Process data on coprocessor
24 printf("%s\n", (sum==N*(N-1)/2 ? "CORRECT" : "ERROR"));
25 _Offload_shared_free(data);
26 }

Listing 2.39: Shared-Pointers.cc demonstrates using _Offload_shared_malloc
for dynamic shared virtual memory allocation in C/C++.

vega@lyra% icpc -o Shared-Pointers Shared-Pointers.cc
vega@lyra% ./Shared-Pointers
Address of data[0] on host: 0x820000030
Address of data[0] on coprocessor: 0x820000030
CORRECT

Listing 2.40: Output of the code in Listing 2.39
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2.3.4. Classes in Shared Virtual Memory

Note that transferring bitwise-copyable objects, such as arrays, is possible
both with the explicit offload model, and with shared virtual memory. How-
ever, sharing structures with pointer elements and C++ classes is only possi-
ble using shared virtual memory, as these objects are not bitwise-copyable.
Listing 2.41 — Listing 2.43 illustrate how complex objects, such as structures
and classes, can be shared between the host and the target.

1 #include <cstdio>
2 #include <cstring>
3

4 typedef struct {
5 int i;
6 char c[10];
7 } person;
8

9 _Cilk_shared void SetPerson(_Cilk_shared person & p,
10 const char _Cilk_shared *name, const int i) {
11 #ifdef __MIC__
12 p.i = i;
13 strcpy(p.c, name);
14 printf("On coprocessor: %d %s\n", p.i, p.c);
15 #else
16 printf("Offload to coprocessor failed.\n");
17 #endif
18 fflush(0);
19 }
20

21 person _Cilk_shared someone;
22 char _Cilk_shared who[10];
23

24 int main(){
25 strcpy(who, "John"); // Store data in a _Cilk_shared variable
26 _Cilk_offload SetPerson(someone, who, 1); // Initialize on MIC
27 printf("On host: %d %s\n", someone.i, someone.c); // Use on host
28 }

Listing 2.41: Shared-Struct.cc demonstrates how a C++ structure can be synchronized
between the host and the coprocessor using shared virtual memory.
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Listing 2.42 shows the result:

vega@lyra % icpc -o Shared-Struct Shared-Struct.cc
vega@lyra % ./Shared-Struct
On coprocessor: 1 John
On host: 1 John

Listing 2.42: Output of the code in Listing 2.41

In the above example, the function SetPerson accepts an argument
initialized on the host. However, the function itself is executed on the
coprocessor. It produces an object (someone), which is later used on the
host.

The example in Listing 2.41 and Listing 2.42 contains a C structure.
Because all members of this structure are contiguous in memory, and no
pointers are stored in it, this structure is, in fact, bitwise-copyable. It could
have been offloaded to the coprocessor using #pragma offload – for
example, by camouflaging it as an array of type char.

However, for a more complex object, such as the class shown in List-
ing 2.43 and Listing 2.44, #pragma offload would not work. class
Person contains a member of type char*, which is a pointer. Even if we
copy the pointer value using #pragma offload, the memory referred to
by this pointer will not be copied. In this case, the shared virtual memory
model can help to perform offload.

Note that in the code, we apply the qualifier _Cilk_shared to the class
declaration. This makes all members of the class, including pointers, also
_Cilk_shared.

Another point worth mentioning is that shared memory allocation in this
case occurs on the coprocessor in function Set(...). The result is still as
expected: data in the shared buffer are copied over to the host at the end of
offload.
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1 #include <cstdio>
2 #include <cstring>
3

4 class _Cilk_shared Person {
5 public:
6 char* c; // Pointer member - not bitwise-copyable
7

8 Person() { c=NULL; } // Construct without memory allocation
9

10 void Set(const char _Cilk_shared * name) {
11 #ifdef __MIC__
12 c=(char*)_Offload_shared_malloc(strlen(name)); // Memory alloc
13 strcpy(c, name);
14 printf("On coprocessor: %s\n", c);
15 #else
16 printf("Offload to coprocessor failed.\n");
17 #endif
18 fflush(0);
19 }
20 };
21

22 Person _Cilk_shared someone;
23 char _Cilk_shared who[10];
24

25 int main(){
26 strcpy(who, "Mary");
27 _Cilk_offload someone.Set(who);
28 printf("On host: %s\n", someone.c);
29 }

Listing 2.43: Shared-Class.cc demonstrates a shared virtual C++ with pointer members.

vega@lyra% icpc -o Shared-Class Shared-Class.cc
vega@lyra% ./Shared-Class.cc
On host: Mary
On coprocessor: Mary

Listing 2.44: Output of the code in Listing 2.43
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2.3.5. Placement Operator new for Shared Classes

To allocate buffers in shared virtual memory, the special allocator func-
tion _Offload_shared_malloc must be used. However, what if a
shared class needs to be allocated using operator new? Regular usage of
operator new to allocate memory and call the class constructor is not ap-
plicable in this case, because it allocates local, and not shared, memory.
However, the placement version of operator new can be used in tandem with
_Offload_shared_malloc in order to create a shared class.

The placement version of operator new calls the class constructor without
allocating memory for the class. In this version, new takes one argument of
type void* pointing to the pre-allocated memory. This operator is made
available by including the header file <new>.

1 class MyClass { /* ... */ };
2 // ...
3

4 char* buf = (char*) malloc(sizeof(MyClass));
5 MyClass* obj = new(buf) MyClass();

Listing 2.45: Placement version of operator new

In the above code snippet, allocator malloc performs allocation of a
sufficient amount of memory. Then operator new places the object of type
MyClass into that memory and calls the class constructor. Because there is
argument (buf) passed to new, no memory allocation occurs in new. The
creation of the object obj in the above code is equivalent to, simply,

1 MyClass* obj = new MyClass();

Listing 2.46: Regular version of operator new

The placement version of new allows the programmer to choose the
memory allocator, or implement a custom one. Specifically, for the shared
virtual memory model, we can call _Offload_shared_malloc to al-
locate memory and then use the placement version of new to construct the
class in that memory. This method is shown in Listing 2.47 and Listing 2.48.
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1 #include <cstdio>
2 #include <cstdlib>
3 #include <new>
4

5 class _Cilk_shared MyClass {
6 int i;
7 public:
8

9 MyClass(){ i = 1000; };
10

11 void Print(){
12 #ifdef __MIC__
13 printf("On coprocessor: ");
14 #else
15 printf("On host: ");
16 #endif
17 printf("%d\n", i); fflush(0);
18 }
19 };
20

21 MyClass* _Cilk_shared sharedData;
22

23 int main() {
24 sharedData = new(_Offload_shared_malloc(sizeof(MyClass)))MyClass;
25 _Cilk_offload sharedData->Print(); // Check value on coprocessor
26 sharedData->Print(); // Check value on host
27 }

Listing 2.47: Shared-PlacementNew.cc illustrates using the placement version of opera-
tor new to allocate a C++ class in shared virtual memory.

vega@lyra% icpc -o Shared-PlacementNew Shared-PlacementNew.cc
vega@lyra% ./Shared-PlacementNew
On coprocessor: 1000
On host: 1000

Listing 2.48: Compilation and execution of Shared-PlacementNew.cc.
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2.3.6. Asynchronous Offload
To perform asynchronous offload in the shared virtual memory model, the

keyword _Cilk_offload must be prepended by _Cilk_spawn. The
latter is a part of the Intel Cilk Plus API, also applicable to asynchronous
execution of regular functions on host. See Section 3.3 for more detail.

After spawning one or more offloads, the code may need to issue a
synchronization instruction _Cilk_sync in order to wait for the spawned
functions and avoid unpredictable program behavior. If offloads are spawned
from a function, synchronization is implicitly performed upon exit from the
function.

Just like with the explicit offload model, it may be necessary to specify
the target of offload. This is done by changing the offload keyword to
_Cilk_offload_to(i), where i is the zero-based number of the target
coprocessor.

Listing 2.49 illustrates using asynchronous offloads to overlap offloaded
calculations with a workload on the host.

1 // Offload to mic0, but do not want for completion
2 _Cilk_Spawn _Cilk_offload_to(0) MyFunction(myObject[0]);
3

4 // Offload to mic1, but do not want for completion
5 _Cilk_spawn _Cilk_offload_to(1) MyFunction(myObject[1]);
6

7 // Run on host (normal blocking function call)
8 MyFunction(myObject[2]); // Compute on host
9

10 // Wait for completion of offloads
11 _Cilk_sync;

Listing 2.49: Asynchronous offload in the shared virtual memory model.
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2.3.7. Summary for Shared Virtual Memory Model
Table 2.1 summarizes the usage of the shared virtual memory model API.

Entity Syntax Effect

Function int _Cilk_shared func(); Executable code for both host
and target; may be called from
either side

Global variable _Cilk_shared int x = 0; Visible on both sides

File/Function static static _Cilk_shared int x; Visible on both sides, only to
code within the file/function

Class class _Cilk_shared x {...}; Class methods, members, and
operators are available on both
sides

Pointer to shared
data

int _Cilk_shared *p; p is local (not shared),

can point to shared data

A shared pointer int *_Cilk_shared p; p is shared; should only point
at shared data

Offloading a func-
tion call

_Cilk_offload func(y); func executes on coprocessor if
possible

_Cilk_offload_to(n)
func(y);

func must be executed on the
specified (n-th) coprocessor

Offloading asyn-
chronously

_Cilk_spawn _Cilk_offload
func(y)

Non-blocking offload

Offload a parallel
for-loop

_Cilk_offload
_Cilk_for(i=0; i<N; i++)
{}

Loop executes in parallel on tar-
get. The loop is implicitly out-
lined as a function call

Table 2.1: Shared virtual memory programming model API.
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2.4. Using Multiple Coprocessors

We have discussed in Sections 2.4.1, 2.4.2 and 2.4.3 how to use a single
Intel Xeon Phi coprocessor using native (or MPI) applications, in the explicit
offload model or in the shared virtual memory model. This section describes
how multiple coprocessors can be used in these programming models.

There are several ways to employ several Intel Xeon Phi coprocessors
simultaneously. The best method depends on the structure and parallel
algorithm of the application.

In distributed memory applications using MPI, there exists a multitude of
methods for utilizing multiple hosts and multiple devices (see Section 3.4.1).
However, all of these methods can be placed into one of the following two
categories:

(1) MPI processes run only on CPUs and offload to coprocessors, and
(2) MPI processes run as native applications on coprocessors without using

the CPUs (or run natively on coprocessors as well as on CPUs).

For applications utilizing MPI in mode (1), and for offload applications
using only a single host, multiple coprocessors per host can be utilized using
a combination of approaches described in Section 2.4.1 and Section 2.4.2:

(1a) spawning multiple threads on the host, each performing offload to the
respective coprocessor, and

(1b) performing asynchronous offloads from one host thread.

For MPI applications in mode (2), scaling across multiple coprocessors
occurs naturally, however, bridged networking is required for peer-to-peer
communication (see Section 1.2.5).

We will start with the discussion of the offload model, in its explicit
implementation and in the shared virtual memory variation, and then pro-
ceed to discussing the usage of MPI for heterogeneous applications with
multiple Intel Xeon Phi coprocessors. Note that this section is not a tutorial
on OpenMP, Intel Cilk Plus or MPI. Refer to Chapter 3 for information
expressing parallelism using these frameworks.
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2.4.1. Multiple Coprocessors with Explicit Offload
Querying the Number of Devices

In the host code, the number of available Intel Xeon Phi coprocessors can
be queried with a call to function _Offload_number_of_devices():

1 const int numDevices = _Offload_number_of_devices();

Specifying an Explicit Offload Target

With several Intel Xeon Phi coprocessors installed in a system, it is possi-
ble to request offload to a specific coprocessor. This has been demonstrated
in Listing 2.25, where mic:0 indicates that the offload must be performed to
the first coprocessor in the system. Another example is shown in Listing 2.50.

1 #pragma offload target(mic: 0)
2 {
3 foo();
4 }

Listing 2.50: Directing explicit offload to the first Intel Xeon Phi coprocessor in the system.

Specifying a target number of 0 or greater indicates that the call applies
to the coprocessor with the corresponding zero-based number. For a target
number greater than or equal to the coprocessor count, the offload will be
directed to the coprocessor equal to the target number modulo device count.
For example, with 4 coprocessors in the system, mic:1, mic:5, mic:9,
etc., direct offload to the second coprocessor.

Specifying mic:-1 instead will invite the runtime system to choose a
coprocessor or fail if none are found.

In applications using asynchronous offloads, specifying target numbers is
critical, as waiting for a signal from the wrong coprocessor can result in the
code hanging. The same applies to applications that use data persistence on
the coprocessor. If a persistent array is allocated on a specific coprocessor,
but an offload pragma tries to re-use that array on a different coprocessor, a
runtime error will occur.
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Explicit Offload from Multiple Host Threads

One of the methods to employ multiple coprocessors is spawning several
host tasks/threads and offloading to the respective device from every thread.
Listing 2.51 illustrates how to do this with OpenMP. Here, #pragma omp
parallel makes all offloads launch concurrently in different threads.

1 #include <cstdio>
2 #include <unistd.h>
3 int main(){
4 int numDevices = _Offload_number_of_devices();
5 printf("Running %d parallel threads\n", numDevices);
6 #pragma omp parallel num_threads(numDevices)
7 { const int i = omp_get_thread_num();
8 printf("Starting blocking offload to mic%d...\n", i);
9 #pragma offload target(mic:i)

10 { system("hostname"); sleep(1); }
11 printf("Done with offload to mic%d.\n", i);
12 } }

vega@lyra% icpc -qopenmp -o Multiple-Threads Multiple-Threads.cc
vega@lyra% ./Multiple-Threads
Running 4 parallel threads
Starting blocking offload to mic0...
Starting blocking offload to mic1...
Starting blocking offload to mic3...
Starting blocking offload to mic2...
host-mic0
host-mic3
host-mic2
host-mic1
Done with offload to mic0.
Done with offload to mic3.
Done with offload to mic2.
Done with offload to mic1.

Listing 2.51: Top: code Multiple-Threads.cc illustrates of employing several coproces-
sors simultaneously using multiple host threads. Bottom: compiling with -qopenmp in order to
enable #pragma omp.
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Load Balancing with Offload from Threads

The method presented above can be used to automatically distribute a set
of work-items across all available coprocessors as illustrated in Listing 2.52.

1 #include <omp.h>
2 #include <cstdio>
3 #include <unistd.h>
4 int main(){
5 srand(0);
6 const int nWorkItems=8;
7 int workItem[nWorkItems];
8 for (int i = 0; i < nWorkItems; i++)
9 workItem[i] = 1 + rand()%5;

10 int numDevices = _Offload_number_of_devices();
11 printf("Running %d parallel threads\n", numDevices);
12 #pragma omp parallel for schedule(dynamic,1) \
13 num_threads(numDevices)
14 for (int i = 0; i < nWorkItems; i++) {
15 const int iMIC = omp_get_thread_num();
16 printf("Offload work item %d to mic%d...\n", i, iMIC);
17 #pragma offload target(mic:iMIC) in(i) in(workItem[i:1])
18 { sleep(workItem[i]); }
19 } }

vega@lyra% icpc -qopenmp -o Multiple-Distribute \
> Multiple-Distribute.cc
vega@lyra% ./Multiple-Distribute
Running 4 parallel threads
Offload work item 0 to mic1...
Offload work item 1 to mic0...
Offload work item 3 to mic3...
Offload work item 2 to mic2...
Offload work item 4 to mic3...
Offload work item 5 to mic0...
Offload work item 6 to mic2...
Offload work item 7 to mic0...

Listing 2.52: Code Multiple-Distribute.cc is an illustration of distributing a large
number of work items between offloads to multiple coprocessors.
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In this case, only 4 threads will operate concurrently, because the value
of numDevices is 4. Each of the threads will offload to the respective
coprocessor: thread 0 to mic0, thread 1 to mic1 and so on. This is the
purpose of the assignment of iMIC in line 15.

Every time an offload in a thread finishes, the thread will pick up the next
iteration in i and perform offload to the idle coprocessor. This behavior is
enforced by the clause schedule(dynamic,1). Note that the code uses
the sleep() call to somewhat randomize the duration of offloads. Despite
that, the load balancing behavior enforced by the dynamic scheduling clause
maintains load on all devices. See Section 3.2.3 for more information about
load scheduling in OpenMP.

Finally, Listing 2.52 illustrates how to share data between coprocessor.
This is applicable to numerical algorithms where parallelism is achieved
by partitioning the dataset between processors. In #pragma offload,
the clause in(workItem[i:1]) sends a segment array workItem at
position i of length 1 into the coprocessor. This method of specifying the
range of offloaded array is a part of the Intel Cilk Plus notation, further
discussed in Section 3.1.7.

This approach to load balancing can be extended to heterogeneous appli-
cations which use coprocessors simultaneously with the host CPU. To do
that, the number of threads must be increased by 1. The extra thread will
perform fall-back to host execution instead of offload. This can be achieved
with the clause if of #pragma offload:

1 #pragma offload target(mic:iMIC) if (iMIC<=numDevices)

We will not demonstrate this method and leave it to the reader to imple-
ment as an exercise.
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Multiple Coprocessors with Asynchronous Explicit Offload

Another way to employ several coprocessors does not involve spawn-
ing multiple host threads. Instead, a single host threads spawns multiple
asynchronous (i.e., non-blocking) offloads. This approach is illustrated in
Listing 2.53.

1 #include <cstdlib>
2 #include <cstdio>
3 int main(){
4 int nDevices = _Offload_number_of_devices();
5 int i, resp[nDevices]; resp[0:nDevices] = 0;
6 for (i = 0; i < nDevices; i++) {
7 #pragma offload target(mic:i) inout(resp[i:1]) signal(&resp[i])
8 {
9 // The offloaded job does not block execution on the host

10 resp[i] = 1;
11 }
12 }
13 for (i = 0; i < nDevices; i++) {
14 // This loop waits for all asynchronous offloads to finish
15 #pragma offload_wait target(mic:i) wait(&resp[i])
16 }
17 for (i = 0; i < nDevices; i++)
18 if (resp[i] == 1)
19 printf("OK: device %d responded\n", i);
20 else
21 printf("Error: device %d did not respond\n", i);
22 }

Listing 2.53: Multiple-Async.cc illustrates employing several Intel Xeon Phi coproces-
sors simultaneously using asynchronous offloads

In Multiple-Async.cc, the code uses only one host thread, but
spawns multiple offloads in the for-loop in line 9. The asynchronous nature
of offload is requested by the clause signal. For simplicity, the signal is
chosen as a pointer to the array sent to the respective coprocessor. Loop in
line 13 waits for signals. The arrival of each signal indicates the end of the
offload.
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2.4.2. Multiple Coprocessors in the Shared Virtual Memory
Model

With the shared virtual memory model, multiple coprocessors can be
employed similarly to the explicit offload model.

Querying the Number of Coprocessors

Querying the number of coprocessors in the shared virtual memory model
is done in the same way as in the explicit offload model:

1 const int numDevices = _Offload_number_of_devices();

Specifying Offload Target

If there are several Intel Xeon Phi coprocessors present, the programmer
can choose which one to use with the _Cilk_offload_to(number)
keyword, as shown in Listing 2.54.

1 _Cilk_offload_to(i) func();

Listing 2.54: _Cilk_offload_to(i) will use Intel Xeon Phi coprocessor number i
(counted from zero) for offloading. See also Section 2.4.1 for information about the rules
of coprocessor specification.
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Multiple Blocking Offloads in Threads

Listing 2.55 illustrates the same approach in the shared virtual memory
model as Listing 2.51 in the explicit offload model. In this case, the loop in
Line 11 is executed in parallel with the help of the Intel Cilk Plus library. It
is expected that the number of available Cilk Plus workers is greater than the
number of coprocessors in the system, and therefore, all offloads will start
simultaneously. Section 3.2.3 explains parallel loops in Intel Cilk Plus.

1 #include <cstdio>
2 #include <cstdlib>
3 #include <unistd.h>
4

5 _Cilk_shared void MyWorkload() { system("hostname"); sleep(1); }
6

7 int main(){
8 int numDevices = _Offload_number_of_devices();
9 _Cilk_for (int i = 0; i < numDevices; i++) {

10 printf("Starting blocking offload to mic%d...\n", i);
11 _Cilk_offload_to(i) MyWorkload();
12 printf("Done with offload to mic%d.\n", i);
13 } }

vega@lyra% icpc -o Multiple-Cilk Multiple-Cilk.cc
vega@lyra% ./Multiple-Cilk
Starting blocking offload to mic0...
Starting blocking offload to mic1...
Starting blocking offload to mic2...
Starting blocking offload to mic3...
host-mic0
host-mic1
host-mic2
host-mic3
Done with offload to mic0.
Done with offload to mic1.
Done with offload to mic3.
Done with offload to mic2.

Listing 2.55: Multiple-Cilk.cc, an illustration of employing several Intel Xeon Phi
coprocessors simultaneously using thread parallelism on host.
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Multiple Asynchronous Offloads

Instead of using parallel threads, it is possible to use a single-threaded
application with asynchronous offloads to different coprocessors. In the
shared virtual memory model, asynchronous offload is instantiated with the
keyword _Cilk_spawn, and the instruction to wait for spawned offloads
is _Cilk_sync.

Listing 2.56 illustrates this approach. This code is analogous to the explicit
offload code with asynchronous offload in Listing 2.53.

1 #include <cstdlib>
2 #include <cstdio>
3

4 void _Cilk_shared Respond(int _Cilk_shared & a) {
5 a = 1;
6 }
7

8 const int nDevices = _Offload_number_of_devices();
9 _Cilk_shared int response[nDevices];

10

11 int main(){
12 response[0:nDevices] = 0;
13 for (int i = 0; i < nDevices; i++) {
14 _Cilk_spawn _Cilk_offload_to(i)
15 Respond(response[i]);
16 }
17 _Cilk_sync; // Wait for end of offloads
18 for (int i = 0; i < nDevices; i++)
19 if (response[i] == 1)
20 printf("OK: device %d responded\n", i);
21 else
22 printf("Error: device %d did not respond\n", i);
23 }

Listing 2.56: Multiple-Spawn.cc illustrates employing several Intel Xeon Phi coproces-
sors simultaneously using asynchronous offload in the shared virtual memory model.
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2.4.3. Multiple Coprocessors with MPI
In MIC-enabled computing clusters, there are two fundamental approaches

to running MPI jobs that employ Intel Xeon Phi coprocessors.

(1) (left) MPI processes run only on processors and perform offload to
coprocessors attached to their respective host. In this case, MPI jobs
are submitted as if Intel Xeon Phi coprocessors are not installed, but
one or several coprocessors per system can be used as described in
Section 2.4.1 and Section 2.4.2. It is possible to employ this method with
either the bridge, or the static pair network topology of coprocessors (see
Section 1.5.21).

(2) (right) MPI processes run as native applications on coprocessors (or on
coprocessors as well as processors). The procedure employing multiple
coprocessors with this approach is presented in this section. Note that in
order to use this approach with more than one host (i.e., on a cluster), the
network connections of Intel Xeon Phi coprocessors must be configured
in the bridge topology, so that all coprocessors are directly IP-addressable
on the same private network as the hosts. In this section, we restrict the
examples to a single host with multiple coprocessors, and therefore the
network configuration is unimportant.
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Code

Examples in this Section re-use the “Hello World” code from Listing 2.11.
For convenience, this code is reproduced below. In the rest of this section,
we assume that the MPI library has been NFS-shared with coprocessors, and
environment variables initialized, as discussed in Section 2.1.5.

1 #include <mpi.h>
2 int main (int argc, char *argv[]) {
3 int rank, size, namelen;
4 char name[MPI_MAX_PROCESSOR_NAME];
5 MPI_Init (&argc, &argv);
6 MPI_Comm_size (MPI_COMM_WORLD, &size);
7 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
8 MPI_Get_processor_name (name, &namelen);
9 printf ("Hello World from rank %d running on %s!\n", rank, name);

10 MPI_Barrier(MPI_COMM_WORLD);
11 if (rank == 0) printf("MPI World size = %d processes\n", size);
12 MPI_Finalize ();
13 }

Fabrics

Depending on the Intel MPI version, the library may try to use the Infini-
Band fabric for communication by default. Even with one compute node
or workstation, virtual InfiniBand may be configured using OFED (see Sec-
tion 1.2.5). However, if it is not done, mpirun may return error messages
about problems with protocol dapl. If that happens, the owner of the system
may either install OFED, or force MPI to use the virtual Ethernet fabric as
shown below. The latter solution will result in slower MPI traffic, but it may
be sufficient for some applications, especially orientation examples.

vega@lyra% export I_MPI_FABRICS=tcp

See Section 4.7.4 for more information about fabrics.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition



2.4. USING MULTIPLE COPROCESSORS 143

Launching MPI Applications on Coprocessor from Host

First, we demonstrate launching an MPI job on one coprocessor from
the host (see Listing 2.57). In this case, an additional environment variable,
I_MPI_MIC, must be set on the host. The argument -host mic0 passed
to mpirun sends the job to coprocessor 0.

vega@lyra% mpiicpc -o MPI-Hello.MIC MPI-Hello.cc -mmic
vega@lyra% scp MPI-Hello.MIC mic0:~/
MPI-Hello.MIC 100% 12KB 12.4KB/s 00:00
vega@lyra% export I_MPI_MIC=1
vega@lyra% mpirun -host mic0 -np 2 ~/MPI-Hello.MIC
Hello World from rank 1 running on mic0!
Hello World from rank 0 running on mic0!
MPI World size = 2 processes

Listing 2.57: Launching an Intel MPI application on one coprocessor from the host.

MPI Applications on Multiple Coprocessors

To start the application on two coprocessors, we can specify a list of hosts
using the separator ‘:’, as shown in Listing 2.58. If bridged network topology
is configured, this command can also accept remote coprocessors and remote
hosts.

vega@lyra% scp MPI-Hello.MIC mic1:~/
MPI-Hello.MIC 100% 12KB 12.4KB/s 00:00
vega@lyra% mpirun \
> -host mic0 -np 2 ~/MPI-Hello.MIC : \
> -host mic1 -np 2 ~/MPI-Hello.MIC
Hello World from rank 2 running on mic1!
Hello World from rank 3 running on mic1!
Hello World from rank 1 running on mic0!
Hello World from rank 0 running on mic0!
MPI World size = 4 processes

Listing 2.58: Launching an Intel MPI application on two coprocessors from the host.
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MPI Machine File

In clusters, in order to run jobs on hundreds of hosts and coprocessors,
using a long command line with multiple ‘:’ separators is impractical. In this
situation, it is better to use a machine file with the list of machines instead of
individual hosts (or coprocessors), as demonstrated in Listing 2.59.

vega@lyra% cat mymachines.txt
mic0:2
mic1:2
vega@lyra% mpirun -machinefile mymachines.txt ~/MPI-Hello.MIC
Hello World from rank 3 running on lyra-mic1!
Hello World from rank 2 running on lyra-mic1!
Hello World from rank 1 running on lyra-mic0!
Hello World from rank 0 running on lyra-mic0!
MPI World size = 4 processes

Listing 2.59: Launching an Intel MPI application using a machine file.

There is a different way to use the machine file, as shown in Listing 2.60
Note that in the first case, ranks 0 and 1 were placed on mic0 and ranks
2 and 3 on mic1, while in the second case, rank 0 went to mic0, rank 1
to mic1, rank 2 again to mic0, rank 3 to mic1. Rank ordering may be
important when data partition and message traffic is considered.

vega@lyra% cat mymachines.txt
mic0
mic1
vega@lyra% mpirun -np 4 -machinefile mymachines.txt ~/MPI-Hello.MIC
Hello World from rank 3 running on lyra-mic1!
Hello World from rank 1 running on lyra-mic1!
Hello World from rank 2 running on lyra-mic0!
Hello World from rank 0 running on lyra-mic0!
MPI World size = 4 processes

Listing 2.60: Launching an Intel MPI application using a machine file. Permuted order of ranks.
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Heterogeneous MPI Applications: Host and Coprocessor(s)

It is possible to have some processes executing on coprocessors and some
on the host, as shown in Listing 2.61.

vega@lyra% mpiicpc -mmic -o ~/MPI-Hello MPI-Hello.cc
vega@lyra% mpiicpc -o ~/MPI-Hello MPI-Hello.cc
vega@lyra% cp MPI-Hello ~/
vega@lyra% mpirun \
> -host mic0 -np 2 ~/MPI-Hello.MIC : \
> -host mic1 -np 2 ~/MPI-Hello.MIC : \
> -host lyra -np 2 ~/MPI-Hello
Hello World from rank 5 running on lyra!
Hello World from rank 4 running on lyra!
Hello World from rank 2 running on lyra-mic1!
Hello World from rank 3 running on lyra-mic1!
Hello World from rank 1 running on lyra-mic0!
Hello World from rank 0 running on lyra-mic0!
MPI World size = 6 processes

Listing 2.61: Launching an Intel MPI application on two coprocessors and the host itself. The
symbol ‘\’ in the second line indicates the continuation of the shell command onto the next line.

Naturally, because the CPU and the coprocessor have different technical
specifications and yield different performance, the programmer must ensure
load balancing between the CPU and the MIC subsystems. One of the ways
to do this at the machine file level is to specify different numbers of MPI
processes for CPU hosts and MIC hosts (coprocessors). Whether to specify
more or fewer ranks per node on the MIC to achieve load balance, depends
on the workload partitioning algorithm and on the relative performance of
the code on the CPU and MIC.
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Machine File for Heterogeneous Applications

Instead of the long command line, a machine file can be used to launch
heterogeneous MPI jobs. In this case, the obvious difficulty is only one
executable name is passed to mpirun, while the executable for the CPU
architecture must be stored in a different file from the executable for the MIC
architecture. This difficulty can be overcome with one of the two methods.

Method 1 The programmer may compile the MIC executable and copy it
to a directory in the coprocessor(s) filesystem, then compile the
CPU executable with the same name, and copy it to the same
path as the MIC executable, but in the host filesystem.

vega@lyra% # Compiling the MIC executable
vega@lyra% mpiicpc -mmic -o ~/MPI-Hello MPI-Hello.cc
vega@lyra% scp MPI-Hello mic0:~/
MPI-Hello 100% 12KB 12.4KB/s 00:00
vega@lyra% scp MPI-Hello mic1:~/
MPI-Hello 100% 12KB 12.4KB/s 00:00
vega@lyra% # Compiling the CPU executable with same name:
vega@lyra% mpiicpc -o ~/MPI-Hello MPI-Hello.cc
vega@lyra% cat mymachines.txt # machine file
mic0:2
mic1:2
lyra:2
vega@lyra% mpirun -machinefile mymachines.txt ~/MPI-Hello
Hello World from rank 5 running on lyra!
Hello World from rank 4 running on lyra!
Hello World from rank 2 running on lyra-mic1!
Hello World from rank 3 running on lyra-mic1!
Hello World from rank 1 running on lyra-mic0!
Hello World from rank 0 running on lyra-mic0!
MPI World size = 6 processes

Listing 2.62: Launching an Intel MPI application on two coprocessors and the host itself using
a machine file and an executable with the same name and path.

It is impossible to use Method 1 if the executable is stored in a shared
filesystem, because upon copying one of the executables, the other will
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be overwritten. In case of shared filesystem, the second method is more
appropriate.

Method 2 Another way is to use the special Intel MPI environment variable
I_MPI_MIC_POSTFIX. This variable instructs the Intel MPI
library that the name and path of the MIC executable is the same
as the name and path of the CPU executable with the addition of
the postfix. This method is illustrated below.

vega@lyra% # Compiling MIC executable with postfix .MIC
vega@lyra% mpiicpc -o ~/MPI-Hello.MIC MPI-Hello.cc
vega@lyra% # Compiling CPU executable with no postfix:
vega@lyra% mpiicpc -o ~/MPI-Hello MPI-Hello.cc
vega@lyra% scp MPI-Hello.MIC mic0:~/
MPI-Hello.MIC 100% 12KB 12.4KB/s 00:00
vega@lyra% scp MPI-Hello.MIC mic1:~/
MPI-Hello.MIC 100% 12KB 12.4KB/s 00:00
vega@lyra% cp MPI-Hello ~/
vega@lyra% cat mymachines.txt # machine file
mic0:2
mic1:2
lyra:2
vega@lyra% export I_MPI_MIC_POSTFIX=.MIC
vega@lyra% mpirun -machinefile mymachines.txt ~/MPI-Hello
Hello World from rank 5 running on lyra!
Hello World from rank 4 running on lyra!
Hello World from rank 2 running on lyra-mic1!
Hello World from rank 3 running on lyra-mic1!
Hello World from rank 1 running on lyra-mic0!
Hello World from rank 0 running on lyra-mic0!
MPI World size = 6 processes

Listing 2.63: Launching an Intel MPI application on two coprocessors and the host itself using
a machine file and and a MIC name postfix.

Note that an alternative variable, I_MPI_MIC_PREFIX, allows the pro-
grammer to place MIC and CPU executables at different paths.
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2.5. Offload Programming with OpenMP 4.0

The new OpenMP 4.0 standard added support for offload to devices,
providing an alternative method for offloading to Intel Xeon Phi coprocessors.
Like the explicit offload, the offloading API in OpenMP 4.0 is based on
pragmas. These pragmas are used to explicitly control data transfer and code
offload to the coprocessor, allowing for manual data marshaling.

A selection of available pragmas are listed below. For full documentation
refer to the Intel Intel C Compiler Compiler Reference or the OpenMP 4.0
documentation.

- #pragma omp target: The code inside the scope is executed on the
target device. This pragma is the counterpart to #pragma offload
in the explicit offload model. To also transfer data you must use the
map() clause. For example, to transfer array a to the coprocessor but
not from the coprocessor, use map(to:a[0:N]). Other arguments are
from for transfer from the coprocessor, tofrom for both to and from the
coprocessor, and alloc for just allocation with no transfer.

- #pragma omp target data: Transfers data to the coprocessor and
implements data persistence. All #pragma omp target inside the
scope of the pragma will have access to the variables mapped in #pragma
omp target data. The syntax for map is the same as #pragma
omp target, with transfers occurring at the start and the end of the
region. If the data is modified on either the coprocessor or the host, they
can be synchronized using #pragma omp target update.

- #pragma omp target update: Synchronizes data that is used in
#pragma omp target data. For example to synchronize variable
a and b to the value on the host, use #pragma omp target data
to(a,b). To synchronize to the value on the coprocessor, use from(a,b)
clause instead.

- #pragma omp declare target: Marks a code region for compi-
lation for MIC architecture. The region must be closed with #pragma
omp end declare target. These pragmas are counterparts to
#pragma offload_attribute(push, target(mic)) and
#pragma offload_attribute(pop) (see Section 2.2.2).
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2.5.1. Offload with Pragma Target

Listing 2.64 demonstrates how to offload to the coprocessor using #pragma
omp target. Note that because omp target is part of OpenMP stan-
dard, you must include <omp.h> and compile with -qopenmp flag.

1 #include <omp.h>
2 int main() {
3 const int N = 1024;
4 int A[N];
5 for(int i = 0; i < N; i++)
6 A[i] = i;
7

8 #pragma omp target map(tofrom:A) // Offloaded to the coprocessor
9 for(int i = 0; i < N; i++)

10 A[i] = -A[i]
11 }

Listing 2.64: Example of using #pragma omp target.

In the target offload we used map(tofrom:A) so that the array A is
transferred to and from the coprocessor at the beginning and the end of the
offload, respectively. Note that the constant N was automatically transferred.

Listing 2.65 shows an example of offloading to the coprocessor.

1 #include <omp.h>
2

3 #pragma omp declare target
4 void MyFunction() { //compiled for MIC architecture
5 // ...
6 }
7 #pragma omp end declare target
8

9 // ...
10 #pragma omp target
11 MyFunction() // Carried out on the coprocessor
12 // ...

Listing 2.65: Marking functions for offload with #pragma omp declare target.
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2.5.2. Data Persistence with Pragma Target Data

The source code in Listing 2.66 demonstrates how to set up data retention
using #pragma omp target data.

1 #include <stdio.h>
2 #include <omp.h>
3 #pragma omp declare target
4 void Increment(int *A, const int N) {
5 for(int i = 0; i < N; i++)
6 A[i]++;
7 }
8 #pragma omp end declare target
9

10 int main(int argv, char** argc){
11 const int N = 1024;
12 int A[N];
13 for (int i = 0; i < N; i++)
14 A[i] = i; //Initializing
15

16 printf("A[0] = %d Bfore offload region.\n",A[0]);
17 #pragma omp target data map(tofrom:A)
18 {
19 #pragma omp target
20 Increment(A, N);
21

22 #pragma omp target update from(A) // Synchronization
23 printf("A[0] = %d After update.\n",A[0]); //Runs on Host
24

25 #pragma omp target
26 Increment(A, N);
27 }
28 printf("A[0] = %d After offload region.\n",A[0]);
29 }

vega@lyra% icpc -qopenmp omp-target-data.cc
vega@lyra% ./a.out
A[0] = 0 Before offload region.
A[0] = 1 After synchronization.
A[0] = 2 After offload region.

Listing 2.66: Data retention using #pragma omp target data.
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In the code in Listing 2.66, omp target data is used to implement
data retention for that Array A. Unlike explicit offload, array A does not have
to be expressed in the omp target pragma that is within the scope of omp
target data. In fact, if the omp target pragma has mapping for A,
it will be ignored. The tofrom argument in the map clause means that
array A is transferred at the beginning (to) and the end (from) of the region,
instead of at every offload. To Synchronize the data between the host and the
coprocessor inside the scope of omp target data, use omp target
update pragma.

Note that target data creates a “data environment” within which
data retention is implemented for offloads, but it does not offload code
to the coprocessor on its own. Any code that does not have #pragma
omp target will be executed on the host. For example, in the code in
Listing 2.66, the printf() statement in line 23 is executed on the host.
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CHAPTER 3
Expressing Parallelism

Chapter 2 discussed the ways in which application can move data and
code between the host and Intel Xeon Phi coprocessors. Chapter 3 introduces
parallel frameworks and programming language extensions supported by
the Intel C++ Compiler for programming the Intel Xeon and Intel Xeon Phi
architectures. It discusses data parallelism (vectorization), shared-memory
thread parallelism (OpenMP, Intel Cilk Plus) and distributed-memory process
parallelism with message passing (MPI). The purpose of this chapter is to
introduce parallel programming paradigms and language constructs, rather
than to provide optimization advice. For optimization, refer to Chapter 4.
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3.1. Data Parallelism (Vectorization)

This section introduces data parallelism (vector instructions) in Intel Xeon
processors and Intel Xeon Phi coprocessors and outlines the Intel C++ Com-
piler support for these instructions. Vector operations illustrated in this
section can be used in both serial and multi-threaded applications, however,
examples are limited to serial applications for simplicity. This section intro-
duces the concept of vectorized calculations and language extensions for it;
optimization practices for vectorization are discussed in Section 4.3.

3.1.1. Vector Instructions: Concept and History

Intel processor architectures today include data parallelism in the form
of a vector instruction set. Vector instructions are designed to apply the
same mathematical operation to multiple integer or floating-point numbers.
Machines with support for vector instructions fall into the broader category
of SIMD (Single Instruction Multiple Data) processors. In the context of
Intel Xeon processors and Intel Xeon Phi coprocessors, the terms “vector”
and “SIMD” instructions mean the same concept. The following pseudocode
illustrates vector instructions:

Scalar Loop Vector Loop

For (i = 0; i < n; i++)
A[i] += B[i];

For (i = 0; i < n; i += 4)
A[i:(i+4)] += B[i:(i+4)];

Listing 3.1: This pseudocode illustrates the concept of vector instructions. The vector loop
(right) performs 1/4 the number of iterations of the scalar loop (left), and each addition operator
acts on 4 numbers at a time (i.e., addition here is a single instruction for multiple data elements).

The maximum potential speedup of this vectorized calculation with respect to
a scalar version is equal to the number of values held in the processor’s vector
registers. In the example in Listing 3.1, this factor is equal to 4. The practical
speedup with vectorization depends on the width of vector registers, type
of scalar operands, type of instruction and associated memory traffic. See
Section 3.1.2 for more information about vector instruction sets. Additional
reading for code vectorization can be found in the book [14] by Aart Bik,
former lead architect of automatic vectorization in the Intel compilers.
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3.1.2. Intel Architecture Vector Instruction Sets

Vector instruction sets in modern processors typically include common
arithmetic operations (addition, subtraction, multiplication and division), as
well as comparisons, reduction and bit-masked operations. Table 3.1 summa-
rizes the the instruction sets supported by Intel processors and coprocessors,
along with supported types of variables and operations.

Instruction
Set

Year & Intel Processor Vector
registers

Packed Data Types and Operations

MMX 1997, Pentium 64-bit 8-, 16- and 32-bit integers
SSE 1999, Pentium III 128-bit 32-bit single precision FP (floating-point)
SSE2 2001, Pentium 4 128-bit 8 to 64-bit integers; single & double prec. FP
SSE3–
SSE4.2

2004 – 2009 128-bit (additional instructions)

AVX 2011, Sandy Bridge 256-bit single and double precision FP
AVX2 2013, Haswell 256-bit FMA, integers, additional instructions
IMCI 2012, Knights Corner 512-bit 32-, 64-bit integers; single & double prec. FP
AVX-512 (future) Knights Landing 512-bit 32-, 64-bit integers; single & double prec. FP,

additional instructions

Table 3.1: History of vector instruction sets supported by the Intel processors. Processors
supporting modern instruction sets are backward-compatible with older instruction sets. The
Intel Xeon Phi coprocessor is an exception to this trend, supporting only the IMCI (“Initial
Many-Core Instructions”) instruction set.

The common property of all these instruction sets is that they support data
parallelism, i.e., the application of same arithmetic operation to a set of data
elements (short vector). The number of elements in each vector is the ratio of
the vector register width to the size of the data type. For instance, a 512-bit
vector in the Knights Corner architecture (i.e., Intel Xeon Phi coprocessor)
fits either eight double precision (64-bit) floating-point numbers, or sixteen
single precision (32-bit) floating-point numbers. As vector instructions sets
evolve, they support longer vectors, more data types, and greater diversity of
instructions.

Data parallelism through vector instructions complements multi-core
parallelism. Each core of an Intel Xeon processor or an Intel Xeon Phi copro-
cessor has its own vector processing facilities, and therefore different cores
can be working on different vector instructions at any given moment (i.e.,
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cores do not work in “lock-step”). The programmer shares the responsibility
with the compiler to ensure that wherever the application can benefit from
data parallelism, vector instructions are used. Furthermore, vectorization
must exist in each thread of a multi-threaded program, which may pose
additional challenges.

3.1.3. Is Your Code Using Vectorization?
Programmers have three options for employing vector instructions:

1. Some high-level mathematics libraries, such as Intel MKL, contain im-
plementations of common operations for linear algebra, signal analysis,
statistics, etc., which use vector instructions. In applications using such
library functions, vectorization is employed without burdening the pro-
grammer. Whenever your application performs operations that can be
expressed as an Intel MKL library function, the easiest way to vector-
ize this operation is to call the library implementation. This applies to
workloads for Intel Xeon and Intel Xeon Phi architecture alike.

2. In high performance applications compiled from a high-level language
(C/C++/Fortran), vector operations may be implemented by the compiler
through a feature known as automatic vectorization. Automatic vector-
ization is enabled at the default optimization level -O2. However, in
order to gain the most from automatic vectorization, the programmer
must organize data and loops in a certain way, and/or use compiler hints
such as #pragma simd, as described further in this section. Automatic
vectorization is the most convenient way to employ vector instruction
support, because cross-platform porting is performed by the compiler.

3. Finally, vector instructions may be called explicitly via inline assembly or
vector intrinsics. This method may sometimes yield better performance
than automatic vectorization, but cross-platform porting is difficult.

Even if you did not know about vector instructions before, or did not
make specific efforts to employ them in your code, your application may
already be using vector instructions if options 1 or 2 are your case. In this
section, we focus on case 2 – automatic vectorization in user applications,
and mention case 3.
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3.1.4. Data Alignment
Before demonstrating how to utilize vector instructions in applications for

Intel Xeon processors and Intel Xeon Phi coprocessors, let us digress into a
very important related topic: data alignment. A prerequisite for successful
use of vector instructions is placing the data to be processed at a memory
address which allows for aligned data access. This typically means that the
value of the memory address is a multiple of the vector register width in
bytes. In some architectures, for instance, Intel Xeon processors supporting
the AVX instruction set, unaligned memory accesses are permitted, but
may be slower than aligned accesses. In other architectures, such as first
generation Intel Xeon Phi coprocessors, unaligned memory accesses cause a
segmentation fault.

The definition of data alignment is this: pointer p is said to address a
memory location aligned on an n-byte boundary if ((size_t)p%n==0).

In Intel Xeon processors, 128-bit SSE instructions require 16-byte align-
ment. With 256-bit AVX, alignment requirements are relaxed, however,
32-byte alignment of data is recommended for performance optimization. In
Intel Xeon Phi coprocessors with Knights Corner architecture and 512-bit
IMCI, vector operations require 64-byte alignment.

In addition to serving vector operations, data alignment has other appli-
cations. For instance, for memory-intensive operations, including DMA
used for CPU to coprocessor communication, it is beneficial to align data
on a boundary equal to the virtual memory page size. Depending on the
application, it means either 4 KiB, or 2 MiB alignment. Another possibility
is that false sharing considerations (see Section 4.4.2) may require the pro-
grammer to align some data elements at the beginning of a cache line. In
this case, 64-byte alignment is necessary (the same value for all modern Intel
architectures).

Complete information on data alignment with the Intel C++ compiler can
be found in the compiler reference.
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Data Alignment on the Stack

For standalone scalar variables, Intel C and C++ compilers automatically
implement natural alignment, i.e., the alignment boundary is equal to the
size of the type.

1 float a; // 4-byte aligned
2 double b; // 8-byte aligned

Listing 3.2: Standalone scalar variables are automatically aligned on a natural boundary.

For array data on the stack, when alignment is necessary, array declaration
must be accompanied by the attribute “aligned”. This attribute is a C/C++
language extension supported by the Intel C and C++ compilers. Listing 3.3
demonstrates the usage of attribute “aligned” in Linux, and Listing 3.4 shows
the syntax for Windows applications. See Intel C++ Compiler Reference for
more details.

1 float A[n] __attribute__((aligned(64)));

Listing 3.3: Declaring an array on stack and aligning it on 64-byte boundary (Linux syntax).

1 __declspec(align(64)) float A[n];

Listing 3.4: Declaring an array on stack and aligning it on 64-byte boundary (Windows syntax).

In both examples shown above, array A will be placed in memory in such
a way that the address of A[0] is a multiple of 64, i.e., aligned on a 64-byte
boundary.
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Alignment of Memory Blocks on the Heap

With the Intel C++ compiler, aligned arrays can be allocated/deallocated
with the functions _mm_malloc and _mm_free, which replace the un-
aligned malloc and free calls. See usage example in Listing 3.5.

1 #include <malloc.h>
2 // ...
3 float *A = (float*)_mm_malloc(n*sizeof(float), 64);
4 // ...
5 _mm_free(A);

Listing 3.5: Allocating and deallocating a 64-byte aligned a memory block.

An alternative way to achieve alignment when allocating memory on the
heap is to use the malloc call to allocate a block of memory slightly larger
than needed, and then point a new pointer to the first aligned address within
that block. The advantage of this method is that it can be used in compilers
that do not support the _mm_malloc/_mm_free calls. See Listing 3.6 for
an example of this procedure.

1 #include <cstdlib>
2 // ...
3 char *holder = (char*) malloc(bytes+64-1); // May be unaligned
4 size_t misalign = ((size_t)(*holder))%64; // How far from boundary
5 size_t offset = (misalign == 0 ? 0 : 64 - misalign); // Offset
6 float *A=(float*) ((char*)(holder) + offset); // 64-byte aligned
7 // ...
8 free(holder); // use original pointer to deallocate memory

Listing 3.6: Allocating and freeing a 64-byte aligned memory block. In this case, the pointer A
should be used to access data, but memory must be free-d via holder.
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Alignment of Objects Created with the Operator new

In C++, the operator new does not guarantee alignment of the memory
block that it reserves. To align a C++ class object on a boundary, the
programmer can allocate an aligned block of memory using one of the
methods shown above, and then use the placement version of the operator
new as shown in Listing 3.7. Naturally, if this method is used for objects
of derived types (classes and structures), then the internal structure of these
types must be designed in such a way that the data used for vector operations
is aligned.

1 #include <new>
2 // ...
3 // Allocating memory block of sufficient size in
4 // such a way that buf[0] is aligned on a 64-byte boundary
5 void *buf = _mm_malloc(sizeof(MyClass), 64);
6

7 // placing MyClass into buf without allocating new memory
8 MyClass *ptr = new (buf) MyClass;
9 // ...

10

11 // Calling the destructor of MyClass
12 ptr->~MyClass();
13

14 // Deallocating aligned memory
15 _mm_free(buf);

Listing 3.7: Placing an object of type MyClass into a memory block aligned on a 64-byte
boundary. Note that the delete operator should not be called on ptr; instead, the destructor
should be run explicitly, followed by freeing the allocated memory block.
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Alignment in Multidimensional Arrays

With arrays stored in row-major format, it is often desirable that every row
begins on an aligned boundary. However, if the row length is not a multiple
of the alignment value, then some rows may be aligned and some misaligned,
as shown in a matrix-vector multiplication code in Listing 3.8.

1 const int n = 1000; // Note that 1000 is not a multiple of 16
2 float *A = (float*) _mm_malloc(sizeof(float)*n*n, 64);
3 float *x = (float*) _mm_malloc(sizeof(float)*n, 64);
4 float *b = (float*) _mm_malloc(sizeof(float)*n, 64);
5 //...
6 for (int i = 0; i < n; i++) {
7 b[i] = 0.0f;
8 // For i=0, A[i*n+0] is aligned - good
9 // For i=1, A[i*n+0] is misaligned - bad!

10 for (int j = 0; j < n; j++)
11 b[i] += A[i*n + j]*x[j];
12 }

Listing 3.8: Computing matrix-vector product Ax=b.

To fix the situation, the programmer may pad the rows of A to a value that
is a multiple of 16, as shown in Listing 3.9.

1 const int n = 1000; // Note that 1000 is not a multiple of 16
2 const int misalign = n%16;
3 const int nPad = n + (misalign == 0 ? 0 : 16 - misalign);
4 float *A = (float*) _mm_malloc(sizeof(float)*n*nPad, 64);
5 float *x = (float*) _mm_malloc(sizeof(float)*n, 64);
6 float *b = (float*) _mm_malloc(sizeof(float)*n, 64);
7 //...
8 for (int i = 0; i < n; i++) {
9 b[i] = 0.0f;

10 for (int j = 0; j < n; j++) // A[i*nPad+0] aligned for all i
11 b[i] += A[i*nPad + j]*x[j];
12 }

Listing 3.9: Computing matrix-vector product Ax=b, row padding.
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Alignment of Offloaded Arrays

In offload programming models, the programmer may need to ensure that
arrays transferred from host to coprocessor are properly aligned on the target.
This can be done using the clause align in the offload pragma as shown in
Listing 3.10.

1 float *A = (float*) _mm_malloc(sizeof(float)*n, 4096);
2

3 #pragma offload target(mic) in(A : length(n) align(4096))
4 {
5 // ...
6 }

Listing 3.10: Requesting non-default alignment for an offloaded array.

The default behavior of data movement by #pragma offload (with-
out the align clause) is that the target memory address matches the offset
of the host memory address within 64 bytes. For instance, if the array A was
64-byte aligned on the host, it would be 64-byte aligned on the coprocessor;
and if it was offset by 16 bytes from a 64-byte boundary on the host, it would
be offset by 16 bytes on the coprocessor as well.

However, in some applications, greater alignment values are necessary
(for example, to place data at the beginning of a virtual memory page). In
these cases, the clause align guarantees that the memory address of the
array on the coprocessor is a multiple of the specified alignment value.
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3.1.5. Vector Instructions using Inline Assembly, Compiler
Intrinsics and Class Libraries

Vector instructions can be explicitly called from user code using assembly
code, compiler intrinsics and class libraries. Note that these methods of
using vector instructions are not recommended, as they limit the portability
of the code across different architectures. For example, porting a code that
runs on Intel Xeon processors and uses AVX intrinsics to Intel Xeon Phi
coprocessors with IMCI intrinsics requires that the portion of code with
intrinsics is completely re-written. Explicit vectorization is undesirable even
if there is backward compatibility between instruction sets. For example,
even though an AVX code may be run on the KNL architecture with the
AVX-512 set, it will use only half of the available vector register width.

Instead of explicit vector instruction calls, developers are encouraged to
employ automatic vectorization with methods described in Section 3.1.6
through Section 3.1.10. However, this section provides information about
intrinsics for reference.

Inline Assembly Code

While inline assembly code is a very fine-grained method of using proces-
sor instructions, it is beyond the scope of this training, and interested readers
can refer to the compiler documentation. For an in-depth review of Intel
Xeon Phi coprocessor instruction set, refer to the Intel Xeon Phi Coprocessor
Instruction Set Architecture Reference Manual.

Intrinsics

Compiler intrinsics also provide low-level of control over operations while
keeping the code more readable and giving the compiler freedom to re-order
operations to optimize latency masking.

For every instruction set supported by the Intel compiler, there is a corre-
sponding header file that declares the corresponding short vector types and
vector functions. Table 3.2 lists these header files.

The usage of intrinsics on data stored in memory involves three steps:

1. Loading data into variables representing the content of vector registers;
2. Calling intrinsics on these vector register variables;
3. Storing the data in resultant vector register back into memory.
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In addition, in some cases, the data loaded into vector registers must be
aligned, i.e., placed at a memory address which is a multiple of a certain
number of bytes. See Section 3.1.4 for more information on data alignment.

Instruction Set Include header file
MMX mmintrin.h
SSE xmmintrin.h or ia32intrin.h
SSE2 emmintrin.h or ia32intrin.h
SSE3 pmmintrin.h or ia32intrin.h
SSSE3 tmmintrin.h or ia32intrin.h
SSE4 smmintrin.h and nmmintrin.h
AVX, AVX2, IMCI, AVX-512 immintrin.h

Table 3.2: Header files for the Intel C++ Compiler intrinsics. See also Table 3.1.

Codes in Listing 3.11 illustrate using AVX and IMCI intrinsics for the
addition of two arrays shown in Listing 3.1. Note that the stride of the loop
variable i is 8 for the AVX code and 16 for the IMCI code.

for (int i=0; i<n; i+=8) {
__m256 Avec=_mm256_load_ps(A+i);
__m256 Bvec=_mm256_load_ps(B+i);
Avec=_mm256_add_ps(Avec, Bvec);
_mm256_store_ps(A+i, Avec);
}

for (int i=0; i<n; i+=16) {
__m512 Avec=_mm512_load_ps(A+i);
__m512 Bvec=_mm512_load_ps(B+i);
Avec=_mm512_add_ps(Avec, Bvec);
_mm512_store_ps(A+i, Avec);
}

Listing 3.11: Addition of two arrays using AVX intrinsics (left) and IMCI intrinsics (right).
These codes assume that the arrays float A[n] and float B[n] are aligned on a 64-byte
boundary, and that n is a multiple of 8 for AVX and a multiple of 16 for IMCI. Variables Avec and
Bvec are 256 = 8× sizeof(float) bits in size for AVX and 512 = 16× sizeof(float)
bits for the Intel Xeon Phi architecture.

The AVX code in Listing 3.11 will run only on Intel Xeon processors, and
the IMCI code will run only on Intel Xeon Phi coprocessors. The necessity to
maintain a separate version of vectorized code for each target instruction set
is generally undesirable, however, it cannot be avoided when code is vector-
ized with intrinsics. A better approach to expressing data parallelism is using
the Intel Cilk Plus extensions for array notation (see Section 3.1.7) or auto-
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matically vectorizable C loops and vectorization pragmas (see Section 3.1.6
through Section 3.1.10).

Note that switching between different instruction sets in a code employing
intrinsics should be done with care. In some cases, in order to switch between
different instruction sets supported by a processor, register have to be set to
a certain state to avoid a performance penalty. See the Intel C++ Compiler
Reference [15] and Intel Intrinsics Guide [16] for details.

Class Libraries

The C++ vector class library provided by the Intel Compilers defines
short vectors as C++ classes, and operators acting on these vectors are
implemented with vector instructions. A similar library is maintained by
Agner Fog. Table 3.3 lists the header files that should be included in order to
gain access to the Intel C++ Class Library.

Instruction Set Include header file
MMX ivec.h
SSE fvec.h
SSE2, AVX dvec.h
IMCI micvec.h

Table 3.3: Header files for the Intel C++ Class Library.

Codes in Listing 3.12 demonstrate how the C++ vector class library
included with the Intel C++ compiler can be used to execute the vector loop
shown in Listing 3.1.

for (int i=0; i<n; i+=4) {
F32vec4 *Avec=(F32vec4*)(A+i);
F32vec4 *Bvec=(F32vec4*)(B+i);

*Avec = *Avec + *Bvec;
}

for (int i=0; i<n; i+=8) {
F64vec8 *Avec=(F64vec8*)(A+i);
F64vec8 *Bvec=(F64vec8*)(B+i);

*Avec = *Avec + *Bvec;
}

Listing 3.12: Addition of two double precision arrays using the Intel C++ vector class library
with AVX (left) and IMCI instructions (right). These codes assume that the arrays float A[n]
and float B[n] are aligned on a 64-byte boundary, and that n is a multiple of 4 for AVX and
a multiple of 8 for the Intel Xeon Phi architecture.

c© Colfax International, 2013–2015

https://software.intel.com/en-us/compiler_15.0_ug_c
https://software.intel.com/en-us/compiler_15.0_ug_c
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/en-us/node/524394
http://www.agner.org/optimize/#vectorclass
http://www.colfax-intl.com/


166 CHAPTER 3. EXPRESSING PARALLELISM

3.1.6. Automatic Vectorization of Loops
To take advantage of vector instructions, the developer does not need

to call them explicitly via inline assembly or intrinsics. The alternative
route is using the automatic vectorization feature of the Intel compiler. This
function transforms scalar C/C++ loops into loops with short vectors and
vector instructions during code compilation. The benefits of using automatic
vectorization instead of intrinsic functions or vector class libraries are:
1) code porting to a new architecture is possible by re-compilation;
2) ease of development and improved code readability, and
3) (in some cases) heuristic compile-time analysis and empirical run-time

analysis of the profitability of various vectorization paths implemented
by the compiler.

A practical example of automatic vectorization the loop from Listing 3.1
is shown in Listing 3.13. This example, while trivial, demonstrates some of
the important aspects of automatic vectorization.

1 #include <cstdio>
2 int main(){
3 const int n=8;
4 int A[n] __attribute__((aligned(64)));
5 int B[n] __attribute__((aligned(64)));
6 int C[n] __attribute__((aligned(64)));
7

8 // Initialization. Will be auto-vectorized
9 for (int i = 0; i < n; i++)

10 A[i] = B[i] = i;
11

12 // This loop will be auto-vectorized
13 for (int i = 0; i < n; i++)
14 C[i] = A[i] + B[i];
15

16 // Output
17 for (int i = 0; i < n; i++)
18 printf("Element #%2d: %2d + %2d = %2d (%s)\n",
19 i, A[i], B[i], C[i], (C[i]==A[i]+B[i]?"OK":"ERROR"));
20 }

Listing 3.13: The code Vec-Addition.cc gets auto-vectorized by the compiler.
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Unlike codes in Listing 3.11 and Listing 3.12, the code in Listing 3.13
is oblivious of the architecture that it is compiled for. Indeed, this code
can be compiled and auto-vectorized for Pentium 4 processors with SSE2
instructions as well as for Intel Xeon Phi coprocessors. The only place where
architecture is implicitly assumed is the alignment boundary value of 64.
This value is chosen to satisfy the IMCI alignment requirements.

vega@lyra% CCFLAGS="-qopt-report=2 -qopt-report-phase:vec"
vega@lyra% icpc ${CCFLAGS} -o Vec-Addition Vec-Addition.cc
icpc: remark #10397: optimization reports are generated in

*.optrpt files in the output location
vega@lyra% ./Vec-Addition
Element # 0: 0 + 0 = 0 (OK)
Element # 1: 1 + 1 = 2 (OK)
Element # 2: 2 + 2 = 4 (OK)
Element # 3: 3 + 3 = 6 (OK)
Element # 4: 4 + 4 = 8 (OK)
Element # 5: 5 + 5 = 10 (OK)
Element # 6: 6 + 6 = 12 (OK)
Element # 7: 7 + 7 = 14 (OK)

Listing 3.14: Compiling and running Vec-Addition.cc with optimization report generation
for the vectorization phase.

The output of the code is predictable: the result of addition of two integers
is calculated correctly. However, as we will soon see from the optimization
report, the addition loop in line 13 was vectorized and performed with AVX
vector instructions.

The compiler arguments that we used in Listing 3.14 are diagnostic.
The argument -qopt-report sets the verbosity of diagnostic output, and
-qopt-report-phase:vec tells the compiler to only generate vector-
ization report. The report goes into the text file Vec-Addition.optrpt.
It is also possible to direct the optimization report to the screen by using the
argument -qopt-report-stdout.

The arguments discussed above pertain to Intel C++ compiler version
15.0 and above. In older compilers, the argument that produces diagnostic
report is -vec-report=n (deprecated in 15.0).

Now let’s take a look at the optimization report (see Listing 3.15).
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vega@lyra% cat Vec-Addition.optrpt
Begin optimization report for: main()

Report from: Vector optimizations [vec]

LOOP BEGIN at Vec-Addition.cc(9,3)
remark #15399: vectorization support: unroll factor set to 2
remark #15300: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at Vec-Addition.cc(13,3)
remark #15399: vectorization support: unroll factor set to 2
remark #15300: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at Vec-Addition.cc(17,3)
remark #15344: loop was not vectorized: vector dependence
prevents vectorization. First dependence is shown below. Use
level 5 report for details

LOOP END

Listing 3.15: Automatic vectorization report produced by the compiler.

The message “LOOP WAS VECTORIZED” indicates successful compila-
tion with vector instructions. Two loops were vectorized here: initialization
in line 9 and addition in line 13. Remarks such as “loop was not vector-
ized” are also helpful. They may be telling the programmer that something
needs to be changed in order for vectorization to succeed (the rest of this
section discusses these cases). However, in our case, loop in line 17 was not
vectorized because it contains an I/O operation, which, naturally, cannot be
performed with vector instructions.

Note that no special optimization arguments were used in order for vec-
torization to occur automatically. Automatic vectorization is enabled for the
default optimization level -O2 and higher levels.

As proof of that this C code is indeed a portable solution, one can compile
it for native execution on Intel Xeon Phi coprocessors. Listing 3.16 illustrates
the result.
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vega@lyra% icpc ${CCFLAGS} -mmic -o Vec-Addition Vec-Addition.cc
icpc: remark #10397: optimization reports are generated in

*.optrpt files in the output location

vega@lyra% micnativeloadex ./Vec-Addition # run on Xeon Phi
Element # 0: 0 + 0 = 0 (OK)
Element # 1: 1 + 1 = 2 (OK)
Element # 2: 2 + 2 = 4 (OK)
Element # 3: 3 + 3 = 6 (OK)
Element # 4: 4 + 4 = 8 (OK)
Element # 5: 5 + 5 = 10 (OK)
Element # 6: 6 + 6 = 12 (OK)
Element # 7: 7 + 7 = 14 (OK)

vega@lyra% cat Vec-Addition.optrpt
Begin optimization report for: main()

Report from: Vector optimizations [vec]

LOOP BEGIN at Vec-Addition.cc(9,3)
remark #15335: loop was not vectorized: vectorization possible
but seems inefficient. Use vector always directive or
-vec-threshold0 to override

LOOP END

LOOP BEGIN at Vec-Addition.cc(13,3)
remark #15300: LOOP WAS VECTORIZED [ Vec-Addition.cc(13,3) ]

LOOP END

LOOP BEGIN at Vec-Addition.cc(17,3)
remark #15344: loop was not vectorized: vector dependence
prevents vectorization. First dependence is shown below. Use
level 5 report for details

LOOP END

Listing 3.16: Compilation for MIC architecture and runtime output of the code in Listing 3.13

It is worth noting the compiler’s remark on the initialization loop in line
9. On the MIC architecture, the compiler reports “vectorization possible but
seems inefficient”. This is likely because Knights Corner vectors hold up to
16 single precision floating-point values, and our loop is only 8 iterations
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long. This is an example of the compiler’s heuristic analysis of the efficiency
of vectorization.

Indeed, in addition to portability across architectures, reliance on auto-
matic vectorization provides other benefits. For instance, auto-vectorizable
code may release the programmer of the requirement that the number of
iterations should be a multiple of the number of data elements in the vector
register. If loop length is not a multiple of the vector length, the compiler
will peel off the first or last few iterations and perform them with scalar
instructions. It is also possible to automatically vectorize loops working with
data that are not aligned on a proper boundary. In this case, the compiler will
generate code to check the data alignment at runtime and, if necessary, peel
off a few iterations at the start of the loop in order to perform the bulk of
the calculations with fast aligned instructions. See Section 4.3.3 for a more
thorough discussion of this topic.

Generally, the only type of loops that the compiler will auto-vectorize is
the for-loop, with the number of iterations run known at runtime, or, better
yet, at compile time. Memory access in the loop must have regular pattern,
ideally with unit stride.

Non-standard loops that cannot be automatically vectorized include: loops
with irregular memory access patterns, calculations with vector dependence,
while-loops or for-loops in which the number of iterations cannot be deter-
mined at the start of the loop, outer loops, loops with complex branches
(i.e., if-conditions), and anything else that cannot be, or is very difficult to
vectorize.

Further information on automatic vectorization of loops can be found in
Section 3.1.10 and Section 4.3, and in the Intel C++ compiler reference.
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3.1.7. Extensions for Array Notation in Intel Cilk Plus
Intel C++ compiler supports the Intel Cilk Plus framework as an extension

to the C++ language. Intel Cilk Plus, among other things, introduces array
notation, which is a method for specifying slices of arrays or whole arrays,
and applying element-wise operations to arrays of the same shape. The Intel
C++ Compiler can auto-vectorize operations expressed in array notation.

In the example code in Listing 3.13, the addition loop in lines 14-15 can
be replaced with the code shown in Listing 3.17. When this code is compiled
with the Intel C++ Compiler, the addition operation will be automatically
vectorized. This example assumes that array bounds are known at compile
time.

1 A[:] += B[:];

Listing 3.17: Intel Cilk Plus extensions for array notation: to all elements of array A, add
elements of array B.

It is also possible to specify slices of arrays:

1 A[0:16] += B[32:16];

Listing 3.18: To sixteen consecutive elements of array A (0 through 15) add sixteen consecutive
elements of array B (32 through 47).

And it is possible to indicate a stride:

1 A[0:16:2] += B[32:16:4];

Listing 3.19: To every sixteen elements of array A with a stride of 2 (elements 0, 2, 4, . . . , 30)
add sixteen elements of array B with a stride of 4 (elements 32, 36, 38, . . . 92).

Intel Cilk Plus extensions in the Intel C++ compiler are enabled by default,
and therefore no additional modifications of the code or compiler arguments
are necessary. However, in order to enable compilation with non-Intel
compilers, the programmer must protect the expressions with array notation
with preprocessor directives and provide an alternative implementation of
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these expressions with loops that can be understood by other compilers. See
Listing 3.20 for an example.

1 #ifdef __INTEL_COMPILER
2 A[:] += B[:]
3 #else
4 for (int i = 0; i < 16; i++)
5 A[i] += B[i];
6 #endif

Listing 3.20: Protecting Intel Cilk Plus array notation in order to enable compilation with
non-Intel compilers.

Array notation extensions also work with multidimensional arrays. Refer
to the Intel C++ Compiler documentation for more details on Intel Cilk Plus
and the array notation extensions of this library.
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3.1.8. SIMD-Enabled Functions

SIMD-enabled functions (formerly known as elemental functions) are an
additional method available with the Intel C++ Compiler for facilitation of
automatic code vectorization. They are written as a regular C/C++ functions,
operating on only scalar numbers with scalar syntax. In the code, SIMD-
enabled functions can be called to operate in a data-parallel context, and
the compiler will automatically implement vectorization where possible.
They can also be used in data- and thread-parallel contexts with automatic
parallelization across multiple threads.

SIMD-Enabled functions are marked up in the code with the vector at-
tribute (see below), which indicates to the compiler that a vector version of
this function must be implemented. Not every function can be marked as
SIMD-enabled. Operations in SIMD-enabled functions must be vectorizable,
and these functions must not modify any data outside of their scope.

Listing 3.21 demonstrates the addition of two arrays where the addition
operation is executed in a regular (not SIMD-enabled) function.

1 float MySimpleAdd(float x1, float x2){
2 return x1 + x2;
3 }
4

5 // ...in a separate source file:
6 for (int i = 0; i < N, i++)
7 output[i] = MySimpleAdd(inputa[i], inputb[i]);

Listing 3.21: Scalar function for addition in C.

If the code of the function and the call to the function are located in the
same file, the compiler may perform inter-procedural optimization (inline the
function) and vectorize this loop. However, what if the function is a part of a
library, and the loop is located in a separate file that uses the library? That
would make it impossible for the compiler to inline the function and replace
scalar addition with vector operations. The solution to this situation is of-
fered by SIMD-enabled functions. To declare my_simple_add as SIMD-
enabled, the function declaration must contain the vector attribute. And in
order to force the vectorization of the loop using this function, #pragma
simd may need to be used. Listing 3.22 demonstrates this method.
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1 __attribute__((vector)) float MySimpleAdd(float x1, float x2) {
2 return x1 + x2;
3 }
4 #pragma simd
5 for (int i = 0; i < N, ++i)
6 output[i] = MySimpleAdd(inputa[i], inputb[i]);

Listing 3.22: Vectorized function for addition in Intel Cilk Plus.

The usage of SIMD-enabled functions may be combined with array nota-
tion as shown in Listing 3.23.

1 __attribute__((vector)) float MySimpleAdd(float x1, float x2){
2 return x1 + x2;
3 }
4 MySimpleAdd(inputa[:], inputb[:]);

Listing 3.23: Vectorized function for addition in Intel Cilk Plus.

The vector attribute can be supplied with clauses that hint to the compiler
how arguments are used inside the function, and how the function is used
in loops. Listing 3.24 shows an example. See the comment in the code for
details.

1 // ...vectorize LegendrePolynomial with respect to x,
2 // but assume n is constant across all vector lanes (uniform)
3 __attribute__((vector(uniform(n))))
4 float LegendrePolynomial(const int n, const float x);
5

6 C[:] = LegendrePolynomial(1, X[:]); // will be vectorized
7 D[:] = LegendrePolynomial(N[:], 0.5f); // will not be vectorized

Listing 3.24: Example of using clauses of the vector attribute.

For more information on SIMD-enabled functions in Intel Cilk Plus, refer
to the Intel C++ Compiler compiler documentation. For an example of usage
of SIMD-enabled functions in a library, see the article [17].
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3.1.9. Assumed Vector Dependence

True vector dependence, such as in the code in Listing 3.25, makes
it impossible to vectorize loops manually or automatically. In this code,
a[i-1] must be known before a[i] can be calculated, so the algorithm
must be executed serially.

1 float* a;
2 // ...
3 for (int i = 1; i < n; i++)
4 a[i] += b[i]*a[i-1];

Listing 3.25: Vector dependence makes the vectorization of this loop impossible.

However, in some cases the compiler may not have sufficient information
to determine whether true vector dependence is present in the loop. Such
cases are referred to as assumed vector dependence.

Assumed Vector Dependence Example

Code in Listing 3.26 shows a case where it is impossible to determine
whether vector dependence exists. If pointers a and b point to distinct,
non-overlapping memory segments, then there is no vector dependence.
However, there is a possibility that the user will pass to the function a
and b pointing to overlapping memory addresses (e.g., a=b+1), in which
case vector dependence will exist. The Intel C++ Compiler may refuse to
vectorize this loop due to assumed vector dependence.

1 void MyCopy(int n, float* a, float* b) {
2 for (int i = 0; i < n; i++)
3 a[i] = b[i];
4 }

Listing 3.26: Vec-Assumed.txt illustrates assumed vector dependence situation.

The report in Listing 3.27 shows that the loop is not vectorized. The
reason for that is assumed vector dependence.
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vega@lyra% icpc -qopt-report=2 -qopt-report-phase:vec \
> -qopt-report-stdout -c Vec-Assumed.cc
...

LOOP BEGIN at Vec-Assumed.cc(2,3)
<Multiversioned v2>

remark #15304: loop was not vectorized: non-vectorizable loop
instance from multiversioning

LOOP END
...

Listing 3.27: Assumed vector dependence prevents loop vectorization.

Ignoring Assumed Vector Dependence

In cases when the developer knows that there will not be a true vector
dependence situation, it is possible to instruct the compiler to ignore assumed
vector dependencies found in a loop. This can be done with #pragma
ivdep, as shown in Listing 3.28.

1 void MyCopy(int n, float* a, float* b) {
2 #pragma ivdep
3 for (int i = 0; i < n; i++)
4 a[i] = b[i];
5 }

vega@lyra% icpc -qopt-report=2 -qopt-report-phase:vec \
> -qopt-report-stdout -c Vec-ivdep.cc
...

LOOP BEGIN at Vec-Assumed.cc(3,3)
<Multiversioned v2>

remark #15300: LOOP WAS VECTORIZED
LOOP END

...

Listing 3.28: Top: Vec-ivdep.cc contains a pragma that instructs the compiler to ignore
assumed vector dependence. Bottom: automatic vectorization succeeds thanks to #pragma
ivdep.
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If the function compiled in this way is called with overlapping arrays a
and b (i.e., with true vector dependence), a runtime exception will occur (i.e.,
the code will crash).

Pointer Disambiguation

A more fine-grained method to disambiguate the possibility of vector
dependence is the restrict keyword. This keyword applies to each
pointer variable qualified with it, and instructs the compiler that the object
accessed by the pointer is only accessed by that pointer in the given scope
(i.e., that this pointer is not aliased). To enable the keyword restrict, the
compiler argument -restrict must be used. An example of the usage
of keyword restrict is shown in Listing 3.29. This time, automatic
vectorization has succeeded as well. Note that the compiler was given the
argument -restrict, without which compilation would have failed.

1 void MyCopy(int n, float* restrict a, float* restrict b) {
2 for (int i = 0; i < n; i++)
3 a[i] = b[i];
4 }

vega@lyra% icpc -qopt-report=2 -qopt-report-phase:vec \
> -qopt-report-stdout -restrict -c Vec-Restrict.cc
...

LOOP BEGIN at Vec-Assumed.cc(2,3)
remark #15300: LOOP WAS VECTORIZED

LOOP END

Listing 3.29: Top: Vec-Restrict.cc uses the restrict keyword to disambiguate point-
ers. Bottom: Automatic vectorization succeeds.

Codes in which automatic vectorization fails often prove to be cases of
assumed vector dependence. However, in some cases, vectorization may fail
because the compiler incorrectly performs heuristic performance analysis,
or due to explicit or implicitly inlined inner loops. In these cases, additional
vectorization pragmas and compiler arguments may help, as discussed in the
next section.
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3.1.10. Vectorization Pragmas, Keywords and Compiler Ar-
guments.

The following list contains some compiler pragmas that may be useful
for tuning vectorized code performance. Details can be found in Intel C++
compiler reference. In the PDF version of this document, the items in the list
below are hyperlinks pointing to the corresponding articles in the compiler
reference.

• #pragma simd
Used to guide the compiler to automatically vectorize more loops. Ar-
guments of this pragma can guide the compiler in cases when automatic
vectorization is difficult. Specifically, it is useful for vectorizing outer
loops (see Section 4.5.2 for an example) and loops with SIMD-enabled
functions (see Section 3.1.8).

• #pragma vector always
Instructs the compiler to implement automatic vectorization of the loop
following this pragma, even if heuristic analysis suggests otherwise, or
if non-unit stride or unaligned accesses make vectorization inefficient.

• #pragma vector aligned | unaligned
Instructs the compiler to always use aligned or unaligned data move-
ment instructions. Useful, for instance, when the developer guarantees
data alignment. In this case, placing #pragma vector aligned
before the loop eliminates unnecessary run-time checks for data align-
ment, which improves performance. See Section 4.3.4 for an example.

• __assume_aligned keyword
Helps to eliminate runtime alignment checks when data is guaranteed
to be properly aligned. This keyword produces an effect similar to
that of #pragma vector aligned, but provides more granular
control, as __assume_aligned applies to an individual array that
participates in the calculation, and not to the whole loop.

• #pragma vector nontemporal | temporal
Instructs the compiler to use non-temporal (i.e., streaming) or temporal
(i.e., non-streaming) stores. Non-temporal stores can be useful when
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the result of a vector operation is not used down the line in the auto-
matically vectorized loop. In this case, placing #pragma vector
nontemporal will force the code to send the result of each vector
instruction directly to RAM instead of placing it in cache. This may
improve performance, as the data sent to RAM will not contaminate
the valuable processor cache and leave more room for frequently re-
used data. At the same time, if the written data is to be subsequently
re-used, non-temporal stores will degrade performance. See [18] for
an example of usage.

• #pragma novector
Instructs the compiler not to vectorize the loop following this pragma.
Can be used for convenience: the developer may place this pragma
before a non-vectorizable loop in order to keep the vectorization report
cleaner. In some cases, #pragma novector can improve perfor-
mance. For example, if a loop contains a calculation-heavy branch
that is rarely taken. If such a loop is auto-vectorized, the branch will
be always taken, and iterations in which the branch should not have
been taken will be masked out from the result. However, #pragma
novector can turn such loop into a scalar loop, in which only the
taken branches are evaluated.

• #pragma ivdep
Instructs the compiler to ignore vector dependence, which increases
the likelihood of automatic loop vectorization. See Section 3.1.9 for
more information and Section 4.3.5 for an example. The keyword
restrict can often help to achieve a similar result.

• restrict qualifier and -restrict command-line argument
This keyword qualifies a pointer as restricted, i.e., the developer guar-
antees to the compiler that in the scope of this pointer’s visibility, no
other pointer refers to the data referenced by the restricted pointer.
Qualifying function arguments with the restrict keyword helps
in the elimination of assumed vector dependencies. The restrict
keyword in the code must be enabled by the -restrict compiler ar-
gument. Keyword restrict achieves the same effect as #pragma
vector ivdep, but allows more fine-grained control, because it
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applies to a single pointer rather than the entire loop. See Section 3.1.9
for more detail.

• #pragma loop count
Informs the compiler of the number of loop iterations anticipated
at runtime. This helps the auto-vectorizer to make more accurate
predictions regarding the optimal vectorization strategy.

• -qopt-report=[n] -qopt-report-phase:vec
These compiler arguments indicate the level of verbosity of the au-
tomatic vectorizer. It replaces the argument -vec-report[=n],
which was used in earlier versions of Intel compilers. n=5 provides
the most verbose report including vectorized and non-vectorized loops
and any proven or assumed data dependencies.

• -O[n]
Optimization level, defaults to -O2. Automatic vectorization is en-
abled with -O2 and higher optimization levels.

• -x[code]
Instructs the compiler to target specific processor features, including
instruction sets and optimizations. For example, to generate AVX code,
-xAVX can be used; for SSE2, -xSSE2. Using -xhost targets the
architecture found in the system that performs the calculation. See
Section 4.2.1 for more information.
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3.1.11. Exclusive Features of the IMCI Instruction Set

When the Intel Xeon Phi architecture is operated in tandem with Intel
compilers, they allow to achieve high performance without low-level opti-
mizations, intrinsics or assembly code in user applications. Indeed, automatic
vectorization and support for parallel libraries make it possible to write a
single code that runs efficiently on both Intel Xeon processors and Intel Xeon
Phi coprocessors. This code is also able to scale to future generations of the
MIC platforms, such as the Knights Landing architecture. For the program-
mer that takes advantage of this portability feature by relying on automatic
vectorization, it is not necessary to know every detail of the instruction set.
However, understanding the type of instructions that the compiler uses to
automatically vectorize C, C++ or Fortran codes allows the programmer
to design algorithms and data structures in a way that is most efficient for
automatic vectorization.

Intel Initial Many Core Instructions (Intel IMCI) is the instruction set
supported by Intel Xeon Phi coprocessors. Intel IMCI can be considered
superior to the SSE* and AVX* instructions supported by Intel Xeon proces-
sors, however, it is important to realize that Intel Xeon Phi coprocessors do
not directly support SSE or AVX instructions.

The instructions of Intel IMCI operate on special 512-bit registers, which
can pack up to eight 64-bit elements (long integers or double precision
floating-point numbers) or up to sixteen 32-bit elements (integers or sin-
gle precision floating-point numbers). For use with intrinsic functions,
these registers are represented by three data types declared in the header
file immintrin.h: __mm512 (single precision floating-point vector),
__mm512i (a 32-bit integer vector, or, for a limited set of instructions, a 64-
bit integer vector) and __mm512d (double precision floating-point vector).
Most instructions operate on three arguments: either two source registers
with a separate destination register, or three source registers, one of which is
also a destination.

For each operation, two types of instructions are available: unmasked and
masked. Unmasked instructions apply the requested operation to all elements
of the vector registers. Masked instructions apply the operation to some of
the elements and preserve the value of other elements in the output register.
The set of elements that must be modified in the output registers is controlled
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by an additional argument of type __mmask16 or __mmask8. This is a
short integer value, in which bits set to 1 or 0 indicate that the corresponding
output elements should be modified or preserved by the masked operation
using this bitmask.

The classes of available IMCI instructions are outlined in the list below,
illustrated with calls to the respective intrinsic functions.

Initialization instructions are used to fill a 512-bit vector register with one
or multiple values of scalar elements. Example:

1 __mm512 myvec = _mm512_set1_ps(3.14f);

The above example creates a 512-bit short vector of sixteen SP floating-
point numbers and initializes all sixteen elements to a value of 3.14f;

Load and store instructions copy a contiguous 512-bits chunk of data from
a memory location to the vector register (load) or from the vector
register to a memory location (store). The address from/to which the
copying takes place must be 64-byte aligned. Additional versions of
these instructions operate only on the high or low 256 bits of the vector.
Example:

1 float myarr[128] __attribute__((align(64)));
2 myarr[:] = 1.0f;
3 __mm512 myvec = _mm512_load_ps(&myarr[32]);

In this example, elements 32 through 47 of array myarr are loaded
into the vector register assigned to variable myvec.

Gather and scatter instructions are used to copy non-contiguous data from
memory to vector registers (gather), or from vector registers to memory
(scatter). The memory access pattern must have a power of 2 stride (1,
2, 4, 8, . . . elements). The copying of data can be done simultaneously
with type conversion. It is also possible to specify prefetching from
memory to cache for this type of operation. Example:

1 __mm512i myvec = _mm512_set1_epi32(-1);
2 float myarr[128] __attribute__(align(64));
3 _mm512_i32scatter_ps(myvec, &myarr[0], 4);
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The above code scatters the values in integer short vector myvec to
array myarr starting with the index 0 with a stride of 4. That is, ele-
ments 0, 1, 2, . . . , 15 of the short vector myvec will be copied to array
elements myvec[0], myvec[4], myvec[8], . . . , myvec[60],
respectively.

Arithmetic instructions are the core of high performance calculations. The
list below illustrates the scope of these instructions.

a) Addition, subtraction and multiplication are available for all data
types supported in IMCI. It is possible to specify the rounding
method for floating-point operations. Example:

1 __mm512 c = _mm512_mul_ps(a, b);

b) FMA instruction is the basis of several operations in linear al-
gebra, including xAXPY and dot-product calculations. These
instructions perform element-wise multiplication of vectors v1
and v2 and add the result to vector v3. The FMA instruction is
supported by the Intel Xeon Phi architecture and by generation
3 of Intel Xeon processors (Haswell architecture). The latency
and throughput of FMA is comparable to that of individual ad-
dition or of individual multiplication instruction, and therefore
it is always preferable to use FMA instead of separate addition
and multiplication where possible. It is possible to specify the
rounding method for floating-point operations. Example:

1 __mm512 r = _mm512_fmadd_ps(v1, v2, v3);

This expression computes the result of v1*v2+v3 and places it
in v3. This syntax of the FMA instruction calculates intermediate
values to infinite precision.

c) Division and transcendental function implementations are avail-
able in the Intel Short Vector Math Library (SVML). Some of
these software functions use hardware-implemented transcen-
dentals in the MIC architecture. For lowest-precision imple-
mentations, an SVML function may just be reduced to calling
a transcendental intrinsic; for higher-precision implementations,
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SVML may first call the transcendental intrinsic and then iterate
on the obtained value in software to refine it. The following tran-
scendental operations are supported through SVML intrinsics:

- Division and reciprocal calculation;
- Error function;
- Inverse error function;
- Exponential functions (natural, base 2 and 10) and power

function. Base 2 exponential is the fastest implementation;
- Logarithms (natural, base 2 and base 10). Base 2 logarithm

is the fastest implementation;
- Square and cubic root, reciprocal square root, hypotenuse;
- Trigonometric functions (sin, cos, tan, sinh, cosh,
tanh, asin, acos, atan);

- Rounding functions.
The following example calculates the reciprocal square root of
each element of vector y:

1 __mm512 x = _m512_invsqrt_ps(y);

Swizzle and permute instructions rearrange (shuffle) scalar elements in a
vector register. For these operations it is convenient to think of a
512-bit register as a set of four 128-bit blocks. The swizzle operation
rearranges elements within each 128-bit block, and the permute op-
eration rearranges the 128-bit blocks in the register according to the
pattern specified by the user. These instructions can be used in combi-
nation with another intrinsic, which saves processor cycles. Example:

1 __mm512 myv1, myv2;
2 // ...
3 __mm512_add_ps(myv1,
4 __mm512_swizzle_ps(myv2, _MM_SWIZ_REG_DCAB));

In this example, the swizzle operation with the pattern DCAB is applied
to the 512-bit SP floating-point vector myv2, and then this vector,
swizzled, is added to another vector of the same type, myv1.

Comparison instructions perform element-wise comparison between two
512-bit vectors and return a bit-mask value with bits set to 0 or 1
depending on the result of the respective comparison. Example:

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition



3.1. DATA PARALLELISM (VECTORIZATION) 185

1 __mmask16 result =
2 _m512_cmp_ps_mask(x, y, _MM_CMPINT_LT);

The above code compares vectors x and y and returns the bitmask
result where bits are set to 1 if the corresponding element in x is
less than the corresponding element in y.

Conversion and type cast instructions perform conversion from single to
double precision and from double to single precision floating-point
numbers, from floating-point numbers to integers and from integers to
floating-point numbers.

Bitwise instructions perform bit-wise AND, OR, XAND and XOR opera-
tions on elements in 512-bit short vectors.

Reduction and minimum/maximum instructions allow the calculation of
the sum of all elements in a vector, the product of all elements in a
vector, and the evaluation of the minimum or maximum of all elements
in a vector. These instructions are exclusive in the Intel IMCI.

Vector mask instructions allow to set the values of type __mmask16 and
__mmask8 and to perform bitwise operations on them. Masks can be
used in all IMCI instructions to control which of the elements in the
resulting vector are modified, and which are preserved in an operation.
Bitmasked operations are an exclusive feature of IMCI.

Miscellaneous instructions are available for decomposing floating-point
numbers into the mantissa and the exponent, fixing NaNs and perform-
ing low-precision transcendental operations;

Scalar instructions are available for bit counting, cache eviction and thread
delay.
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3.2. Task Parallelism in Shared Memory: OpenMP

The contents of this section are focused on multi-threaded programming
(i.e., task parallelism). This section introduces the API and programming
paradigms of multi-threaded codes. For advice on optimization in shared-
memory parallel applications, refer to Section 4.4.

3.2.1. Multiple Cores and Task Parallelism
Task parallelism in shared memory is a method of distributing work in

an application across multiple instruction sequences called threads, which
run within the same computing system and share the virtual memory address
space. The operating system and the runtime library for multi-threading
distribute threads across the multiple cores of a CPU or a coprocessor.

Unlike with vectorization, work partitioning with threads does not have
to have the SIMD syntax, i.e., different threads may have different programs
operating on different data sets. At the same time, it is possible to use the
same program in different threads, but feed different data to the threads,
effectively parallelizing a SIMD workload across threads (as well as across
vector instructions within threads). In this case, with Intel architectures,
threads still run independently of each other (i.e., not in lockstep). This
applies to Intel Xeon CPUs and Intel Xeon Phi coprocessors.

In multi-threaded applications in shared memory, the programmer must
control access to shared data. While it is safe to read the same data with
multiple threads, write operations to shared data must be protected in such a
way that only one thread is guaranteed to modify data in memory at a time.

To use multi-threading in an application, the programmer must choose a
parallel framework (i.e., API) and the corresponding library implementing it.
There are two popular alternative low-level frameworks for multi-threading:
POSIX threads, also known as Pthreads, and C++11 threads. While these
frameworks are sometimes used to parallelize applications, these standards
do not contain HPC-specific features such as workload balancing, automatic
reduction, integration into offload programming, inter-operation with the
Intel MPI library, etc. Computationally intensive algorithms are usually
better implemented using one of the specialized standards for building thread-
parallel applications, such as OpenMP or Intel Cilk Plus. Another popular
high-level framework and library is called Intel Threading Building Blocks
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(TBB). We do not discuss TBB in this book; refer to Intel’s Documentation
for more information.

In this section, we will discuss a popular parallel framework that highly
suited for HPC applications: OpenMP. In Section 3.3, we will talk about an
alternative developing framework called Intel Cilk Plus.

About OpenMP

OpenMP is a traditional, well-established cross-platform standard with
which many high performance application developers are familiar. It provides
high-level abstraction for task parallelism and isolates the programmer from
low-level details of iteration space partitioning, data sharing, and thread
creation, scheduling, and synchronization.

To parallelize an application with OpenMP, the programmer supplements
the code with OpenMP pragmas. These pragmas instruct OpenMP-aware
compilers to produce parallel versions of the respective statements and to
bind to the OpenMP implementation.

It is possible serialize an OpenMP application by disabling OpenMP sup-
port in the compiler, and the code with OpenMP pragmas will still compile.
In this case the pragmas will be treated as comments, and parallelization will
not occur. It is possible, and often advisable, to develop OpenMP programs in
such a way that the parallel and serialized versions produce identical results.
The OpenMP standard, however, does not guarantee at the level of syntax
that the results of the application will be the same with and without OpenMP
(this in contrast with the Intel Cilk Plus parallel framework discussed in
Section 3.3).
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3.2.2. “Hello World” with OpenMP

A program with OpenMP directives begins execution as a single thread,
called the initial thread of execution. It is executed sequentially until the first
parallel construct is encountered. After that the initial thread creates a team
of threads to be executed in parallel, and becomes the master of this team.
All program statements enclosed by the parallel construct are executed in
parallel by each thread in the team, including all routines called from within
the enclosed statements. At the end of the parallel construct each thread waits
for others to arrive. When that happens, the team is dissolved, and only the
initial thread continues execution of the code following the parallel construct.
Because applications may need to start and terminate parallel regions often,
the Intel OpenMP implementation dissolves thread teams only logically but
keeps the underlying machinery for threads “hot” for a period of time so that
the next parallel region can be spawned quickly.

Listing 3.30 demonstrates a “Hello World” program in C++ using the
OpenMP framework. Program execution proceeds serially until #pragma
omp parallel requests a parallel region. In the parallel region, every
thread executes the code in the scope of the pragma. Outside of the parallel
region, execution serializes again.

1 #include <omp.h>
2 #include <cstdio>
3

4 int main(){
5 printf("OpenMP with %d threads\n", omp_get_max_threads());
6 #pragma omp parallel
7 {
8 printf("Hello World from thread %d\n", omp_get_thread_num());
9 }

10 printf("Back to main thread\n");
11 }

Listing 3.30: Hello-OpenMP.cc – a “Hello World” program in OpenMP. Note the inclusion
of the header file omp.h. Parallel execution is requested via #pragma omp parallel.

The procedure of compilation and execution of this code is shown in
Listing 3.31. To link the Intel OpenMP library, the argument -qopenmp
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is used. In Intel C++ compiler versions prior to 15.0, the corresponding
argument was spelled -openmp. By default, an OpenMP program will
spawn as many threads as there are logical processors in the system (e.g.,
on a 24-core Intel Xeon CPU with enabled two-way hyper-threading, that
number is equal to 2× 24 = 48). However, the number of threads may be set
to a different value using the environment variable OMP_NUM_THREADS.
Note that output in Listing 3.31 is not ordered by thread number, because the
order in which threads execute parallel code is not fixed in this example.

vega@lyra% icpc -qopenmp -o Hello-OpenMP Hello-OpenMP.cc
vega@lyra% export OMP_NUM_THREADS=4
vega@lyra% ./Hello-OpenMP
OpenMP with 4 threads
Hello World from thread 0
Hello World from thread 1
Hello World from thread 3
Hello World from thread 2
Back to main thread

Listing 3.31: Compiling and running Hello-OpenMP.cc

OpenMP participates in this code in two forms: pragmas request paral-
lelization, and functions omp_*() return the parameters of the execution
environment. It is possible to serialize an OpenMP program by compiling it
with the argument -qopenmp-stubs as shown in Listing 3.32.

vega@lyra% icpc -qopenmp-stubs -o Hello-OpenMP Hello-OpenMP.cc
vega@lyra% ./Hello-OpenMP
OpenMP with 1 threads
Hello World from thread 0
Back to main thread

Listing 3.32: Serialization of an OpenMP program with -qopenmp-stubs.

Note that generally, a serialized OpenMP program does not have to pro-
duce the same results as a parallel code. This is because other OpenMP
constructs that affect work distribution can rely on having different jobs in
different threads.
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3.2.3. For-Loops in OpenMP
A significant number of HPC tasks are centered around for-loops with

pre-determined loop bounds and a constant increment of the loop itera-
tor. Such loops can be easily parallelized in shared-memory systems using
#pragma omp parallel for in OpenMP. Additional clauses of this
pragma control how loop iterations are distributed across threads.

Figure 3.1 illustrates the workflow of a loop parallelized in shared memory
using OpenMP. As this diagram illustrates, the execution of a parallel loop
is initiated by a single thread. When the loop starts, multiple threads are
spawned, and each thread gets a portion of the loop iteration space (called
“chunk” in the terminology of OpenMP) to process. Depending on the user-
defined scheduling algorithm, either all iterations of the loop are statically
distributed before the loop begins, or, when a thread has completed its initial
chunk of iterations, it receives from the scheduler another chunk to process.

Figure 3.1: Parallelizing a for-loop with OpenMP.

Code samples illustrating the usage of OpenMP language constructs to
parallelize loops follow.
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Syntax for Parallel For-Loops

With OpenMP, #pragma omp parallel for must be placed be-
fore the loop to request its parallelization, as shown in Listing 3.33.

1 #pragma omp parallel for
2 for (int i=0; i<n; i++) {
3 printf("Iteration %d is processed by thread %d\n",
4 i, omp_get_thread_num());
5 // ... iterations will be distributed across available threads
6 }

Listing 3.33: The OpenMP library will distribute the iterations of the loop following the
#pragma omp parallel for across threads.

Alternatively, it is possible to start a parallelized loop by placing #pragma
omp for nested inside a #pragma omp parallel construct, as demon-
strated in Listing 3.34

1 #pragma omp parallel
2 {
3 int private_number=0;
4 #pragma omp for
5 for (int i=0; i<n; i++) {
6 // ...iterations will be distributed across available threads
7 }
8 }

Listing 3.34: When placing #pragma omp for closely nested inside a #pragma omp
parallel region, there should be no word “parallel” before the word “for”. Thread synchro-
nization is implied at the end of the for-loop.

If a parallel loop has fewer iterations than the number of available OpenMP
threads, then all iterations will start immediately with one iteration per thread.
For parallel loops with more iterations than OpenMP threads, the run-time
library will divide the iterations between threads as discussed in the next
section. Generally, it is best to have many more iterations in a loop than the
number of threads.
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Loop Scheduling

Depending on the scheduling mode requested by the user, iteration as-
signment to threads can be either done before the start of the loop, or it
can be decided dynamically. It is possible to tune the performance of
for-loops in OpenMP by specifying the scheduling mode using a clause
schedule(mode,chunk_size). Here mode is one of: static, dynamic
or guided, and chunk_size controls the granularity of work distribution.

static : with this mode, OpenMP evenly distributes loop iterations across
threads before the loop begins. The iteration space is divided into
contiguous chunks of size chunk_size (all chunks are equal or approx-
imately equal in size), and these chunks are assigned to the threads
in round-robin order. If chunk_size is not specified, iteration space is
divided into as many approximately equal contiguous chunks as there
are OpenMP threads assigned to the loop. This scheduling method
has the smallest parallelization overhead, because no communication
between threads is performed at runtime for scheduling purposes. The
downside of this method is that it may result in load imbalance, if
threads complete their iterations at different rates.

dynamic : with this scheduling mode, the iteration space is divided into
chunks of size chunk_size (all chunks equal or approximately equal in
size), and each thread executes a chunk of iterations, after which the
scheduler assigns to it another chunk, until all iterations are processed.
The default chunk_size in this mode is 1. This method has a greater
overhead, but may improve load balance across threads.

guided : this method is similar to dynamic, except that the granularity
of work assignment to threads (i.e., chunk size) decreases as the work
nears completion. In this mode, the chunk size for each assignment to
a thread is chosen proportional to the number of unprocessed iterations
divided by the number of threads. The role of chunk_size is to set
the minimum chunk size for all iterations (except, possibly, the last
one). The default value of chunk_size in this mode is 1. This method
requires more decision making in the scheduler than dynamic, but
may result in higher performance due to overall fewer scheduling
events and better load balancing.
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With small chunk size, dynamic and guided have the potential to
achieve better load balance at the cost of performing more scheduling work.
With greater chunk size, the scheduling overhead is reduced, but load imbal-
ance may be increased. Typically, the optimal chunk size must be chosen by
the programmer empirically.

There are two methods to request the method of scheduling in a loop.
The first method is to set the environment variable OMP_SCHEDULE (see
Listing 3.35). This environment variable affects all loops in the application
except those for which scheduling is specified with the second method.

vega@lyra% export OMP_SCHEDULE="dynamic,4"
vega@lyra% ./my_application

Listing 3.35: Controlling run-time scheduling of parallel loops with an environment variable.
The format of the value of OMP_SCHEDULE is “mode[,chunk_size]”, where mode is one
of: static, dynamic, guided, and chunk_size is an integer.

The second method is to indicate the scheduling mode in the clauses of
#pragma omp for. This method provides finer control, because different
loops can be scheduled in different modes. However, the programmer has
less freedom for modifying program behavior after compilation, because the
clause takes precedence over the environment variable.

Listing 3.36 illustrates the clause method:

1 #pragma omp parallel for schedule(dynamic, 4)
2 for (int i = 0; i < N ; i++) {
3 // ...
4 }

Listing 3.36: Controlling the run-time scheduling of a parallel loop with clauses of #pragma
omp for.

See Section 4.4.3 for an example illustrating that the loop scheduling
mode is a parameter of optimization.
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3.2.4. Tasks in OpenMP
The OpenMP functionality called “tasks” allows to implement the so-

called “fork-join” pattern of parallel execution, which involves:
i) creating one or more child tasks (the ‘fork’ step),

ii) running the child tasks concurrently with the parent task, and
iii) spinning at a barrier until child tasks terminate and only the parent task

continues (the ‘join’ step).

Child tasks can fork, too, creating a tree of tasks. This model allows the
programmer to express parallel algorithms that cannot be expressed with
loop-centric parallelism, such as parallel recursion.

Note that we use the term “fork-join” in the sense of parallel pattern,
following the definition of [19]. This term is also used to express the OpenMP
execution pattern where the initial thread forks parallel threads, which are
thereafter joined (see, e.g., [20]).

Figure 3.2 illustrates the progress of a parallel application employing the
OpenMP tasks.

Figure 3.2: Fork-join pattern of parallel execution.

In OpenMP, it is possible to create a very large number of tasks (much
greater than the number of threads). The OpenMP library schedules their
execution in such a way that the hardware system is never over-subscribed.
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The order of execution of parallel tasks in available cores is generally not the
same as the order in which the tasks were spawned.

Tasks first appeared in OpenMP 3.0. The pragma for setting up a task
is #pragma omp task. The task must be spawned in a parallel region
in order to be scheduled for parallel execution. However, depending on the
algorithm, not every thread must spawn initial tasks.

Listing 3.37 illustrates the usage of the OpenMP task pragma to create
a parallel recursive algorithm.

1 #include <omp.h>
2 #include <cstdio>
3

4 void Recurse(const int task) {
5 if (task < 10) {
6 printf("Creating task %d...\n", task+1);
7 #pragma omp task
8 {
9 Recurse(task+1);

10 }
11 long foo=0; for (long i = 0; i < (1<<20); i++) foo+=i;
12 printf("result of task %d in thread %d is %ld\n",
13 task, omp_get_thread_num(), foo);
14 }
15 }
16

17 int main() {
18 #pragma omp parallel
19 {
20 #pragma omp single
21 Recurse(0);
22 }
23 }

Listing 3.37: Source code OpenMP-Task.cc demonstrating the use of #pragma omp
task to effect the fork-join parallel algorithm.

This code calls the function Recurse(), which forks off recursive calls
to itself, requesting that those recursive calls are run in parallel. There are no
explicit barriers in the code, however, a there is an implicit barrier at the end
of the scope of #pragma omp single. The for-loop in the code is used
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only to make the tasks perform some arithmetic work, so that we can see the
pattern of task creation and execution.

Note that #pragma omp task occurs inside of a parallel region, how-
ever, parallel execution is initially restricted to only one thread with #pragma
omp single. This is a necessary condition for parallel recursion. Without
#pragma omp parallel, all tasks will be executed by a single thread.
Without #pragma omp single, multiple threads will start task number
0, which is not the desired behavior.

Listing 3.38 demonstrates the execution of the code OpenMP-Task.cc
(Listing 3.37) with four threads.

vega@lyra% icpc -qopenmp -o OpenMP-Task OpenMP-Task.cc
vega@lyra% export OMP_NUM_THREADS=4
vega@lyra% ./OpenMP-Task
Creating task 1...
Creating task 2...
Creating task 3...
Creating task 4...
result of task 0 in thread 0 is 549755289600
result of task 1 in thread 2 is 549755289600
Creating task 5...
Creating task 6...
result of task 2 in thread 1 is 549755289600
Creating task 7...
result of task 3 in thread 3 is 549755289600
Creating task 8...
result of task 4 in thread 0 is 549755289600
Creating task 9...
result of task 5 in thread 2 is 549755289600
Creating task 10...
result of task 6 in thread 1 is 549755289600
result of task 7 in thread 3 is 549755289600
result of task 9 in thread 2 is 549755289600
result of task 8 in thread 0 is 549755289600

Listing 3.38: Compilation and running OpenMP-Task.cc shown in Listing 3.37.

One can see that the code forked off as many jobs as there were available
threads (in this case, four), and the creation of other jobs had to wait until
one of the threads became free.
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It is also informative to see the difference between the parallel execution
pattern and serial execution. To run the code serially, we can set the maximum
number of OpenMP threads to 1, as shown in Listing 3.39

vega@lyra% export OMP_NUM_THREADS=1
vega@lyra% ./OpenMP-Task
Creating task 1...
Creating task 2...
Creating task 3...
Creating task 4...
Creating task 5...
Creating task 6...
Creating task 7...
Creating task 8...
Creating task 9...
Creating task 10...
result of task 9 in thread 0 is 549755289600
result of task 8 in thread 0 is 549755289600
result of task 7 in thread 0 is 549755289600
result of task 6 in thread 0 is 549755289600
result of task 5 in thread 0 is 549755289600
result of task 4 in thread 0 is 549755289600
result of task 3 in thread 0 is 549755289600
result of task 2 in thread 0 is 549755289600
result of task 1 in thread 0 is 549755289600
result of task 0 in thread 0 is 549755289600
vega@lyra%

Listing 3.39: Running OpenMP-Task.cc from Listing 3.37 with a single OpenMP thread.

Evidently, in the serial version, the execution recursed into the deepest
level before returning to the calling function. This is the behavior what one
would expect from this code if it was stripped of all OpenMP pragmas.
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3.2.5. Shared and Private Variables

In OpenMP parallel regions and loops, multiple threads have access
to variables that had been declared before the parallel region was started.
Consider example in Listing 3.40.

1 #include <omp.h>
2 #include <cstdio>
3

4 int main() {
5 int someVariable = 5;
6 #pragma omp parallel
7 {
8 printf("For thread %d, someVariable=%d\n",
9 omp_get_thread_num(), someVariable);

10 }
11 }

vega@lyra% icpc -o OpenMP-Shared OpenMP-Shared.cc -qopenmp
vega@lyra% export OMP_NUM_THREADS=4
vega@lyra% ./OpenMP-Shared
For thread 0, someVariable=5
For thread 2, someVariable=5
For thread 1, someVariable=5
For thread 3, someVariable=5
vega@lyra%

Listing 3.40: Code OpenMP-Shared.cc illustrating the use of shared variables in OpenMP.

In OpenMP-Shared.cc, all threads execute the code inside of the
scope of #pragma omp parallel. All of these threads have access to
variable someVariable declared before the parallel region. By default,
all variables declared before the parallel region are shared between threads.
This means that (a) all threads see the value of shared variables, and (b) if
one thread writes to the shared variable, all other threads see the modified
value. The latter case may lead to race conditions and unpredictable behavior,
unless the write operation is protected as discussed in Section 3.2.6.

In some cases, it is preferable to have a variable of private nature, i.e.,
have an independent copy of this variable in each thread. To effect this
behavior, the programmer may declare this variable inside the parallel region
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as shown in Listing 3.41. Naturally, the programmer can initialize the value
of this private variable with the value of a shared variable.

1 int varShared = 3;
2 #pragma omp parallel
3 {
4 // Each thread will have a copy of varPrivateLocal
5 int varPrivateLocal = varShared;
6 // ...
7 #pragma omp for
8 for (int i = 0; i < N; i++) {
9 int varTemporary = varPrivateLocal;

10 }
11 }
12 }

Listing 3.41: Variables declared outside the OpenMP parallel region are shared, variables
declared inside are private.

In the code in Listing 3.41, an independent copy of varPrivateLocal
is available in each thread. This variable persists throughout the parallel
region. Similarly, an independent copy of varTemporary will exist in
each thread. The value of this variable persists for the duration of a single
loop iteration, but does not persist across loop iterations.

Declaring variables outside or inside of the parallel scope is sufficient
to control variable sharing in C and C++. However, for compatibility with
Fortran, OpenMP provides an additional variable sharing control, which
also works in C and C++. To create in each thread a private copy of some
of the variables declared before the parallel region, it is possible to use
clauses private and firstprivate in #pragma omp parallel
as shown in Listing 3.42. With clause private,

a) the variable is private to each thread,
b) the initial value of a private variable is undefined, and
c) the value of the variable in the encompassing scope does not change at

the end of the parallel region.

Clause firstprivate is similar to private, but the initial value is
initialized with the value outside of the parallel region.
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1 #include <omp.h>
2 #include <cstdio>
3

4 int main() {
5 int varShared = 5;
6 int varPrivt = 1;
7 int varFirstprvt = 2;
8 #pragma omp parallel private(varPrivt) firstprivate(varFirstprivt)
9 {

10 printf("Thread %d: varShared=%d varPrivt=%d varFirstprivt=%d\n",
11 mp_get_thread_num(), varShared, varPrivt, varFirstprivt);
12 if (omp_get_thread_num() == 0) {
13 varShared = -varShared; // Race condition=undefined behavior
14 varPrivt = -varPrivt; // OK: each thread has own varPrivt
15 varFirstprivt = -varFirstprivt; // OK for the same reason
16 }
17 }
18 printf("Serial reg: varShared=%d varPrivt=%d varFirstprivt=%d\n",
19 varShared, varPrivt, varFirstprivt);
20 }

vega@lyra% icpc -o OpenMP-Private OpenMP-Private.cc -qopenmp
vega@lyra% export OMP_NUM_THREADS=4
vega@lyra% ./OpenMP-Private
For thread 0, varShared=5 varPrivt=0 varFirstprivt=2
For thread 1, varShared=5 varPrivt=0 varFirstprivt=2
For thread 2, varShared=5 varPrivt=0 varFirstprivt=2
For thread 3, varShared=-5 varPrivt=0 varFirstprivt=2
After parallel region, varShared=-5 varPrivt=1 varFirstprivt=2
vega@lyra%

Listing 3.42: Code OpenMP-Private.cc illustrating the use of shared variables in OpenMP.

Note that in C++, clauses private and firstprivate duplicate the
functionality of scope-local variables demonstrated in Listing 3.41. How-
ever, in Fortran the user must declare all variables at the beginning of the
function, and therefore there is no way to avoid using the clauses private,
firstprivate and lastprivate.

Another type of private variable behavior in OpenMP is effected by clause
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lastprivate, which applies to #pragma omp parallel for. For
lastprivate variables, the value in the last iteration is copied back to the
scope outside the parallel region.

Some programmers may also find the clause default useful, as it allows
to define the default nature of variables as shared, or none e.g.,

1 #pragma omp parallel for default(none) shared(a,b) lastprivate(c,d)
2 for (int i = 0; i < n; i++) {
3 ...
4 }

Listing 3.43: Using clause default to request that all variables declared outside the OpenMP
parallel region is not visible within the region.

In the above code, variables a, b, and i will be shared, variables c and
d will be lastprivate, and all other variables will be none, thus not
visible for the parallel region. With default(none), if the programmer
forgets to specify the sharing type for any of the variables used in the parallel
region, code compilation will fail — this behavior may be desirable in
complex cases for explicit variable behavior check.

c© Colfax International, 2013–2015

http://www.colfax-intl.com/


202 CHAPTER 3. EXPRESSING PARALLELISM

3.2.6. Synchronization: Avoiding Unpredictable Behavior
Up until now, the discussion of parallelism in shared memory was re-

stricted to algorithms without any interaction between threads. However, for
certain algorithms and operations, synchronization between threads may be
necessary. This section discusses the functionality available in OpenMP for
synchronization: mutexes and barriers. Note that in general, synchronization
impedes the parallel scalability of applications. Whenever possible, instead
of synchronization operations, programmers must use reduction and private
variables as discussed in Section 3.2.7.

Data Races
One must never allow multiple threads to simultaneously modify a shared

variable, because concurrent modification of data may lead to unpredictable
results. Operations that modify shared data must be protected with a syn-
chronization construct called mutex (mutually exclusive events).

Consider a parallel program in which two threads increment a shared
variable. Timeline in the left-hand side diagram in Figure 3.3 illustrates how
threads read the variable, increment it, and write it back to memory without
waiting for each other.

Figure 3.3: Illustration of data races (left) and mutexes (right) in multi-threaded programs.
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With unprotected concurrent access to a shared variable illustrated in
Figure 3.3, a situation may occur when two threads simultaneously read the
same state of the variable. In this case, when the data is written back to
memory, only the result of the slower thread will survive, and the increment
performed by the faster thread will be lost. This situation is known as a data
race, and it leads to unpredictable results in a parallel program.

Because generally, parallel programs are expected to produce consistent
results from run to run, race conditions must be avoided. They can be avoided
using a synchronization tool known as a lock, or a mutex. The code protected
by a lock can be executed by only one thread at a time. All other threads
must wait until the lock is lifted by the thread executing the code, i.e., the
thread team processing the mutex is serialized. The effect of a mutex is
illustrated in the right-hand side diagram in Figure 3.3.

Mutexes in OpenMP: Critical Sections

For specificity, consider the following example:

1 #include <omp.h>
2 #include <cstdio>
3

4 int main() {
5 const int n = 1000;
6 int sum = 0;
7 #pragma omp parallel for
8 for (int i = 0; i < n; i++)
9 sum = sum + i; // Race condition

10 printf("sum=%d (must be %d)\n", sum, ((n-1)*n)/2);
11 }

vega@lyra% icpc -o OpenMP-Race OpenMP-Race.cc -qopenmp
vega@lyra% export OMP_NUM_THREADS=32
vega@lyra% ./OpenMP-Race
sum=208112 (must be 499500)
vega@lyra%

Listing 3.44: Code OpenMP-Race.cc has unpredictable behavior and produces incorrect
results due to a race condition in line 9.
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In line 9 of code OpenMP-Race.cc in Listing 3.44, a situation known
as a race condition occurs. The problem is that variable sum is shared
between all threads, and therefore more than one thread may execute this
line concurrently. However, what if one thread updates sum while another
thread was incrementing the old value of sum? This may, and will, lead to
an incorrect calculation. Indeed, the output shows a value of sum=208112
instead of 499500. Moreover, if we run this code multiple times, every
time the result will be different, because the pattern of races between threads
will vary from run to run. This parallel program has unpredictable behavior!
How does one resolve this problem?

The easiest, albeit the most inefficient way to protect a portion of a parallel
code from concurrent execution in OpenMP is a critical section, as illustrated
in Listing 3.45. #pragma omp critical used in this code protects the
code inside its scope from concurrent execution. The whole iteration space
will still be executed in parallel, but only one thread at a time will be allowed
to enter the critical section, while other threads wait their turn. At this stage
in the curriculum we are not concerned with performance, but let us note
that this is a very inefficient way to resolve the race condition in the problem
shown in Listing 3.44. We provide this example because in some cases, a
critical section is the only way to avoid unpredictable behavior.

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++) {
3 #pragma omp critical
4 { // Only one thread at a time can execute this section
5 sum = sum + i;
6 }
7 }

vega@lyra% icpc -o OpenMP-Critical OpenMP-Critical.cc -qopenmp
vega@lyra% ./OpenMP-Critical
sum=499500 (must be 499500)
vega@lyra%

Listing 3.45: Parallel fragment of code OpenMP-Critical.cc has predictable behavior,
because the race condition was eliminated with a critical section.
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Mutexes in OpenMP: Atomic Operations

A more efficient mutex, albeit limited to certain functions and data types,
is the use of atomic operations. Atomic operations allow the program to
safely update a scalar variable in a parallel context. These operations are
effected with #pragma omp atomic, as shown in Figure 3.46.

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++) {
3 // Lightweight synchronization
4 #pragma omp atomic
5 sum += i;
6 }

Listing 3.46: This parallel fragment of code OpenMP-Atomic.cc has predictable behavior,
because the race condition was eliminated with an atomic operation. Note that for this specific
example, atomic operations are not the most efficient solution.

Only the following operations can be executed as atomic:

Read : operations in the form v = x
Write : operations in the form x = v
Update : operations in the form x++, x--, --x, ++x, x binop= expr and

x = x binop expr
Capture : operations in the form v = x++, v = x--, v = --x, v =

++x, v = x binop expr

Here x and v are scalar variables, binop is one of +, *, -, - /, &,
ˆ , |, «, ». No “trickery” is allowed for atomic operations: no operator
overload, no non-scalar types, no complex expressions.

In many cases, atomic operations are an adequate solution for accessing
and modifying shared data. However, in this particular case, the parallel
scalability of the algorithm may be further improved by using reducers
instead of atomic operations, as discussed in Section 3.2.7.
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Barriers in OpenMP: #pragma omp barrier

When multiple threads execute a parallel region, there are no guarantees
that they execute each line of parallel code at the same time. That is because
Intel Xeon and Intel Xeon Phi cores do not run in lockstep. However, it is
possible to occasionally synchronize all threads at a barrier. This may be
necessary to get a consistent view of a shared variable modified by one of
the threads.

Usage of a barrier is illustrated in Listing 3.47 and Listing 3.48. Without
the barrier, it is possible that threads other than 0 will see sharedVar=0.

1 #include <cstdio>
2 #include <omp.h>
3

4 int main() {
5 int sharedVar = 0;
6 #pragma omp parallel
7 {
8 const int i = omp_get_thread_num();
9 if (i == 0) sharedVar = 1;

10

11 // Some threads may reach this line before thread 0
12 // reaches line 9. They will see sharedVar=0
13 printf("Thread %d sees sharedVar=%d\n", i, sharedVar);
14 }
15 }

vega@lyra% icpc -o OpenMP-NoBarrier OpenMP-NoBarrier.cc -qopenmp
vega@lyra% export OMP_NUM_THREADS=4
vega@lyra% ./OpenMP-NoBarrier
Thread 0 sees sharedVar=1
Thread 3 sees sharedVar=1
Thread 2 sees sharedVar=0
Thread 1 sees sharedVar=1

Listing 3.47: Without a barrier, threads do not to operate in lockstep.

The barrier in Listing 3.48 guarantees that all threads will see the value
sharedVar=1.
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1 #include <cstdio>
2 #include <omp.h>
3

4 int main() {
5 int sharedVar = 0;
6 #pragma omp parallel
7 {
8 const int i = omp_get_thread_num();
9 if (i == 0) sharedVar = 1;

10

11 #pragma omp barrier
12

13 // At this point, all threads see sharedVar=1
14 // due to the barrier in line 11
15 printf("Thread %d sees sharedVar=%d\n", i, sharedVar);
16 }
17 }

vega@lyra% icpc -o OpenMP-Barrier OpenMP-Barrier.cc -qopenmp
vega@lyra% export OMP_NUM_THREADS=4
vega@lyra% ./OpenMP-Barrier
Thread 0 sees sharedVar=1
Thread 3 sees sharedVar=1
Thread 2 sees sharedVar=1
Thread 1 sees sharedVar=1

Listing 3.48: Synchronizing steps at a barrier.

Barriers are not permitted inside of parallel for-loops, critical sections,
and some other OpenMP environments.

Note that a barrier is implied at the end of a parallel region. This means
that code execution does not proceed until all iterations of the parallel loop
have been performed, or until the last statement of the parallel region has
been executed in every thread. Implicit barrier also exist at the end of a
parallel for-loop.
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Barriers in OpenMP: #pragma omp taskwait

For task parallelism with #pragma omp task (see Section 3.2.4),
OpenMP has #pragma omp task that pauses execution in the current
thread until all tasks spawned by that thread are completed.

1 #include <omp.h>
2 #include <cstdio>
3 int main() {
4 const int N=1000;
5 int* A = (int*)malloc(N*sizeof(int));
6 for (int i = 0; i < N; i++) A[i]=i;
7 #pragma omp parallel
8 {
9 #pragma omp single

10 {
11 // Compute the sum in two threads
12 int sum1=0, sum2=0;
13 #pragma omp task shared(A, N, sum1)
14 { for (int i = 0; i < N/2; i++) sum1 += A[i]; }
15 #pragma omp task shared(A, N, sum2)
16 { for (int i = N/2; i < N; i++) sum2 += A[i]; }
17 // Wait for forked off tasks to complete
18 #pragma omp taskwait
19 printf("Result=%d (must be %d)\n", sum1+sum2, ((N-1)*N)/2);
20 } }
21 free(A); }

vega@lyra% icpc -o OpenMP-TaskWait OpenMP-TaskWait.cc -qopenmp
vega@lyra% ./OpenMP-TaskWait
Result=499500 (must be 499500)

Listing 3.49: Code OpenMP-TaskWait.cc illustrates #pragma omp taskwait.

The code in Listing 3.46 is an inefficient way to approach the problem,
because it uses only two threads. A better way to perform parallel reduction
is described in Section 3.2.7. Nevertheless, for scalable task-based parallel
algorithms, #pragma omp taskwait is a native way in OpenMP to
implement synchronization points.
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3.2.7. Reduction: Avoiding Synchronization

Parallel algorithms that require synchronization only to modify a common
quantity can be expressed in terms of reduction. This possibility arises if the
operation with which the common quantity is calculated is associative (such
as integer addition or multiplication) or approximately associative (such as
floating-point addition or multiplication). The associative property means
that the order of operations does not affect the result.

OpenMP has reduction clauses for parallel pragmas, which works for
reduction of scalars. It is also possible to instrument a reduction algorithm
using private variables and minimal synchronization. Properly instrumented
parallel reduction avoids excessive synchronization and communication,
which improves the parallel scalability of an application.

Reduction Clause in OpenMP

In OpenMP, parallel regions can automatically perform reduction for
certain operations on scalar variables. Listing 3.50 illustrates the algorithm
originally shown in Listing 3.44, Listing 3.45 and Listing 3.46, this time
instrumented using the OpenMP reduction clause.

1 #include <omp.h>
2 #include <cstdio>
3

4 int main() {
5 const int n = 1000;
6 int sum = 0;
7 #pragma omp parallel for reduction(+: sum)
8 for (int i = 0; i < n; i++)
9 sum = sum + i;

10 printf("sum=%d (must be %d)\n", sum, ((n-1)*n)/2);
11 }

vega@lyra% icpc -o OpenMP-Reduction OpenMP-Reduction.cc -qopenmp
vega@lyra% ./OpenMP-Reduction
sum=499500 (must be 499500)

Listing 3.50: In OpenMP-Reduction.cc, data race is eliminated using a reduction clause.

The syntax of the reduction clause is reduction(operator:variables),
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where operator is one of: +, *, -, &, |, ˆ , &&, ||, max or min, and
variables is a comma-separated list of variables to which these operations
are applied.

Reduction with Private Variables

An alternative method of implementing reduction is via private variables
and a critical section or an atomic operation after the loop. This method is
useful when the type of data or the type of the reduction operation is not
supported by the OpenMP reduction clause.

With the private variable method, each thread must have a private variable
of the same type as the global reduction variable. In each thread, the reduction
operation is applied to that private variable without synchronization with
other threads. At the end of the loop, critical sections or atomic operations
are used in order to reduce the private variables from each thread into the
global variable. The principle of this method is shown in Listing 3.51. It
works well if n is much greater than the number of threads.

1 #include <omp.h>
2 #include <cstdio>
3 int main() {
4 const int n = 1000;
5 int sum = 0;
6 #pragma omp parallel
7 {
8 int sum_th = 0;
9 #pragma omp for

10 for (int i = 0; i < n; i++)
11 sum_th = sum_th + i;
12

13 #pragma omp atomic
14 sum += sum_th;
15 }
16 printf("sum=%d (must be %d)\n", sum, ((n-1)*n)/2);
17 }

Listing 3.51: Code OpenMP-Reduction2.cc implements reduction using private variables
and a minimum reduction section.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition



3.2. TASK PARALLELISM IN SHARED MEMORY: OPENMP 211

Reduction with a Container Array

Alternatively, the programmer may declare a shared container array for
thread-private data as in Listing 3.52. A word of warning here is that a
condition called false sharing may ruin the performance in this case, and
measures should be taken to avoid it. See Section 4.4.2 for more details.

1 #include <omp.h>
2 #include <cstdio>
3 int main() {
4 const int n = 1000;
5 const int T = omp_get_max_threads();
6 int sum = 0;
7 int sumContainer[T]=0;
8 #pragma omp parallel
9 {

10 const int th = omp_get_thread_num();
11 sumContainer[th] = 0;
12

13 // Beware of false sharing! Use padding for better performance.
14 #pragma omp for
15 for (int i = 0; i < n; i++)
16 sumContainer[th] = sumContainer[th] + i;
17 }
18

19 // Perform serially in initial thread
20 for (int th = 0; th < T; th++)
21 sum = sum + sumContainer[th];
22

23 printf("sum=%d (must be %d)\n", sum, ((n-1)*n)/2);
24 }

Listing 3.52: Code OpenMP-Reduction3.cc implements reduction using a container array
with subsequent serial reduction.
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3.3. Task Parallelism with Intel Cilk Plus

Intel Cilk Plus is an alternative to the OpenMP framework. Compared to
OpenMP, Intel Cilk Plus gives the programmer less control over low-level
details, but in return, allows to express complex algorithms with ease.

There are only three keywords in the Cilk Plus framework: _Cilk_for,
_Cilk_spawn and _Cilk_sync1. They allow the programmer to imple-
ment of a variety of parallel algorithms. Programming for Intel Xeon Phi
coprocessors may require two additional keywords _Cilk_shared and
_Cilk_offload.

The nature of Intel Cilk Plus keywords and semantics preserves the serial
nature in parallel programs. The lack of locks in the code is compensated by
the availability of hyper-objects, which facilitate and motivate more scalable
parallel algorithms.

Instead of threads, Intel Cilk Plus uses instances called “workers”. Each
worker has a queue of work-items to process, and the number of workers and
work distribution between them is decided at runtime. Intel Cilk Plus uses
an efficient scheduling algorithm based on “work stealing”, which may be
more efficient than OpenMP in complex multi-program applications. With
work stealing, a worker that has run out of work will query other workers for
unprocessed work-items. If unfinished work-items are found, the idle worker
will “steal” a part of the queue from a busy worker.

Another new concept to learn with Intel Cilk Plus is strands. A strand is a
sequence of instructions, which starts or ends with a statement that changes
the parallelism (i.e., invokes a parallel loop, spawns off a function or sets up
a barrier to sync spawned children).

With Intel C++ compiler, the Intel Cilk Plus library is automatically
linked if the application uses the Intel Cilk Plus keywords mentioned above.
However, in order to make certain additional objects of Intel Cilk Plus API
available, the programmer must include <cilk/cilk_api.h>.

See the Intel C++ Compiler Reference for more information on the avail-
able functions and on the execution model of Intel Cilk Plus.

1cilk_for, cilk_spawn and cilk_sync are alternative spellings. They produce
identical results
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3.3.1. “Hello World” in Intel Cilk Plus

A sample Intel Cilk Plus program is shown in Listing 3.53.

1 #include <cilk/cilk_api.h>
2 #include <cstdio>
3

4 int main(){
5 const int nw=__cilkrts_get_nworkers();
6 printf("Cilk Plus with %d workers.\n", nw);
7

8 _Cilk_for (int i=0; i<nw; i++) { // No work; gets serialized
9 printf("Hello World from worker %d (no work in loop)\n",

10 __cilkrts_get_worker_number());
11 }
12

13 _Cilk_for (int i=0; i<nw; i++) {
14 float foo=10.0; // Some work to do
15 while (foo > 0) { foo -= 1.0; }
16 printf("Hello Again from worker %d (result=%f)\n",
17 __cilkrts_get_worker_number(), foo);
18 }
19 }

vega@lyra% export CILK_NWORKERS=4
vega@lyra% icpc Cilk-Hello.cc
vega@lyra% ./a.out
Cilk Plus with 4 workers.
Hello World from worker 0 (no work in loop)
Hello World from worker 0 (no work in loop)
Hello World from worker 0 (no work in loop)
Hello World from worker 0 (no work in loop)
Hello Again from worker 0 (result=0.000000)
Hello Again from worker 1 (result=0.000000)
Hello Again from worker 3 (result=0.000000)
Hello Again from worker 2 (result=0.000000)

Listing 3.53: Hello World program in Intel Cilk Plus and its compilation.

In Cilk-Hello.cc shown above, two parallel loops are run: one in
line 8 and the other in line 13. Important thing to note here is that the
first loop was executed by only one worker, i.e., this loop was serial. At
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runtime, it turned out to be inefficient to parallelize the first loop because
no computational workload is present. Thus the first loop was serialized.
The second loop has some computing workload, and at runtime it was run
in parallel. The internal work scheduling is an integral part of the Intel Cilk
Plus execution model, and, unlike OpenMP, currently there is no way to
explicitly control work distribution.

Another important piece of information to infer from Listing 3.53 is
that the environment variable CILK_NWORKERS controls the number of
workers across which the application is parallelized. By default, the number
of workers is set equal to the number of logical processors in the system.

The programmer may force serialization of an Intel Cilk Plus application
by compiling it with the flag -cilk-serialized, as shown in List-
ing 3.54. In this case, only one worker is created, regardless of the value of
CILK_NWORKERS.

vega@lyra% icpc -cilk-serialize Cilk-Hello.cc
vega@lyra% export CILK_NWORKERS=4
vega@lyra% ./a.out
Cilk Plus with 1 workers.
Hello World from worker 0 (no work in loop)
Hello Again from worker 0 (result=0.000000)

Listing 3.54: Serialization of an Intel Cilk Plus application.
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3.3.2. For-Loops in Intel Cilk Plus

In Intel Cilk Plus, a parallel for-loop is created as shown in Listing 3.55.

1 int sharedVar = 0; // shared across strands
2

3 _Cilk_for (int i=0; i<n; i++) {
4 // ... iterations will be distributed across workers...
5 int privateVar = 0; // private to each strand
6

7 printf("Iteration %d is processed by worker %d\n",
8 i, __cilkrts_get_worker_number());
9 }

Listing 3.55: The Intel Cilk Plus library will distribute the iterations of the loop following across
available workers.

Variables declared in the body of the loop are available only on the worker
processing these variables. For example, privateVar in Listing 3.55 is
private to each strand. Variables visible in the scope in which the loop is
launched (e.g., sharedVar in Listing 3.55) are shared across all strands,
and therefore must be protected from race conditions.

There are no native locks in the Intel Cilk Plus framework. To efficiently
share data between Intel Cilk Plus workers (rather than strands), special C++
templates called hyper-objects must be used, as described in Section 3.3.5.
Reducers are hyper-objects that enable parallel reduction of data across
workers, and holders are hyper-objects that enable private scratch objects
that persist in each worker across multiple strands.

Just like with OpenMP, the run-time Intel Cilk Plus library will process
iterations of a parallel loop concurrently with as many workers as are avail-
able. The total iteration space will be divided into chunks, each of which
will be executed serially by one of the Intel Cilk Plus workers. By default,
the maximum number of workers in Intel Cilk Plus is equal to the number
of logical processors in the system. The number of workers actually used at
runtime is dependent on the amount of work in the loop, and may be smaller
than the maximum. This behavior is different from OpenMP, as OpenMP by
default spawns a pre-determined number of threads, regardless of the amount
of work in the loop.
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Similarly to OpenMP, Intel Cilk Plus allows the user to control the work
sharing algorithm in for-loops by setting the granularity of work distribu-
tion. This is done with #pragma cilk grainsize, as illustrated in
Listing 3.56

1 #pragma cilk grainsize = 4
2 _Cilk_for (int i = 0; i < N; i++) {
3 // ...
4 }

Listing 3.56: Controlling grain size in Intel Cilk Plus.

The value of grainsize is the maximum number of iterations assigned to any
worker in one scheduling step. Like with OpenMP, the choice of grainsize is
a compromise between load balancing and the overhead of scheduling. The
default value of grainsize chosen by Intel Cilk Plus works well enough in
many cases.

Unlike OpenMP, Intel Cilk Plus has only one mode of scheduling, work
stealing. Work stealing, depending on the nature of the calculation, may be
more or less efficient than OpenMP scheduling methods.
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3.3.3. Fork-Join Model and Spawning in Intel Cilk Plus
In Intel Cilk Plus, the keyword _Cilk_spawn effects the fork-join

model. This keyword must be placed before the function that is forked off,
and the function will then be executed in parallel with the current scope.
Listing 3.57 demonstrates the same program as Listing 3.37, but now in the
Intel Cilk Plus framework.

1 #include <cstdio>
2 #include <cilk/cilk_api.h>
3

4 void Recurse(const int task) {
5 if (task < 10) {
6 printf("Creating task %d...\n", task+1);
7

8 _Cilk_spawn Recurse(task+1);
9 long foo=0;

10 for (long i = 0; i < (1L<<20L); i++)
11 foo += i;
12

13 printf("result of task %d in worker %d is %ld\n", task,
14 __cilkrts_get_worker_number(), foo);
15 }
16 }
17

18 int main() {
19 Recurse(0);
20 }

Listing 3.57: Source code Cilk-Spawn.cc demonstrating the use of _Cilk_spawn to
effect the fork-join parallel algorithm.

Note that there is no explicit synchronization in this code (see the dis-
cussion of the barrier _Cilk_sync in Section 3.3.4). There is, however,
implicit synchronization at the end of the function Recurse() with all
tasks spawned off by this instance of the function.

Listing 3.58 demonstrates compiling and running this code. Unlike
OpenMP code OpenMP-Task.cc, this code parallelized with Intel Cilk
Plus had spawned all tasks first and queued them for pick up by workers
before proceeding to run the tasks.
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vega@lyra% icpc -o Cilk-Spawn Cilk-Spawn.cc
vega@lyra% export CILK_NWORKERS=4
vega@lyra% ./Cilk-Spawn
Creating task 1...
Creating task 2...
Creating task 3...
Creating task 4...
Creating task 5...
Creating task 6...
Creating task 7...
Creating task 8...
Creating task 9...
Creating task 10...
result of task 9 in worker 0 is 549755289600
result of task 8 in worker 0 is 549755289600
result of task 1 in worker 1 is 549755289600
result of task 0 in worker 3 is 549755289600
result of task 2 in worker 2 is 549755289600
result of task 7 in worker 0 is 549755289600
result of task 6 in worker 0 is 549755289600
result of task 3 in worker 1 is 549755289600
result of task 5 in worker 2 is 549755289600
result of task 4 in worker 3 is 549755289600
vega@lyra%

Listing 3.58: Compiling and running Cilk-Spawn.cc from Listing 3.57 with four workers.
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3.3.4. Synchronization with Spawned Tasks

At this point, the discussion will proceed to synchronization in Intel Cilk
Plus. The equivalent of #pragma omp taskwait in Intel Cilk Plus
is the language construct _Cilk_sync. It plays the same role for tasks
that have been forked off with _Cilk_spawn. However, in contrast with
OpenMP, this statement is the only native means of explicit synchronization
in Intel Cilk Plus. Listing 3.59 is an Intel Cilk Plus implementation of the
algorithm for which the OpenMP implementation is given in Listing 3.49.

1 #include <cstdio>
2

3 void Sum(const int* A,
4 const int start, const int end, int & result) {
5 for (int i = start; i < end; i++)
6 result += A[i];
7 }
8

9 int main() {
10 const int N=1000;
11 int* A = (int*)malloc(N*sizeof(int));
12 for (int i = 0; i < N; i++) A[i]=i;
13

14 // Compute the sum with two tasks
15 int sum1=0, sum2=0;
16

17 _Cilk_spawn Sum(A, 0, N/2, sum1);
18 _Cilk_spawn Sum(A, N/2, N, sum2);
19

20 // Wait for forked off sums to complete
21 _Cilk_sync;
22

23 printf("Result=%d (must be %d)\n", sum1+sum2, ((N-1)*N)/2);
24

25 free(A);
26 }

Listing 3.59: Code Cilk-Sync.cc illustrates the usage _Cilk_sync.

Just as with OpenMP, this is an inefficient way to implement parallel
reduction, and a better method is described in Section 3.3.5
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Implicit Synchronization Intel Cilk Plus

In addition to the explicit synchronization method described above, Intel
Cilk Plus contains implicit synchronization points at the beginning and end
of parallel loops and at the end of functions. This means that execution does
not proceed until all iterations of the parallel loop have been performed, or
until the spawned off children of the current instance of the function return.

Locks in Intel Cilk Plus

There are no native locks in Intel Cilk Plus. However, Intel Cilk Plus inter-
operates with locks in, e.g., Threading Building Blocks. This topic is beyond
the scope of this training. As a rule of thumb, for optimum performance and
portability, developers should try to design parallel algorithms using only
native Intel Cilk Plus keywords and hyper-objects, instead of resorting to
additional synchronization methods.
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3.3.5. Reduction: Avoiding Synchronization
Data Sharing in Intel Cilk Plus and Hyper-Objects

In Intel Cilk Plus, there is no additional pragma-like control over shared
or private nature of variables. All variables declared before _Cilk_for
are shared, and all variables declared inside the loop are only visible to the
strand executing the iteration, and exist for the duration of the loop iteration.

Also, Intel Cilk Plus, compared to OpenMP, allows the user less fine-
grained control over synchronization, but makes up for it with versatile
support for hyper-objects: reducers and holders.

Reducers in Intel Cilk Plus

Reducers are variables that hold shared data, yet these variables can
be safely used by multiple strands of a parallel application. At runtime,
each worker operates on its own private copy of the data, which decreases
synchronization and communication between workers. At the end of a
parallel for-loop, reduction is performed across all worker-private copies of
data held by the reducer template.

Let us demonstrate an Intel Cilk Plus implementation of the example
shown in Listing 3.50. Listing 3.60 demonstrates the parallel sum reduction
algorithm with Intel Cilk Plus.

1 #include <cilk/reducer_opadd.h>
2 #include <cstdio>
3

4 int main() {
5 const int n = 1000;
6 cilk::reducer_opadd<int> sum;
7 sum.set_value(0);
8 _Cilk_for (int i = 0; i < n; i++) {
9 sum += i;

10 }
11 printf("sum=%d (must be %d)\n", sum.get_value(), ((n-1)*n)/2);
12 }

Listing 3.60: Code Cilk-Reduction.cc: parallel reduction using reducers.

Note the following details in Cilk-Reduction.cc:
a) Header file corresponding to a specific reducer must be included. In this
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case, it is cilk/reducer_opadd.h for the addition reducer.
b) Reducers are generic (template) C++ classes.
c) Inside the parallel loop, the reducer sum is used just like a regular variable

of type int, except that only operations +=, -=, +, -, ++ and -- are
allowed for it.

d) Outside the parallel region, the reducer can only be used via accessors
and mutators (in this case, get_value() and set_value()).

Predefined Reducers

The list of reducers supported by Intel Cilk Plus is shown below. Reducer
names are self-explanatory, and additional information can be found in Intel
C++ Compiler reference.

Name Header file Operation
reducer_list_append <cilk/reducer_list_append.h> push_back()
reducer_list_prepend <cilk/reducer_list_prepend.h> push_front()
reducer_max,
reducer_max_index

<cilk/reducer_max.h> cilk::max_of

reducer_min,
reducer_min_index

<cilk/reducer_min.h> cilk::min_of

reducer_opadd <cilk/reducer_opadd.h> +=, -=, +,-, ++ and --
reducer_opand <cilk/reducer_opand.h> & and &=
reducer_opor <cilk/reducer_opor.h> | and |=
reducer_opxor <cilk/reducer_opxor.h> ˆ and ˆ=
reducer_ostream <cilk/reducer_ostream.h> <<
reducer_basic_string <cilk/reducer_string.h> += to create a string. reducer_string

and reducer_wstring are shorthands
for reducer_basic_string for types
char and wchar_t, respectively

Table 3.4: Predefined Intel Cilk Plus reducers

Custom Reducers

The power of reducers in Intel Cilk Plus is greatly enhanced by support for
user-defined reducers. This procedure is described in the Intel C++ Compiler
reference. However, for a lot of applications, the scope of reducers provided
in Intel Cilk Plus may be sufficient.
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Holders in Intel Cilk Plus

Holders in Intel Cilk Plus are hyper-objects that allow thread-safe write
accesses to common data. Holders are similar to reducers, with the exception
that they do not support synchronization at the end of the parallel region.
This allows to instrument holders with a single C++ template class called
cilk::holder.

The role of holders in Intel Cilk Plus is similar to the role of private
variables in OpenMP declared in the same way that the variable sum_th is
declared in Listing 3.51. However, holders provide additional functionality
in fork-join codes. Namely, the view of a holder upon the first spawned child
of a function (or the first child spawned after a sync) is the same as upon the
entry to the function, even if a different worker is executing the child. This
functionality allows to use holders as a replacement for argument passing.
Unlike a truly shared variable, a holder has undetermined state in some cases
(in spawned children after the first child, and in an arbitrary iteration of a
_Cilk_for loop), because each strand manipulates its private view of the
holder.

Listing 3.61 and Listing 3.62 demonstrate the use of a holder as a private
variable. The purpose of a holder in this example is to reduce the number of
times that the constructor of the scratch data class is called.

- In Listing 3.61, in the _Cilk_for loop, a separate copy of variable
scratch is constructed for each iteration (6 times total). The cost of
constructor ScratchType may be high. If that is the case, then the
solution with a holder may improve efficiency.

- Listing 3.62 uses a holder for scratch data. It does so by wrapping
ScratchType in the template class cilk::holder. In this imple-
mentation, the constructor of ScratchType) is called only once for
each worker (2 times total). At the same time, the view of the variable
scratch is undetermined in an arbitrary iteration of the loop.

Note that in the run performed in Listing 3.62, no work stealing occurred.
If work stealing occurs, a new instance of ScratchType will be initialized
for each stolen batch of iterations.
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1 #include <cmath>
2 #include <cstdio>
3 #include <cilk/cilk_api.h>
4

5

6 const long N = 10000000L;
7 class ScratchType {
8 long *data;
9 public:

10 ScratchType(){
11 data=new long[N]; data[0:N] = 0;
12 printf("CONSTRUCTOR:worker %d\n",__cilkrts_get_worker_number());}
13 ~ScratchType(){ delete(data); }
14 long* Data() { return data; }
15 };
16

17 int main(){
18 _Cilk_for (int i = 0; i < 6; i++) {
19 ScratchType scratch;
20 for (int j = 0; j < N; j++)
21 scratch.Data()[j] += long(sqrt(j));
22 printf("i=%d, worker=%d, value=%ld\n",
23 i, __cilkrts_get_worker_number(), scratch.Data()[1]);
24 }}

vega@lyra% icpc -o Cilk-NoHolder Cilk-NoHolder.cc
vega@lyra% CILK_NWORKERS=2 ./Cilk-NoHolder
CONSTRUCTOR:worker 0
CONSTRUCTOR:worker 1
i=0, worker=0, value=1
i=3, worker=1, value=1
CONSTRUCTOR:worker 0
CONSTRUCTOR:worker 1
i=1, worker=0, value=1
i=4, worker=1, value=1
CONSTRUCTOR:worker 0
CONSTRUCTOR:worker 1
i=2, worker=0, value=1
i=5, worker=1, value=1

Listing 3.61: Compiling and running code Cilk-NoHolder.cc. Constructor of
ScratchType is called for every loop iteration (a total of 6 times).
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1 #include <cmath>
2 #include <cstdio>
3 #include <cilk/cilk_api.h>
4 #include <cilk/holder.h>
5

6 const long N = 10000000L;
7 class ScratchType {
8 long *data;
9 public:

10 ScratchType(){
11 data=new long[N]; data[0:N] = 0;
12 printf("CONSTRUCTOR:worker %d\n",__cilkrts_get_worker_number());}
13 ~ScratchType(){ delete(data); }
14 long* Data() { return data; }
15 };
16

17 int main(){
18 cilk::holder<ScratchType> scratch;
19 _Cilk_for (int i = 0; i < 6; i++) {
20 for (int j = 0; j < N; j++) // Operator () is accessor to data:
21 scratch().Data()[j] += long(sqrt(j));
22 printf("i=%d, worker=%d, value=%ld\n",
23 i, __cilkrts_get_worker_number(), scratch().Data()[1]);
24 }}

vega@lyra% icpc -o Cilk-Holders Cilk-Holders.cc
vega@lyra% CILK_NWORKERS=2 ./Cilk-Holders
CONSTRUCTOR:worker 0
CONSTRUCTOR:worker 1
i=0, worker=0, value=1
i=3, worker=1, value=1
i=1, worker=0, value=2
i=4, worker=1, value=2
i=2, worker=0, value=3
i=5, worker=1, value=3
vega@lyra%

Listing 3.62: Compiling and running Cilk-Holders.cc. Constructor of ScratchType
is called once for every worker (a total of 2 times) rather than once for every iteration.
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3.3.6. OpenMP versus Intel Cilk Plus
Intel Cilk Plus is an emerging standard currently supported by GCC

4.7 and the Intel C++ Compiler. Its functionality and scope of applica-
tion are similar to those of OpenMP. There are only three keywords in
the Cilk Plus standard: _Cilk_for, _Cilk_spawn, and _Cilk_sync.
Programming for Intel Xeon Phi coprocessors may also require keywords
_Cilk_shared and _Cilk_offload. However, these keywords allow
to implement a variety of parallel algorithms. Language extensions such as
array notation, hyper-objects, SIMD-enabled function and #pragma simd
are also a part of Intel Cilk Plus. Unlike OpenMP, the Cilk Plus standard
guarantees that serialized code will produce the same results as parallel code,
if the program has a deterministic behavior. Last, but not least, Intel Cilk
Plus is designed to seamlessly integrate vectorization and thread-parallelism
in applications using this framework.

OpenMP and Cilk Plus have the same scope of application to parallel
algorithms and similar functionality. The choice between OpenMP and Cilk
Plus as the parallelization method may be dictated either by convenience,
or by performance considerations. It is often easy enough to implement the
code with both frameworks and compare the performance. Our experience
shows that Intel Cilk Plus may have advantages over OpenMP in the case of
complex algorithms with multi-level parallelism (see, e.g., [21]).

For complex algorithms with nested parallelism and heterogeneous tasks,

- Intel Cilk Plus generally provides good performance “out of the box”, but
offers little freedom for fine-tuning. With this framework, the programmer
should focus on exposing the parallelism in the application rather than
optimizing low-level aspects such as thread creation, work distribution and
data sharing.

- OpenMP may require more tuning to perform well, however, it allows
more control over scheduling and work distribution.

Intel OpenMP and Intel Cilk Plus libraries may be used side by side in
the same code. In case of nested parallelism, it is preferable to use Cilk Plus
parallel regions inside OpenMP parallel regions.
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3.3.7. Additional Resources on Shared Memory Parallelism
We have provided a cursory overview of parallel programming in shared

memory in two frameworks: OpenMP and Intel Cilk Plus. We focused on
expressing and controlling task parallelism, and we left the discussion of
optimization for the next chapter.

Understanding the methods and language extensions covered here are
sufficient for leveraging the performance optimization examples in Chapter 4.
In many real-world applications, this tool set will also be sufficient.

However, for readers wishing to continue studying OpenMP and Intel Cilk
Plus, or to learn about other parallel frameworks and parallel programming,
we provide a list of references below.

1) A hands-on video tutorial on OpenMP by Tim Mattson, Senior Research
Scientist at Intel, is available at
https://www-ssl.intel.com/content/www/us/en/education/university/intel-
many-core-curriculum-list/openmp-videos.html.

2) A comprehensive description can be found in OpenMP specifications
which can be found at the OpenMP Architecture Review Board Web site
http://openmp.org/wp/openmp-specifications/.

3) A detailed written OpenMP tutorial from Blaise Barney of Lawrence
Livermore National Laboratory is available at
https://computing.llnl.gov/tutorials/openMP/.

4) Intel Cilk Plus pages in the Intel C++ Compiler reference provide details
and examples for programming with this parallel framework.

5) The Intel Threading Building Blocks project (TBB) is another powerful
parallel framework and library: http://threadingbuildingblocks.org. This
product has an open-source implementation.

6) The book “Intel Xeon Phi Coprocessor High Performance Programming”
by Jim Jeffers and James Reinders [3] (see also http://lotsofcores.com/).

7) The book “Structured Parallel Programming: Patterns for Efficient Com-
putation” by Michael McCool, Arch D. Robinson and James Reinders
[19] is a developer’s guide to patterns for high-performance parallel
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programming (see also http://parallelbook.com/). The book discusses
fundamental parallel algorithms and their implementations in Intel Cilk
Plus and TBB.

8) The book “Parallel Programming in C with MPI and OpenMP” by
Michael J. Quinn [20] is full of examples of high performance appli-
cations implemented in OpenMP and MPI, illustrating the programming,
optimization and benchmarking methodology studied in detail in this
work.
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3.4. Process Parallelism in Distributed Memory
with MPI

At this point, we have discussed two levels of parallelism. Data paral-
lelism in Intel Xeon family processors and in Intel Xeon Phi coprocessors
is accessible via automatic vectorization by the compiler, array notation
and, if necessary, intrinsic functions. Task parallelism in multi-core and
manycore systems is harnessed through frameworks for multi-threading such
as OpenMP and Intel Cilk Plus. The next level of parallelism is scaling an
application across multiple compute nodes, i.e., in distributed memory. The
most widely adopted HPC framework for distributed parallel applications
is the Message Passing Interface (MPI). This section discusses expressing
process parallelism with MPI.

3.4.1. Parallel Computing in Clusters with Multi-Core and
Many-Core Nodes

MPI is a communication protocol. It allows multiple processes, which
do not share common memory, but reside on common network, to perform
parallel calculations, communicating with each other by way of passing
messages. MPI messages are arrays of predefined and user-defined data
types. The purpose of MPI messages is defined by the programmer. It may
range from task scheduling to exchanging large amounts of data necessary to
perform the calculation. MPI guarantees that the order of sent messages is
preserved on the receiver side. The MPI protocol also provides error control.
However, the developer is responsible for communication fairness control,
as well as for task scheduling and computational load balancing.

Multiple implementations of MPI have been developed since the proto-
col’s inception in 1991. In this training, we will be using the Intel MPI library
version 5.0, which implements MPI version 3.0 specification. Intel MPI has
native support for Intel Xeon Phi coprocessors, integrates with Intel software
development tools, and operates with a variety of interconnect fabrics.

Originally, in the era of single-core compute nodes, the dominant MPI
usage model in clusters was to run one MPI process per physical machine.
With the advent of multi-core, multi-socket, and now heterogeneous systems,
the range of usage models of MPI has grown as discussed below.
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Heterogeneous MPI

One single-threaded MPI process can run on each physical core or logical
processor of every compute node in the cluster (Figure 3.4). Intel Xeon Phi
coprocessors in this case are treated as individual compute nodes.

Figure 3.4: Pure MPI parallelism. One single-threaded MPI process per core.

In this case, MPI processes running on one compute node do not share
memory address space. To share data, MPI processes have to send messages
to each other. Message passing between these processes can be efficient,
because fast virtual fabrics based on memory copy can be used for communi-
cation.

The drawback of this approach is that with up to 240 MPI processes on a
single Intel Xeon Phi coprocessor, the communication load may be exces-
sively high. Additionally, if processes access some shared read-only data,
this data has to be replicated in each process, so the memory consumption
may be unnecessarily large.
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Hybrid MPI + OpenMP Approach

Alternatively, it is possible to run one MPI process per compute node (Fig-
ure 3.5), exploiting thread parallelism in each machine with a shared-memory
parallel framework, such as OpenMP or Intel Cilk Plus (see Section 3.2).
Again, coprocessors are treated as individual compute nodes.

Figure 3.5: Hybrid MPI and OpenMP parallelism. One multi-threaded MPI process per node.

In this case, communication takes place only between different coproces-
sors, or between coprocessors and hosts. All threads within the OpenMP or
Cilk Plus parallel region share the memory address space.

This hybrid MPI+OpenMP approach relaxes both the communication
issues and the memory overhead of the MPI-only approach. On the other
hand, the code inside the OpenMP region works with a larger data partition,
and the programmer has to take care of sub-partitioning the problem in
thread-parallel domain.
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A variation of the hybrid MPI+OpenMP approach is to run multiple MPI
processes per compute node, as shown in Figure 3.6.

Figure 3.6: Hybrid MPI and OpenMP parallelism. Several multi-threaded MPI processes per
node.

In this case, each process exploits parallelism in shared memory, and MPI
communication between processes adds distributed-memory parallelism.

In many applications, the balance between thread and process parallelism
(i.e., the number of OpenMP threads per MPI process) is a tuning parameter
(see, e.g. [22]).
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MPI with Offload

Finally, in heterogeneous clusters with Intel Xeon Phi coprocessors, MPI
programmers have the option of running MPI processes only on hosts and
performing offload to coprocessors (see Figure 3.7).

Figure 3.7: Hybrid MPI and OpenMP parallelism with offload from hosts to coprocessors.

The offload approach requires explicit enablement of the host code with
data marshaling offload directives. However, it offers two advantages over
native approaches (Figure 3.4, Figure 3.5 and Figure 3.6). First, it allows
the MPI process to access a large amount of RAM that the host may have.
Second, it offers a clearer programming model for applications that use
CPUs for different purposes than coprocessors (for example, running serial
operations or file I/O on hosts and computation on coprocessors).
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Homogeneous MIC-hosted MPI

For all of the methods of scaling across clusters with MPI, it is possible
to run calculations with MPI only on coprocessors (see Figure 3.8).

Figure 3.8: MIC-hosted execution in a cluster with coprocessors.

In this MIC-hosted execution environment, CPUs are used only to boot
the coprocessors, operate network interconnects and, possibly, perform of-
fload. This approach makes sense especially in computationally dense sys-
tems where CPUs contribute a small fraction to the total performance (e.g.,
CXP9000 in Figure 1.2). Because this system is homogeneous (all MPI
processes deliver the same performance), the developer does not need to
worry about load balancing, which would have been a difficult task in a
heterogeneous system (see Section 4.7.1 and Section 4.7.2).

MIC-hosted execution with first generation Intel Xeon Phi coprocessors
may also serve as a prototype for a cluster based on the socket version of the
second generation Intel Xeon Phi processors.
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3.4.2. Program Structure in MPI
Compiling and Running Applications

MPI applications in C, C++ and Fortran may be compiled with special
wrappers over the respective compilers. The following commands invoke
Intel compilers and automatically link the appropriate MPI libraries:

mpiicc for C language (icc is default compiler),

mpiicpc for C++ language (icpc is default compiler),

mpiifort for Fortran 77 and Fortran 95 (ifort is default compiler).

To run an MPI application, it must be executed with an MPI execution
tool. Intel MPI contains a simplified script that starts MPI applications, called
mpirun. This script accepts the list of hosts on which the application is
executed, either as command line arguments, or in a machine file.

Typically, the same MPI application is launched on each MPI host. That is,
each MPI host executes the same program. However, it does not mean that all
processes perform the same work. At runtime, each MPI process is assigned
a unique identifier called MPI rank. MPI ranks are integers that begin at
0 and increase contiguously. Using these ranks, processes can coordinate
execution and identify their role in the application even before they exchange
any messages. It is also possible to launch multiple executables on different
hosts as a part of a single application. For complex applications, processes
can be bundled into communicators and groups.

A “Hello World” MPI application was demonstrated in Chapter 2 in
Section 2.1 and Section 2.4, and the reader is advised to refer to these
sections to refresh this material.
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Structure of MPI Applications

Listing 3.63 schematically demonstrates the structure of all MPI applica-
tions. We treat all code in this book as C++, however, the code below uses
the MPI interface that works in C and C++.

1 #include "mpi.h"
2

3 int main(int argc, char** argv) {
4

5 // Set up MPI environment
6 int ret = MPI_Init(&argc,&argv);
7 if (ret != MPI_SUCCESS) {
8 MyErrorLogger("...");
9 MPI_Abort(MPI_COMM_WORLD, ret);

10 }
11

12 int worldSize, myRank, myNameLength;
13 char myName[MPI_MAX_PROCESSOR_NAME];
14 MPI_Comm_size(MPI_COMM_WORLD, &worldSize);
15 MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
16 MPI_Get_processor_name(myName, &myNameLength);
17

18 // Perform work
19 // Exchange messages with MPI_Send, MPI_Recv, etc.
20 // ...
21

22 // Terminate MPI environment
23 MPI_Finalize();
24 }

Listing 3.63: Structure of an MPI application.

The code in Listing 3.63 illustrates the following rules:

• Header file #include <mpi.h> is required for all programs that
make Intel MPI library calls.

• MPI calls begin with MPI_

• The MPI portion of the program begins with a call to MPI_Init
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and ends with MPI_Finalize. No MPI_* calls are allowed prior
to MPI_Init and after MPI_Finalize – that would cause the
application to fail.

• Communicators can be used to address a substructure of MPI pro-
cesses, and the default communicator MPI_COMM_WORLD includes
all current MPI processes.

• Each process within a communicator identifies itself with a rank, which
can be queried by calling the function MPI_Comm_rank

• The number of processes in the given communicator can be queried
with MPI_Comm_size.

• Using the ranks and the world size, it is possible to distribute roles
between processes in an application even before any messages are
exchanged.

• Most MPI routines return an error code. The default MPI behavior is
to abort program execution if there was an error.
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3.4.3. Point-to-Point Communication
Now that we have created, compiled and executed a “Hello world” parallel

MPI application (see Section 2.1 and Section 2.4), let us move on to passing
messages between MPI processes.

In this section we will discuss only blocking communication routines.
These routines pause the execution of a task until it is safe to re-use (for
sending) or use (for receiving) the memory space holding the message. Non-
blocking routines are discussed in Section 3.4.4.

At this point, we will only consider point-to-point communication, i.e.,
operations in which messages have only one source rank and one destination
rank. In Section 3.4.5, we will also discuss collective communication, i.e.,
message exchange operations with more than one source or more than one
destination.

Example

Listing 3.64 demonstrates the use of blocking point-to-point commu-
nication routines. In this code, multiple “worker” processes report to the
“boss” process with rank equal to 0 (see Section 4.7.2 for an example of an
application that uses the “boss-worker” model for load balancing).

Program shown in Listing 3.64 uses two functions that are new in our
discussion: MPI_Send and MPI_Recv. These functions, respectively, send
and receive a message. MPI_Send and MPI_Recv and their variations
(discussed later) are the basis of MPI.

Note that the loop in line 13 goes through worker processes in order.
Messages from these workers do not necessarily arrive in order, and therefore,
the application may idle waiting for the message from a specific worker. In
a practical application, other methods of communication may be employed
to process messages that arrive, for example, from any source rather than a
specific source.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition

http://www.mpich.org/static/docs/latest/www3/MPI_Send.html
http://www.mpich.org/static/docs/latest/www3/MPI_Recv.html
http://www.mpich.org/static/docs/latest/www3/MPI_Send.html
http://www.mpich.org/static/docs/latest/www3/MPI_Recv.html


3.4. PROCESS PARALLELISM IN DISTRIBUTED MEMORY WITH MPI 239

1 #include <mpi.h>
2 #include <stdio.h>
3

4 int main (int argc, char *argv[]) {
5 int i, rank, size, namelen;
6 char name[MPI_MAX_PROCESSOR_NAME];
7 MPI_Status stat;
8 MPI_Init (&argc, &argv);
9 MPI_Comm_size (MPI_COMM_WORLD, &size);

10 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
11 MPI_Get_processor_name (name, &namelen);
12 if (rank == 0) {
13 printf("Boss, rank %d of %d on %s\n", rank, size, name);
14 for (i = 1; i < size; i++) {
15 // Blocking receive operation in the boss process
16 MPI_Recv(&rank, 1, MPI_INT, i, 1, MPI_COMM_WORLD, &stat);
17 MPI_Recv(&namelen, 1, MPI_INT, i, 1, MPI_COMM_WORLD, &stat);
18 MPI_Recv(name, namelen+1, MPI_CHAR, i, 1, MPI_COMM_WORLD, &stat);
19 printf ("Received hello from worker %d running on %s\n",
20 rank, name);
21 }
22 } else {
23 // Blocking send operations in all other processes
24 MPI_Send (&rank, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);
25 MPI_Send (&namelen, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);
26 MPI_Send (name, namelen + 1, MPI_CHAR, 0, 1, MPI_COMM_WORLD);
27 }
28 MPI_Finalize ();
29 }

vega@lyra% mpiicpc -o MPI-p2p MPI-p2p.cc
vega@lyra% mpirun -np 4 -host lyra ./MPI-p2p
Boss, rank 0 of 4 on lyra
Received hello from worker 1 running on lyra
Received hello from worker 2 running on lyra
Received hello from worker 3 running on lyra

Listing 3.64: Source code MPI-p2p.cc illustrates basic MPI communication.
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Blocking Point to Point Message Passing Routines

The syntax of standard MPI routines for blocking point to point commu-
nication is described below.

MPI_Recv (&recv_buf, count, datatype, source, tag, comm, &status) is a
basic blocking receive operation. It posts the intent to receive a message and
blocks (i.e., waits) until the requested message is received into the receive buffer
recv_buf.

MPI_Send (&send_buf, count, datatype, dest, tag, comm) is a basic blocking
send operation. It sends the message contained in the send buffer send_buf and
blocks until it is safe to re-use the send buffer.

Here and elsewhere, the meaning and type of common parameters are:

Type and Name Role
void* recv_buf Pointer to the received message data
void* send_buf Pointer to the sent message data
int count Number of elements in the send buffer
MPI_Datatype datatype Indicates the type of data elements in the buffer. Table 3.6 lists

predefined MPI data types
int dest Rank of the process to which the message is sent
int source Rank of the process from which a message is received. Special wild

card value MPI_ANY_SOURCE allows to receive a message from
any task

int tag User-defined arbitrary non-negative integer assigned used to uniquely
identify a message. Tag specified in a send operation must be
matched in the corresponding receive operation. Special tag value
MPI_ANY_TAG overrides this behavior, allowing to receive a mes-
sage with any tag. According to the MPI standard, integers 0−32767
can be used as tags. Depending on the implementation, the allowed
range may be wider.

MPI_Comm comm Communication context, or set of processes for which the source or
destination fields are valid. MPI_COMM_WORLD is used to access all
processes belonging to the current MPI application.

MPI_Status* status Pointer to a structure containing the source, the tag and the length of
the received message. To access the length from status, function
MPI_Get_count must be used.

Table 3.5: Common MPI function arguments.
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The data types supported by MPI are shown in Table 3.6. Note that
user-defined data types can be created in MPI.

Required types Length,
bytes

MPI_PACKED 1
MPI_BYTE 1
MPI_CHAR 1
MPI_UNSIGNED_CHAR 1
MPI_SIGNED_CHAR 1
MPI_WCHAR 2
MPI_SHORT 2
MPI_UNSIGNED_SHORT 2
MPI_INT 4
MPI_UNSIGNED 4
MPI_LONG 4
MPI_UNSIGNED_LONG 4
MPI_FLOAT 4
MPI_DOUBLE 8
MPI_LONG_DOUBLE 16

MPI_CHARACTER 1
MPI_LOGICAL 4
MPI_INTEGER 4
MPI_REAL 4
MPI_DOUBLE_PRECISION 8
MPI_COMPLEX 2*4
MPI_DOUBLE_COMPLEX 2*8

Optional types Length,
bytes

MPI_INTEGER1 1
MPI_INTEGER2 2
MPI_INTEGER4 4
MPI_INTEGER8 8
MPI_LONG_LONG 8
MPI_UNSIGNED_LONG_LONG 8

MPI_REAL4 4
MPI_REAL8 8
MPI_REAL16 16

Table 3.6: Data types in required and recommended by the MPI standard. For a list of the types
available in a specific MPI implementation, read the <mpi.h> file of that implementation.
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Reliability, Order and Fairness

The MPI protocol provides reliable message transmission. This means
that a sent message is always received correctly. If messages are sent over
unreliable network layers (e.g., TCP/IP), then it is the job of the MPI imple-
mentation to ensure reliability at the MPI message level. At the same time,
MPI does not provide any mechanisms available to the user for transmission
error correction.

Additionally, MPI guarantees that messages will not overtake each other.
Namely, if a single sender sends two messages, they will be received in the
order that they were sent. If a single receiver posts receives for two messages,
they will be satisfied in the order posted. Note that these rules do not apply
if multiple threads in a host are performing communication.

On the other hand, MPI does not guarantee fairness in servicing connec-
tion attempts. For instance, if a task posts a receive from MPI_ANY_SOURCE,
and two other tasks send messages with matching tags (see Figure 3.9), then
only one of the sends will compete. There is no guarantee which send will
complete. It is the programmer’s responsibility to prevent such conflicts.

task 0 task 1

task 2

sender sender

receiver

data data

Figure 3.9: Illustration of MPI fairness conflict.
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“Now you know your MPI"

Functions MPI_Recv and MPI_Send are easy to use, and they provide
message passing functionality that is sufficient for many real-world HPC
applications. That said, the discussion of parallelism in MPI could be ter-
minated at this point. However, we will discuss additional topics of MPI in
the rest of Section 3.4. Here is what to expect in the continuation of this
discussion:

1. Buffering is a system-level functionality of MPI that enables significant
optimization for communication efficiency. The use of buffering may
require additional efforts to prevent errors. We discuss it in Section 3.4.4.

2. Non-blocking send and receive operations can be used to overlap compu-
tation and communication. This topic is also discussed in Section 3.4.4.

3. Collective communication is helpful for certain parallel patterns. In
addition to convenience, collective communication offers performance
optimizations and portability. See Section 3.4.5 for more information.

Finally, in this chapter we did not touch the issues of performance with
MPI. This, along with other performance tuning questions, is left for Chap-
ter 4 (Section 4.7).
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3.4.4. MPI Communication Modes
Functions MPI_Send and MPI_Recv are the “standard” functions for

sending and receiving messages. MPI implementations optimize these func-
tions for a balance between efficiency and consistency. The expected behavior
is that these functions take as little time as possible, and yet, other send and
receive operations may be safely called after MPI_Send or MPI_Recv
complete. However, there are other flavors of send and receive operations
available to users who wish to fine-tune their applications, as discussed
below.

Terminology: Application (Send) Buffer, System Buffer and User
Space Buffer

Historically, the word “buffer” in the context of MPI is used in multiple
terms with very different meaning. It is important to understand the difference
between these terms for future discussion.

a) Application buffer collectively refers to send buffers and receive buffers.
This is a memory region in the user application which holds the data of
the sent or received message. In Table 3.5, the variable void *buf
represents either the send, or the receive buffer. In the code in Listing 3.64,
the role of send and receive application buffers is played by variables
rank, namelen and name.

b) System buffer is a memory space managed by the MPI runtime library,
which is used to hold messages that are pending for transmission on the
sender side, or for reception to the application on the receiver side. The
purpose of the system buffer is to enable asynchronous communication.
The system buffer is not visible to the programmer. System buffers in
MPI may exist on both the sender side and the receiver side. The standard
functions MPI_Send and MPI_Recv typically use system-level buffers
provided and managed by the MPI runtime library.

c) User space buffer plays the same role as the system buffer: it can tem-
porarily store messages to enable asynchronous communication. How-
ever, this special buffer space is allocated and managed by the user and
can only be used in specialized buffered send functions.
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Terminology: Synchronous and Asynchronous Communication

In this discussion, we will be using the terms synchronous and asyn-
chronous communication modes and the terms blocking and non-blocking
operations. In MPI, these pairs of terms are not synonymous. It may further
add to the confusion that the meaning of synchronous and asynchronous in
MPI is different from that in the offload programming model for Intel Xeon
Phi coprocessors. Let us clarify these terms before discussing specific MPI
communication modes.

a) Synchronous communication means that the sender must wait until
the corresponding receive request is posted by the receiver. After a
“handshake” between the sender and receiver occurs, the message is
passed without buffering. This mode is more deterministic and uses less
memory than asynchronous communication, but at the cost of the time
lost for waiting.

b) Asynchronous communication in the case of sending means that the
sender does not have to wait for the receiver to be ready. The sender may
put the message into the system buffer (either on the sender, or on the
receiver side) or into the user space buffer, and return.

Terminology: Blocking and Non-Blocking Functions

Another concept in MPI is blocking and non-blocking functions.

a) Blocking send functions pause execution until it is safe to modify the
current send buffer. Blocking receive functions wait until the message is
fetched into the receive buffer.

b) Non-blocking send functions return immediately and execute the trans-
mission “in background”. Non-blocking receive functions only post the
intent to receive a message, but do not pause execution. It is not safe
to re-use or modify the send buffer before ensuring that a non-blocking
send operation has completed. Likewise, it is unsafe to read from the
receive buffer before ensuring that a non-blocking receive operation has
completed. To ensure that a non-blocking operation is complete, each
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non-blocking MPI function must have a corresponding MPI_Wait or
MPI_Test function.

Blocking and non-blocking functions exist in synchronous as well as
asynchronous flavors.

Terminology: Ready Communication

If the programmer can guarantee that by the time that a send function is
called, a matching receive is already pending, it is possible to use the ready
mode send. This eliminates the hand-shake and may accelerate communi-
cation. If the receive is not posted, this is an error condition and the whole
application must be aborted. There are both blocking and non-blocking ready
mode functions. Any mode of the send function can be paired with any mode
of the receive function.

Explanation of Communication Modes

To better illustrate synchronous and asynchronous, blocking and non-
blocking, and ready mode functions, consider this real-world analogy. Sup-
pose the sender (let us call her Sierra) wants to communicate to the receiver
(let us call him Romeo) the time and place of their lunch meeting. The
following situations are equivalent to the various communication modes in
MPI:

1) Blocking asynchronous send: Sierra dials Romeo’s telephone number
and leaves a message on Romeo’s answering machine. Sierra does not
return to her activities until she had left the message. This reflects the
blocking nature of this transaction. At the same time, after the transaction
is complete, there is no guarantee that Romeo has personally received the
message. This reflects the asynchronous nature of the transaction. The
answering machine plays the role of a receiver-side system buffer in this
case.

2) Blocking synchronous send: Sierra keeps dialing Romeo’s telephone
number until Romeo personally picks up the phone. This transaction is
blocking, because Sierra cannot return to her other activities until she
speaks to Romeo. This transaction is synchronous because at the end of
the transaction, Romeo has definitely received the message.
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3) Non-blocking asynchronous send: Sierra tells her assistant to call
Romeo and leave a message on his answering machine. Sierra returns
to her other activities immediately, so this transaction is non-blocking.
Another property of non-blocking transactions: Sierra must wait for her
assistant to finish with this task before assigning him another task (in MPI,
after a non-blocking send, it is not safe to re-use the application send
buffer before ensuring that the send has completed). Her assistant does not
have to reach Romeo personally; leaving the message on the answering
machine is satisfactory in this case, so this transaction is asynchronous.

4) Non-blocking synchronous send: Sierra tells her assistant to call Romeo,
and to make sure to talk to him personally, and not to his answering ma-
chine. Sierra can do other things while her assistant works on transmitting
the message, so this is a non-blocking transaction. This non-blocking
transaction is synchronous, because after the assistant has finished with
this task, Romeo is sure to have received the message.

5) Blocking ready mode send: Romeo is already on hold on Sierra’s phone
line when Sierra picks up the phone (ready mode). Sierra returns to
her other activities only after she had transmitted her message (blocking
transaction).

6) Non-blocking ready mode send: Romeo is already on hold on Sierra’s
phone line (ready mode), but she re-directs him to her assistant to relay
the message. Sierra returns to her other activities immediately, so this is
non-blocking communication.
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Summary of Communication Modes

Function Effect Use Scenarios
MPI_Send Blocking send operation. Synchronous or asyn-

chronous depending on MPI implementation and run-
time conditions. Returns when it is safe to re-use the
application send buffer.

Default blocking send operation.

MPI_Bsend,
MPI_Buffer_attach,
MPI_Buffer_detach

Blocking asynchronous send operation with user space
buffer. Returns when it is safe to re-use the appli-
cation send buffer. User space buffer must be allo-
cated with MPI_Buffer_attach prior to calling
MPI_Bsend.

Used for asynchronous blocking com-
munication when system buffer is ineffi-
cient, prone to overflows, or is not used
by MPI_Send.

MPI_Ssend Blocking synchronous send operation. Not buffered.
Returns when it is safe to re-use the application send
buffer.

Used (a) when message must be re-
ceived before function return, or (b) to
eliminate memory overhead of system
or user space buffers.

MPI_Rsend Blocking ready mode send operation. Synchronous or
asynchronous depending on the MPI implementation
and runtime conditions. Returns when it is safe to
re-use the application send buffer. Assumes that the
matching receive had already been posted, error other-
wise.

Used in codes with fine-grained com-
munication to improve performance. It
is programmer’s responsibility to en-
sure that matching receives post before
MPI_Rsend.

MPI_Recv Blocking receive operation. Can be paired with any send operation.
MPI_Isend Non-blocking send operation. Synchronous or asyn-

chronous depending on the MPI implementation and
runtime conditions. MPI_Wait must be called prior
to re-using the application send buffer.

Default non-blocking send operation.
Used to overlap communication and
computation between MPI_Isend and
MPI_Wait.

MPI_Ibsend,
MPI_Buffer_attach,
MPI_Buffer_detach

Non-blocking asynchronous send operation with user
space buffer. MPI_Wait must be called prior to re-
using the application send buffer. User space buffer
must be allocated with MPI_Buffer_attach prior
to calling MPI_Bsend.

Potentially the most efficient send
method. Asynchronous and non-
blocking, allows to overlap computa-
tion and communication. See also com-
ment for MPI_Bsend.

MPI_Issend Non-blocking synchronous send operation. Not
buffered. MPI_Wait must be called prior to re-using
the application send buffer.

Used to overlap communication and
computation. At the same time, elim-
inates memory overhead of system or
user space buffers.

MPI_Irsend Non-blocking ready send operation. Synchronous or
asynchronous depending on the MPI implementation
and runtime conditions. MPI_Wait must be called
prior to re-using the application send buffer. Assumes
that the matching receive had already been posted, er-
ror otherwise.

Used instead of MPI_Isend in codes
with fine-grained communication to
improve performance by eliminating
“handshakes”.

MPI_Irecv Non-blocking receive operation. MPI_Wait must be
called prior to using the application receive buffer.

Can be paired with any send operation.
Used to overlap computation and com-
munication between MPI_Irecv and
MPI_Wait.

MPI_Wait,
MPI_Waitall
MPI_Waitany,
MPI_Waitsome

Blocks execution until one or more matching non-
blocking send or receive operations return. After that,
it is safe to re-use the application send buffer or use the
application receive buffer.

Every asynchronous operation must
have a matching MPI_Wait.

Table 3.7: Basic MPI functions. See MPI documentation for more details
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Example: Blocking Asynchronous Send with User Space Buffer

Functions MPI_Send and MPI_Recv demonstrated in Listing 3.64 are
the standard blocking send and receive operations in MPI. The runtime MPI
library decides how to use the system buffer and whether to perform asyn-
chronous transfers. For applications with large and frequent data transfers,
the user may wish to take control over buffering in order to ensure that (a)
buffering is used consistently and therefore all transactions are asynchronous,
and (b) system buffer does not overflow. To let the user control over buffering
of blocking transactions, MPI provides function MPI_Bsend. Listing 3.65
demonstrates how this function is used with user space buffer.

The required size of the buffer is calculated using the MPI function
MPI_Pack_size. A constant MPI_BSEND_OVERHEAD is added to the
buffer size. In our code, we intend to use the buffer for two send operations,
so the overhead is counted twice.
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1 #include <mpi.h>
2 #include <cstdio>
3 #include <cstdlib>
4

5 int main (int argc, char *argv[]) {
6 const int M = 100000, N = 200000;
7 float data1[M]; data1[:]=1.0f; // Any type of data can use
8 double data2[N]; data2[:]=2.0; // the user space buffer
9 int myRank, worldSize, size1, size2;

10

11 MPI_Init (&argc, &argv);
12 MPI_Comm_size (MPI_COMM_WORLD, &worldSize);
13 MPI_Comm_rank (MPI_COMM_WORLD, &myRank);
14

15 if (worldSize > 1) {
16 if (myRank == 0) {
17 // Sender: allocate user-space buffer for asynchr communication
18 MPI_Pack_size(M, MPI_FLOAT, MPI_COMM_WORLD, &size1);
19 MPI_Pack_size(N, MPI_DOUBLE, MPI_COMM_WORLD, &size2);
20 int bufsize = size1 + size2 + 2*MPI_BSEND_OVERHEAD;
21 printf("Buffer size: %d=%d+%d+2*%d bytes\n",
22 bufsize, size1, size2, MPI_BSEND_OVERHEAD);
23 void* buffer = malloc(bufsize);
24 MPI_Buffer_attach(buffer, bufsize);
25 MPI_Bsend(data1, M, MPI_FLOAT, 1, 1, MPI_COMM_WORLD);
26 MPI_Bsend(data2, N, MPI_DOUBLE, 1, 1, MPI_COMM_WORLD);
27 MPI_Buffer_detach(&buffer, &bufsize);
28 free(buffer);
29 } else if (myRank == 1) {
30 // Receiver side does not have to do anything special
31 MPI_Status stat;
32 MPI_Recv(data1, M, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &stat);
33 MPI_Recv(data2, N, MPI_DOUBLE, 0, 1, MPI_COMM_WORLD, &stat);
34 } }
35 MPI_Finalize (); }

vega@lyra% mpiicpc -o MPI-Buffered MPI-Buffered.cc
vega@lyra% mpirun -np 2 -host lyra ./MPI-Buffered
Buffer size: 2000190=400000+1600000+2*95 bytes

Listing 3.65: Source code MPI-Buffered.cc illustrates blocking asynchronous transactions
with user space buffer.
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Example: Non-Blocking Standard Send

To overlap communication and computation, MPI provides non-blocking
send and receive functions MPI_Isend and MPI_Irecv. Non-blocking
functions return immediately, and the code can perform other operations
while communication proceeds. However, for non-blocking send operations,
it is unsafe to re-use the send buffer until blocking function MPI_Wait is
called. Likewise, for non-blocking receive operations, it is unsafe to assume
that the message was delivered to the receive buffer until MPI_Wait is
called.

Calling MPI_Wait immediately after MPI_Isend or MPI_Irecv is
equivalent to using MPI_Send or MPI_Recv. The purpose of non-blocking
functions is to enable the code to perform some additional operations while
the message is in transit.

Usually, when communicating processes use a network interconnect (e.g.,
Ethernet or InfiniBand) as physical network fabric, communication does not
stall calculations. In this case, non-blocking communication may improve
performance by masking communication time. However, if the sender and
receiver are executing on the same host, their communication may proceed
over a shared-memory copy. In this case, non-blocking communication may
be detrimental to performance, because communication and computation
will compete for resources, resulting in undesirable contention.

Listing 3.66 demonstrates the use of the non-blocking send operation.
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1 #include <mpi.h>
2 #include <cstdio>
3

4 int main (int argc, char *argv[]) {
5 const int N = 100000, tag=1;
6 float data1[N], data2[N]; data1[:]=0.0f;
7 int myRank, worldSize;
8

9 MPI_Request request;
10 MPI_Status stat;
11

12 MPI_Init (&argc, &argv);
13 MPI_Comm_size (MPI_COMM_WORLD, &worldSize);
14 MPI_Comm_rank (MPI_COMM_WORLD, &myRank);
15

16 if (worldSize > 1) {
17 if (myRank == 0) {
18 // Sender side: starting non-blocking send of data1
19 MPI_Isend(data1, N, MPI_FLOAT, 1, tag, MPI_COMM_WORLD, &request);
20 // Sender can perform some other work while data1 is in transit
21 for (int i = 0; i < N; i++)
22 data2[i] = 1.0f;
23 // MPI_Wait will block until it safe to modify data1
24 MPI_Wait(&request, &stat);
25 } else if (myRank == 1) {
26 // Receiver side: blocking receive of data1
27 MPI_Recv(data1, N, MPI_FLOAT, 0, tag, MPI_COMM_WORLD, &stat);
28 // At the end of blocking MPI_Recv, it is safe to use data1
29 }
30 }
31

32 MPI_Finalize ();
33 }

Listing 3.66: Source code MPI-NonBlocking.cc illustrates non-blocking standard send.
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3.4.5. Collective Communication and Reduction
Intel MPI collective communication routines involve all processes in the

scope of a communicator. This is in contrast with peer-to-peer communica-
tion routines, which include two processes.

There are three major types of collective communication routines:

i) Synchronization — all processes wait until each of them has reached a
synchronization point;

ii) Data Movement — broadcast, scatter and gather, all-to-all;
iii) Collective Computation (reduction) — multiple members of the group

collect data from multiple other members and perform an associative
operation (min, max, add, multiply, etc.) on that data.

MPI collective communication functions are summarized in Table 3.9.
Some of the most commonly used collective communication patterns are

discussed later in this section.

Collective Communication and Performance

The usage of collective communication offers multiple advantages over
instrumenting the same patterns with MPI_Send/MPI_Recv:

1. Vendor-optimized MPI libraries (for example, Intel MPI) provide
the best performance of collective routines for the architectures and
interconnects that they target.

2. Using collective communication routines, the developer delegates to
MPI the handling of the complexity of network topology.

3. By extension, reliance on collective communication routines provides
performance portability across different computing systems.

4. Collective communication algorithms enacted by Intel MPI may be
tuned to the specific network topology of the cluster using the tool
mpitune.
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Broadcast

The broadcast operation, illustrated in Figure 3.10, sends a message from
a single process to all processes in the communicator of this operation (includ-
ing the sender). All processes in the communicator must post the broadcast
in order for this operation to succeed. This operation is implemented by the
MPI function MPI_Bcast.

Figure 3.10: MPI collective communication: broadcast operation.

Note that in this and most other collective operations, only one line of
code is necessary to execute communication. When all processes in the
communicator of MPI_Bcast execute that line, the communication event
will occur. This is in contrast with point-to-point communication, where
at least two lines of code are necessary: one for the sender, another for the
receiver.
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Scatter and Gather

The scatter and gather operations (Figure 3.11 and Figure 3.12) also move
data from/to a single source to/from multiple destinations. However, unlike
broadcast, the scatter operation partitions a larger array of data and sends
the respective pieces to the recipients of the scatter operation. Gather works
similarly, but for receiving data, rather than sending it.

The MPI function for scatter is MPI_Scatter, and for gather, the
function is MPI_Gather. There are also functions MPI_Allgather and
MPI_Allscatter with similar patterns, in which each process receives
the result of the operation.

Figure 3.11: MPI collective communication: scatter operation.

Figure 3.12: MPI collective communication: gather operation.
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Reduction

Reduction is the application of an associative operation to data sets dis-
tributed across multiple processes. Figure 3.13 illustrates the pattern of a sum
reduction. Note that the MPI and communication fabric do not necessarily
implement the reduction operation with an “all-to-one” pattern: it may utilize
smarter reduction mechanisms, such as tree patterns, to reduce the amount
and increase the parallelism of communication.

Figure 3.13: MPI collective communication: sum reduction.

Table 3.8 summarizes the reduction operations supported in MPI.

Intel MPI Reduction Operations C Data Types Fortran Data Types
MPI_MAX maximum integer, float integer, real, complex
MPI_MIN minimum integer, float integer, real, complex
MPI_SUM sum integer, float integer, real, complex
MPI_PROD product integer, float integer, real, complex
MPI_LAND logical AND integer logical
MPI_BAND bit-wise AND integer, MPI_BYTE integer, MPI_BYTE
MPI_LOR logical OR integer logical
MPI_BOR bit-wise OR integer, MPI_BYTE integer, MPI_BYTE
MPI_LXOR logical XOR integer logical
MPI_BXOR bit-wise XOR integer, MPI_BYTE integer, MPI_BYTE
MPI_MAXLOC max value, location float, double, long double real, complex, double precision
MPI_MINLOC min value, location float, double, long double real, complex, double precision

Table 3.8: MPI reduction operations
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Function Effect
MPI_Barrier Performs group barrier synchronization. Upon reaching the

MPI_Barrier call, each process is blocked until all processes in
the group reach the same MPI_Barrier call.

MPI_Bcast Broadcasts (i.e., sends) a message from one process to all other pro-
cesses in the group.

MPI_Scatter Distributes distinct messages from a single source process to each
process in the group.

MPI_Gather Gathers distinct messages from each process in the group into a single
destination process.

MPI_Allgather For each process, performs a one-to-all broadcasting operation within
the group.

MPI_Reduce Applies a reduction operation on all processes in the group and places
the result in one process. Predefined MPI reduction operations are
summarized in Table 3.8.

MPI_Allreduce Applies a reduction operation and places the result in all processes in the
group. This is equivalent to MPI_Reduce followed by MPI_Bcast.

MPI_Reduce_scatter Performs an element-wise reduction on a vector across all processes
in the group. The resulting vector is split into disjoint segments and
distributed across the processes. This is equivalent to MPI_Reduce
followed by MPI_Scatter operation.

MPI_Op_create Creates a user-defined reduction operation for MPI_Reduce and
MPI_Allreduce.

MPI_Alltoall Each process in a group performs a scatter operation, sending a distinct
message to all the processes in the group ordered by index.

MPI_Scan Performs a scan operation with respect to a reduction operation across
a process group.

Table 3.9: Collective communication functions in MPI. Details may be found in MPI Reference
or by clicking function names.
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Example: Using the Scatter Operation in MPI

The usage of one of the collective communication operations in OpenMP
is shown in Listing 3.67.

1 #include "mpi.h"
2 #include <stdio.h>
3 #define SIZE 4
4

5 int main(int argc, char *argv[]) {
6 int numtasks, rank, sendcount, recvcount, source;
7 float sendbuf[SIZE][SIZE] = {
8 {1.0, 2.0, 3.0, 4.0},
9 {5.0, 6.0, 7.0, 8.0},

10 {9.0, 10.0, 11.0, 12.0},
11 {13.0, 14.0, 15.0, 16.0}};
12 float recvbuf[SIZE];
13

14 MPI_Init(&argc,&argv);
15 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
16 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
17

18 if (numtasks == SIZE) {
19 source = 1;
20 sendcount = SIZE;
21 recvcount = SIZE;
22 MPI_Scatter(sendbuf,sendcount,MPI_FLOAT,recvbuf,recvcount,
23 MPI_FLOAT,source,MPI_COMM_WORLD);
24 printf("rank= %d Results: %f %f %f %f\n",rank,recvbuf[0],
25 recvbuf[1],recvbuf[2],recvbuf[3]);
26 } else {
27 printf("Must specify %d processors. Terminating.\n",SIZE);
28 }
29

30 MPI_Finalize();
31 }

Listing 3.67: Source code MPI-Scatter.cc demonstrates one of Intel MPI collective com-
munication operations: a scatter operation on the rows of a two-dimensional array.
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This code demonstrates how function MPI_Scatter is used to distribute
(i.e., scatter) the rows of a matrix from one source process to all other
processes. Execution of this application with 4 processes produces the
following output:

vega@lyra% mpirun -n 4 ./MPIscatter
rank= 1 Results: 5.000000 6.000000 7.000000 8.000000
rank= 2 Results: 9.000000 10.000000 11.000000 12.000000
rank= 3 Results: 13.000000 14.000000 15.000000 16.000000
rank= 0 Results: 1.000000 2.000000 3.000000 4.000000

Listing 3.68: Intel MPI scatter collective communication example output.
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3.4.6. Further Reading
The following list suggests additional sources of information on express-

ing parallelism in MPI and using MPI implementations.

1) The official source of all information on MPI is the MPI Forum Web page
http://www.mpi-forum.org/.

2) Intel MPI, as of version 5.0 uses MPI standard version 3.0. Documenta-
tion on MPI 3.0 is available from the MPI documents page at the MPI
forum site.

3) A detailed list of resources on MPI (manuals, tutorials, white papers,
etc.) compiled by Argonne National Laboratory (ANL) is available at
http://www.mcs.anl.gov/mpi/

4) The MPICH Web site features a reference of all MPI routines, which
includes syntax and specification. This reference can be found at the URL
http://www.mpich.org/static/docs/latest/. All hyperlinks attached to MPI
function names in the PDF version of this book point to that document.

5) For more information on Intel MPI version 5.0 refer to the Intel MPI
reference guide. This manual contains information about the specifics of
Intel’s implementation of MPI.

6) A popular book on MPI and its inter-operation with OpenMP is “Parallel
Programming in C with MPI and OpenMP” by Michael J. Quinn [20]

Chapter 4 contains more MPI examples and discusses performance analy-
sis and optimization methods in distributed memory computing.
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CHAPTER 4
Optimizing Parallel Applications

This chapter delves deeper into the issues related to the performance of
parallel applications on Intel Xeon processors and Intel Xeon Phi copro-
cessors and provides practical examples of high performance codes. This
chapter re-iterates on the skills and methods introduced in Chapter 3.

4.1. Optimization Roadmap for Intel Xeon Phi Co-
processors

Intel Xeon Phi coprocessors are massively parallel vector processors, and
optimization areas for them are qualitatively the same as those for Intel Xeon
processors: vectorization, thread parallelism and memory traffic control.
However, these requirements are quantitatively more strict for Intel Xeon
Phi coprocessor applications: the code must be able to utilize wider vectors,
support a greater number of threads, and the penalty for non-local memory
access is greater on the coprocessor.

4.1.1. Optimization Checklist

In general, in order to expect better performance from an Intel Xeon
Phi coprocessor than from the host system, the developer should be able to
answer “yes” to the following questions:

1. Has general optimization been performed? Some applications can be
improved by consistently employing single precision floating-point arith-
metic instead of double or mixed precision, removing unnecessary type
conversions, eliminating common sub-expressions, strength reduction,
using transcendental functions supported by hardware, and choosing a
compromise between precision and speed. Section 4.2 discusses these
optimizations.
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2. Are performance-critical loops vectorized? The compiler report should
indicate that automatic vectorization of performance-critical loops has
succeeded, otherwise a significant portion of the computational power
of the Intel Xeon Phi coprocessor will be unused. In addition, the pro-
grammer must use data structures that enable unit-stride memory access
pattern, enforce proper data alignment and inform the compiler of oppor-
tunities for choosing the optimal vectorization code path. See Section 4.3
for details.

3. Does the applications scale beyond 100 threads? Some applications
designed for earlier generation processors may be serial or scale up
to only a few threads. These applications will not show satisfactory
performance on Intel Xeon Phi coprocessors, which derive performance
from concurrent work of over 200 hardware threads on low clock-speed
cores. Even if an application can utilize hundreds of threads, thread
contention due to excessive synchronization or false sharing can quench
performance. Methods for improving the parallel scalability of task-
parallel calculations are described in Section 4.4.

4. Is the workload arithmetically intensive or bandwidth-limited? Ap-
plications that are not optimized for data locality in space and time, and
programs with complex memory access patterns may exhibit better per-
formance on a CPU than on an Intel Xeon Phi coprocessor. If complex
memory access is an inherent property of the algorithm, it may be possi-
ble to re-structure data to pack memory accesses more compactly. Some
algorithms must be modified with techniques such as loop tiling and
cache-oblivious recursion to better utilize the cache hierarchy. These
optimizations are described in Section 4.5.

5. Is communication between the host(s) and the coprocessor(s) effi-
cient? An application that utilizes more than one coprocessor or more
than one compute node must control the efficiency of data movement
between the host system(s) and coprocessor(s). It may be possible to
reduce communication overhead by overlapping communication with
computation, optimizing data marshaling policies and relying on high-
performing communication fabrics. These optimizations are described in
Section 4.6 and Section 4.7.
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4.1.2. Expectations
It is often the case that an application providing satisfactory performance

on Intel Xeon processors initially performs poorly on Intel Xeon Phi co-
processors. This does not necessarily mean that the problem is not “MIC-
friendly”. Intel Xeon processors have resource-rich architecture with large
caches, aggressive hardware prefetchers, branch predictors, out-of-order
cores, deep pipelines and high clock speeds, which can compensate sub-
optimal aspects of a variety of workloads. On the other hand, on Intel Xeon
Phi coprocessors, the same sub-optimal behaviors of non-optimized appli-
cations are exposed by the resource-efficient MIC architecture. Thus, some
optimizations may be required before an application provides satisfactory
performance on the MIC architecture.

However, the good news is that, generally, optimization for Intel Xeon
processors leads to performance benefits for Intel Xeon Phi coprocessors,
and vice versa. In fact, one of the most effective methods for optimizing
an application for the MIC architecture is to optimize it for the multi-core
architecture first. Optimization methods described in this Chapter yield
performance benefits for both the manycore and the multi-core architecture.

In the best case scenario, a single Intel Xeon Phi coprocessor is capable
of outperforming two Intel Xeon processors system by a factor of 2x to
3x. This estimate is based on the theoretical peak arithmetic performance
and memory bandwidth of a single Intel Xeon Phi coprocessor compared
to those of a two-way Intel Xeon processor-based host system with the Ivy
Bridge microarchitecture. The reason for comparing one coprocessor to two
CPU sockets is that they have approximately the same thermal design power.
However, applications that do not achieve this speedup can still benefit from
an Intel Xeon Phi coprocessor in the system, because available programming
models allow to team up the host and the coprocessor using asynchronous
offload or heterogeneous MPI (see [23]).
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4.1.3. Benchmark Methodology
In this Chapter, in order to illustrate performance gains due to optimiza-

tion, we will often benchmark applications before and after an optimization,
and also benchmark them on a general-purpose Intel Xeon processor and
on an Intel Xeon Phi coprocessor. Unless stated otherwise, the benchmarks
adhere to the following rules:

1. For benchmarking an entire application, we may use the Linux utility
time. For convenience, we set up a Bash script tmr to display the timing
information in user-friendly format. In future listings we assume that the
script shown in Listing 4.1 is at a location defined by PATH.

#!/bin/bash
# Run and time program, direct output of time into tmr.tmp
(time ( $@ 2>&1 )) 2>tmr.tmp
# Process tmr.tmp and print human-friendly result
t=‘tail -n 3 tmr.tmp | head -n 1 | tr ms ’ ’‘
echo $t | awk ’{printf "Time: %.3f s\n", $2*60+$3}’
# Clean up
rm -f tmr.tmp

Listing 4.1: Bash script tmr for benchmarking the wall clock time of application execution.
This script is assumed to be in the user’s PATH in all future listings.

Listing 4.2 illustrates the usage of tmr.

vega@lyra% tmr ./myapp
This is the output of myapp on CPU...
Time: 2.103 s
vega@lyra% ssh mic0 tmr ${PWD}/myapp
This is the output of myapp on MIC...
Time: 1.119 s

Listing 4.2: In this example, we benchmark the wall clock time of execution of application
myapp. This application takes 2.10 seconds on the host and 1.05 seconds on the coprocessor.
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2. For benchmarking only performance-critical functions, we use OpenMP
timing functions inside the code. The timing is performed multiple times,
and the mean and standard deviation are computed. The first one or two
iterations are not included in statistical analysis because various warm-
up processes typically make these iterations slower than the sustained
performance. The execution time is usually translated to performance in
application-specific units (GB/s, GFLOP/s or other values). Listing 4.3
demonstrates the typical procedure.

1 // Conversion factor from time in seconds to performance in GFLOP/s
2 const float HztoGFLOPs =
3 20.0*1e-9*float(nParticles)*float(nParticles-1);
4 double rate = 0, dRate = 0; // Statistical averages
5 const int nTrials = 10;
6 const int skipTrials = 2; // Skip first two warm-up iterations
7 for (int trial = 1; trial <= nTrials; trial++) {
8

9 const double tStart = omp_get_wtime(); // Start timing
10 PerformComputation(...);
11 const double tEnd = omp_get_wtime(); // End timing
12

13 if (trial > skipTrials) { // Collect statistics
14 const double perf = HztoGFLOPs/(tEnd - tStart);
15 rate += perf; // Mean
16 dRate += perf*perf; // Standard deviation
17 }
18 }
19 rate /= (double)(nTrials-skipSteps);
20 dRate=sqrt(dRate/double(nTrials - skipTrials) - rate*rate);
21 printf("Average performance: %10.1f +- %.1f GFLOP/s", rate, dRate);

Listing 4.3: Benchmarking a performance-critical function in the code and computing statistics.

When we report performance in plots, normally we include the stan-
dard deviation (e.g, 250± 4 GFLOP/s). If the standard deviation is not
included (e.g., 250 GFLOP/s), it means that the reported average is accu-
rate to the last reported significant figure (i.e,. the standard deviation of
250 GFLOP/s is no greater than 1 GFLOP/s, and standard deviation of
60.4 GB/s is no greater than 0.1 GB/s).
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4.1.4. Benchmark Computing System
Timing and performance results in examples in this chapter were obtained

on a Colfax ProEdgeTM SXP8600 server. It was configured as follows:

CPU: A two-way Intel E5-2697 V2 processor. This two-way CPU, based
on the Ivy Bridge architecture, has 12 cores per socket, i.e., a total of
24 cores clocked at 2.70 GHz. The Intel hyper-threading technology is
enabled, so we see a total of 48 logical processors. The Intel SpeedStep
technology was disabled on the host to prevent its interference with
benchmark results.

RAM: 128 GiB of DDR3 memory in 16 GiB modules at 1600 MHz.

Coprocessors: Four Intel Xeon Phi coprocessors 7120P. Each coprocessor,
based on the Knights Corner architecture, has 61 cores at clocked
1.24 GHz. With 4 hardware threads per core, we see a total of 244
cores per coprocessor. Most benchmarks use only one of these four
coprocessors. Power management functions: cpufreq, corec6,
pc3, pc6 and the ECC functionality were enabled on coprocessors.

Interconnects: Two Intel True Scale IBA7322 QDR host channel adapters
(InfiniBand interconnects), one per CPU socket. These were used for
MPI communication bandwidth tests. For tests with remote devices,
the sytem was connected to an identical system via an Intel True Scale
QDR switch.

The software configuration of the system includes:

OS: CentOS 7.0 Linux operating system with kernel 3.10.0-123.el7.x86_64.

Software development tools: Intel Parallel Studio XE 2015 Update 1 Clus-
ter Edition (compiler version 15.0.1.133, MPI version 5.0.2.044, MKL
version 11.2.1, VTune version 2015 update 1).

MIC Driver stack: MPSS version 3.4.1.

InfiniBand software: OFED-3.5-2-MIC software stack.
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4.2. Scalar and General Optimizations

Before proceeding to the details of data- and task-parallel code opti-
mization, it is useful to consider general optimizations that improve the
performance of each parallel task. These code modifications will naturally
translate to improve the performance of vectorized parallel applications. Op-
timizations discussed in this section work by reducing the total number and
computational cost of operations.

4.2.1. Compiler Controls for Optimization

Intel Compilers can perform some of the optimizations described in this
section automatically. However, it is important to know how to facilitate the
compiler’s work.

Optimization Level

Performance-critical code should be compiled with the optimization level
-O2 or -O3. A simple way to set a specific optimization level is to use the
compiler argument -O2 or -O3. This setting applies to the whole file being
compiled. It is also possible to apply a specific optimization level to a single
function within a file using #pragma intel optimization_level.
Figure 4.4 illustrates these methods.

vega@lyra% icpc -o mycode -O3 source.cc

1 #pragma intel optimization_level 3
2 void my_function() {
3 //...
4 }

Listing 4.4: Top: specifying the optimization level -O3 as a compiler argument. The specified
optimization level is applied to the whole source file. Bottom: specifying the optimization level
-O3 as a pragma. The optimization level specified in this way applies only to the statement
following the pragma.

The default optimization level is -O2, which optimizes the application
for speed. At this level, enabled optimization functions include: automatic
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vectorization, inlining, constant propagation, dead-code elimination, loop
unrolling, and others. This is the recommended optimization level for most
purposes.

The optimization level -O3 enables more aggressive optimization than
-O2. It includes all of the features of -O2 and, in addition, performs loop
fusion, block-unroll-and-jam, if-statement collapse, and others.

Generally, one can expect better performance with -O3 than with -O2.
At the same time, at -O2, the programmer can control certain optimization
parameters (e.g., the loop unroll factor), however, at -O3, the compiler
takes over this tuning. As a result, -O3 may sometimes result in worse
performance than -O2. Therefore, the general recommendation is to try
compiling with both optimization levels. If some functions respond better to
-O2 and other work better with -O3, the programmer may use the pragma
illustrated in Listing 4.4 for a more fine-grained approach.

Processor-Specific Optimization

In addition to the -On argument, the compiler can be instructed to target
a specific processor using the argument -x<code>, where <code> is the
one of the following:

code Target architecture
MIC-AVX512 Future Intel processors
CORE-AVX512 Future Intel processors
CORE-AVX2 Intel Xeon processor E3 v3 family
CORE-AVX-I Intel Xeon processor E3 v2, E5 v2 and E7 v2 family
AVX Intel Xeon processor E3 and E5 family
SSE4.2 Intel Xeon processor 55XX, 56XX, 75XX and E7 family

Table 4.1: Some of the architectures that can be targeted with -x<code>.

With Intel Xeon Phi coprocessors, this argument has no effect. However,
it is important for most Intel Xeon processors, and it also may be important
for future generations of Intel MIC architectures. For a complete list of
supported architectures, refer to the Intel Compiler Reference.
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4.2.2. Compiler Controls for Precision
Floating-Point Semantics

The Intel C++ Compiler may represent floating-point expressions in exe-
cutable code differently, depending on the floating-point semantics, i.e., rules
for finite-precision algebra allowed in the code. These rules are controlled
by an extensive set of command-line compiler arguments. The argument
-fp-model controls floating-point semantics at a high level.

Table 4.2 explains the usage of the argument -fp-model. For more
information, see the Compiler Reference and the white paper “Consistency
of Floating-Point Results using the Intel Compiler or Why doesn’t my appli-
cation always give the same answer?” by Dr. Martyn J. Corden and David
Kreitzer [24].

In the context of floating-point semantics, “value-unsafe” optimizations
refer to code transformations that produce only approximately the same re-
sult. For example, floating-point multiplication is generally non-associative
in finite-precision arithmetics, i.e., a*(b*c)6= (a*b)*c. If value-unsafe
optimizations are enabled, the compiler may replace an expression like
bar=a*a*a*awith foo=a*a; bar=foo*foo. However, if only value-
safe optimizations are allowed, then the expression will be computed from
left to right, i.e., bar=((a*a)*a)*a. The two expressions produce ap-
proximately the same result, but the former employs one less operation.

Listing 4.5 and Listing 4.6 illustrate the usage of argument -fp-model
to control the floating-point semantics. In this code Listing 4.5, a single
floating-point number is subjected to an iterative procedure. It can be demon-
strated analytically that this procedure has a stochastic character, i.e., small
perturbations in initial conditions lead to large deviations in the result af-
ter several iterations. Listing 4.6 demonstrates that up to 20000 iterations,
codes compiled with -fp-model fast=1 and -fp-model fast=2
produce identical results on an Intel Xeon Phi coprocessor. However, by
iteration 25000, the results are completely different. This occurs because at
iteration 23431 (as tested on our hardware), the two codes produce slightly
different results due to different numerical accuracy, and this subtle differ-
ence is subsequently amplified by the stochastic iteration. Note that at the
same time, the code compiled with -fp-model fast=2 performs 1.5
times as fast as the code compiled with the default floating-point model.
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Argument Effect
-fp-model strict Only value-safe optimizations, exception control is enabled (but

may be disabled using -fp-model no-except), floating-point
contractions (e.g., the fused multiply-add instruction) are disabled.
This is the strictest floating-point model.

-fp-model precise Only value-safe optimizations, exception control is disabled (but
may be enabled using -fp-model except). Serial floating-
point calculations are reproducible from run to run. Some parallel
OpenMP calculations can be made reproducible by using the environ-
ment variable KMP_DETERMINISTIC_REDUCTION. The combi-
nation -fp-model precise -fp-model source produces
floating-point results compliant with the IEEE-754 standard.

-fp-model fast=1 Value-unsafe optimizations are allowed, exceptions are not enforced,
contractions are enabled. This is the default floating-point semantics
model. The short-hand for this model is -fp-model fast.

-fp-model fast=2 Enables more aggressive optimizations than fast=1, possibly lead-
ing to better performance at the cost of lower accuracy.

-fp-model source Intermediate arithmetic results are rounded to the precision defined
in the source code. Using source also assumes precise, unless
overridden by strict or fast.

-fp-model double Intermediate arithmetic results are rounded to 53-bit (double) preci-
sion. Using double also assumes precise, unless overridden by
strict or fast.

-fp-model extended Intermediate arithmetic results are rounded to 64-bit (extended) preci-
sion. Using extended also assumes precise, unless overridden
by strict or fast.

-fp-model
[no-]except

except enables, no-except disables the floating-point exception
semantics.

Table 4.2: Command-line arguments for high-level floating-point semantics control with the
Intel C++ Compiler.
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1 #include <cstdio>
2 #include <cmath>
3 int main() {
4 for (int i = 0; i < 100; i++) {
5 const int N=i*10000;
6 double A = 0.1;
7 for (int r = 0; r < N; r++)
8 A = sqrt(1.0-4.0*(A-0.5)*(A-0.5));
9 if (i<5) printf("After %5d iters, A=%.6f\n", N, A);

10 }
11 }

Listing 4.5: Code fp-model.cc used in Listing 4.6 to illustrate the effect of relaxed floating-
point model. The loop with the sqrt() function performs an iterative update of the value A.

vega@lyra% icpc -mmic \
> -fp-model fast=1 fpmodel.cc\
> -o slowcode
vega@lyra% ssh mic0 \
> tmr ${PWD}/slowcode
After 0 iters, A=0.100000
After 10000 iters, A=0.633073
After 20000 iters, A=0.534324
After 30000 iters, A=0.513582
After 40000 iters, A=0.552932
Time: 3.588 s

vega@lyra% icpc -mmic \
> -fp-model fast=2 fpmodel.cc\
> -o fastcode
vega@lyra% ssh mic0 \
> tmr ${PWD}/fastcode
After 0 iters, A=0.100000
After 10000 iters, A=0.633073
After 20000 iters, A=0.534324
After 30000 iters, A=0.244553
After 40000 iters, A=0.997650
Time: 2.411 s

Listing 4.6: Compiling and running the code illustrated in Listing 4.5 on an Intel Xeon Phi
coprocessor. Test case shown in panel on the left uses default semantics, -fp-model fast=1.
Case shown in the other panel uses relaxed semantics, -fp-model fast=2.

This example demonstrates how relaxing the floating-point model may
lead to a significant performance increase on Intel Xeon Phi coprocessors.
However, this is only safe in well-behaved, numerically stable applications.
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Precision Control for Transcendental Functions

To use transcendental functions such as square root, trigonometric, loga-
rithmic and exponential functions, the programmer must include the header
file math.h (or cmath for C++). This causes linking to the Intel Math
Library, which is a part of the Intel compiler distribution. Including these
files makes the program compatible with the interface of the GCC math
library libm, so that the code can also be compiled with a GNU C/C++
compiler. Alternatively, the programmer may include mathimf.h, which
includes additional functions available only in the Intel Math Library, but
makes the code incompatible with GNU compilers.

By default, the Intel C++ Compiler replaces calls to Intel Math Library
functions with Intel Short Vector Math Library functions or to the processor
vector instructions. It is possible to instruct the compiler to use low-precision
implementations of these functions for some operations in order to gain
more performance. Naturally, this must be done with care and only in
“well-behaved” applications that can tolerate the imprecise results.

Table 4.3 summarizes the Intel C++ Compiler command line arguments
for precision control. Of all the settings listed there, -fimf-precision,
-fimf-max-error and fimf-accuracy-bits express the same re-
quirements in different terms: as a grade of precision, as the maximum
tolerable error, and as the required number of accurate bits. The setting
-fimf-domain-exclusion is different: it determines whether special-
value numbers (extremes, NaNs, infintes, denormals and zeroes) must be
handled by the Intel Math Library functions or not.

The effect of transcendental function precision control may be different
on different architectures. For instance, in the example demonstrated below,
on an Intel Xeon processor, the argument -fimf-precision impacts the
performance and precision of the result. The same code on an Intel Xeon Phi
coprocessor produces the same results in the same amount of time regardless
of the value of -fimf-precision.

For more information of the function precision control in Intel C++ Com-
piler see the Intel C++ Compiler Reference and the white paper “Advanced
Optimizations for Intel MIC Architecture, Low Precision Optimizations” by
Wendy Doerner [25].
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Argument Effect
-fimf-precision=
value[:funclist]

Defines the precision for math library functions.
Here, value is one of: high, medium or low, which cor-
respond to progressively less accurate but more efficient math
functions, and funclist is a comma-separated list of functions
that this rule is applied to.
Value high is equivalent to max-error=0.6, medium to
max-error=4 and low to accuracy-bits=11 in single
precision or accuracy-bits=26 in double precision (see be-
low).
By default, this option is not specified, and the compiler uses
default heuristics when calling math library functions.
This is an aggregate compiler option;see -fimf-max-error
and -fimf-accuracy-bits for fine-grained control.

-fimf-max-error=
ulps[:funclist]

The maximum allowable error expressed in ulps (units in last
place) [26]. Max error of 1 ulps corresponds to the last man-
tissa bit being uncertain; 4 ulps is three uncertain bits, etc.
This is a more fine-grained method of setting accuracy than
-fimf-precision.

-fimf-accuracy-bits=
n[:funclist]

The number of correct bits required for mathematical function
accuracy. The conversion formula between accuracy bits and ulps
is: ulps = 2p−1−bits, where p is 24 for single precision, 53 for
double precision and 64 for long double precision (the number
of mantissa bits). This is a more fine-grained method of setting
accuracy than -fimf-precision.

-fimf-domain-exclusion=
n[:funclist]

Defines a list of special-value numbers that do not need to be
handled by the functions. Here, n is an integer derived by the
bitwise OR of the following values: extremes: 1, NaNs: 2, in-
finites: 4, denormals: 8, zeroes: 16. For example, n=15 indicates
that extremes, NaNs, infinites and denormals should be excluded
from the domain of numbers that the mathematical functions must
correctly process.

Table 4.3: Intel C++ Compiler arguments for mathematical function precision control.
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Listing 4.7 and Listing 4.8 illustrate math function precision control.
The change of the precision of the exponential function from high to
low results in almost a factor of 2 speedup. The results are different, and
the difference can be detected from the 11th significant figure in the dec-
imal representation. Assembly listing shows that the computation of the
exponential was instrumented for -fimf-precision=high with func-
tion __svml_exp_ha() (“high accuracy”), and for =low, with function
__svml_exp_ep() (“enhanced performance”).

1 #include <cstdio>
2 #include <cmath>
3 int main() {
4 const int N = 1000000;
5 const int P = 10;
6 double A[N];
7 const double startValue = 1.0;
8 A[:] = startValue;
9 for (int i = 0; i < P; i++)

10 for (int r = 0; r < N; r++)
11 A[r] = exp(-A[r]);
12 printf("Result=%.17e\n", A[0]);
13 }

Listing 4.7: Code precision.cc used in Listing 4.8 to illustrate the effect of relaxed tran-
scendental function precision.

vega@lyra% icpc -o precision-2\
> -fimf-precision=high\
> precision.cc
vega@lyra% tmr ./precision-2
Result=5.68428725029060722e-01
Time: 0.073 s

vega@lyra% icpc -o precision-1\
> -fimf-precision=low\
> precision.cc
vega@lyra% tmr ./precision-1
Result=5.68428725010313829e-01
Time: 0.046 s

Listing 4.8: Compiling and running the code illustrated in Listing 4.7 on an Intel Xeon Phi
coprocessor. with high precision (left) and low precision (right).
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4.2.3. Optimizing Arithmetic Expressions
In some cases, the code may perform unnecessary calculations even

though the programmer did not intend that. Removing those redundant oper-
ations, as outlined in this section, can benefit the application performance.

Precision of Constants and Variables

Intel Xeon Phi coprocessors have a theoretical peak performance of up
to 1 TFLOP/s in double precision and up to 2 TFLOP/s in single precision.
Therefore, for floating-point calculations, single precision floating-point num-
bers should be used instead of double precision wherever possible. Similarly,
signed 32-bit integers should be preferred to unsigned and 64-bit integers,
including array indices.

However, it is generally preferable to consistently use single precision
or double precision throughout the application, as opposed to mixing them.
Mixing single and double precision variables and constants leads to compli-
cations with vectorization, and often results in even lower performance than
in double precision.

Declaring precision for variables in C and C++ is straightforward: type
float is for single precision, double for double precision. There is
support for 128-bit type long double in Intel Xeon Phi coprocessors,
however, only for scalar operations. For integers, int is for 32-bit signed
integers, long is for 64-bit signed integers. Type long long is equivalent
to long (i.e., there is no 128-bit integer support).

For literal constants, the following conventions determine the type:

1. Constants without a decimal point or exponent or suffix have type int.
Examples: 0, 1, 300.

2. Constants without a decimal point or exponent but with suffix l or L have
type long. Examples: 0L, 1L, 1000000000000L.

3. Constants with a decimal point or exponent and without a suffix have type
double. Examples: 0.0, 1.0, 1.0e100.

4. Constants with a decimal point or exponent and with suffix f or F have
type float. Examples: 0.0F, 1.0F, 1.0e10F.

5. Constants with a decimal point or exponent and with suffix l or L have
type long double. Examples: 0.0L, 1.0L, 1.0e1000L.

These conventions are summarized in Table 4.4.
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Type Decimal Point Exponent Suffix Example
int no no none 0, 1, 300
long no no l or L 0L, 1L, 1000000000000L
double yes yes none 0.0, 1.0, 1.0e100
float yes yes f or F 0.0F, 1.0F, 1.0e10F
long double yes yes l or L 0.0L, 1.0L, 1.0e1000L

Table 4.4: Conventions for defining literal constants in C and C++.

It is important to follow the convention of suffixes to avoid accidental
introduction of mixed precision in expressions. Listing 4.9 illustrates the
good and bad practices for working with precision of constants and variables.

1 // Bad: 2 is "int"
2 long b=a*2;
3

4 // Bad: overflow
5 long n=100000*100000;
6

7 // Bad: excessive
8 float p=6.283185307179586;
9

10 // Bad: 2 is "int"
11 float q=2*p;
12

13 // Bad: 1e9 is "double"
14 float r=1e9*p;
15

16 // Bad: 1 is "int"
17 double t=s+1;

1 // Good: 2L is "long"
2 long b=a*2L;
3

4 // Good: correct
5 long n=100000L*100000L;
6

7 // Good: accurate
8 float p=6.283185f;
9

10 // Good: 2.0f is "float"
11 float q=2.0f*p;
12

13 // Good: 1e9f is "float"
14 float r=1e9f*p;
15

16 // Good: 1.0 is "double"
17 double t=s+1.0;

Listing 4.9: Controlling the implied precision of constants and functions.
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Precision of Functions

Transcendental functions in the Intel Math Library have single precision
and double precision implementations. Each function takes an argument and
returns the result of the same data type. Double precision functions have
names such as sin(), exp(), fabs(), etc., and the names of single pre-
cision versions are derived by adding the suffix -f, e.g., sinf(), expf(),
fabsf(), etc. For a complete list of functions in the Intel Math Library,
refer to the compiler reference.

There is no overload for Intel Math Library functions in C and in the
global namespace in C++. That is, for float x, the function sin(x)
does not fall back to the single precision implementation. However, when the
namespace std is used, the functions become overloaded in C++. Mixing
the precision of arguments and functions may lead to unintended type con-
versions. For instance, in order to compute sin(x), the value of x will be
converted to double precision, the sine function will be computed in double
precision, and, depending on the usage of this function in the expression, the
value of the sine may be down-converted again to single precision.

Listing 4.10 illustrates the proper and improper practices for using the
Intel Math Library functions.

1 // Bad: 3.14 is a double
2 float x = 3.14;
3

4 // Bad: sin() is a
5 // double precision function
6 float s = sin(x)
7

8 // Bad: round() takes double
9 // and returns double

10 long v = round(x);
11

12 // Bad: abs() is not from IML
13 // it takes int and returns int
14 int v = abs(x);

1 // Good: 3.14f is a float
2 float x = 3.14f;
3

4 // Good: sin() is a
5 // single precision function
6 float s = sinf(x)
7

8 // Good: lroundf() takes float
9 // and returns long

10 long v = lroundf(x);
11

12 // Good: fabsf() is from IML
13 // It takes and returns a float
14 float v = fabsf(x);

Listing 4.10: Controlling precision of Intel Math Library functions and arguments.
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The recommendations of this section are particularly important for the
scenario when Intel Xeon Phi coprocessors are used for single precision
calculations. In this case, careful precision control in C and C++ is necessary,
because literal constants are interpreted as double without a suffix, and the
default IML functions expect double precision arguments and return double
precision values. It is easy to convince oneself of these facts by running the
code shown in Listing 4.11.

1 #include <cmath>
2 #include <cstdio>
3

4 int main() {
5 // Proof that exp() is not overloaded:
6 printf(" exp (1.0f)=%18.16f\n", exp (1.0f));
7 printf(" exp (1.0 )=%18.16f\n\n", exp (1.0));
8 // Proof that expf() gives lower precision:
9 printf(" expf(1.0f)=%18.16f\n", expf(1.0f));

10 printf(" expf(1.0 )=%18.16f\n\n", expf(1.0));
11 // Overload in namespace std:
12 printf("std::exp(1.0f)=%18.16f\n", std::exp(1.0f));
13 printf("std::exp(1.0 )=%18.16f\n", std::exp(1.0));
14 printf("Exact: e=2.71828182845904523536...\n\n");
15 }

vega@lyra% icpc -o Scalar-TestFOverload Scalar-TestFOverload.cc
vega@lyra% ./Scalar-TestFOverload

exp (1.0f)=2.7182818284590451
exp (1.0 )=2.7182818284590451

expf(1.0f)=2.7182817459106445
expf(1.0 )=2.7182817459106445

std::exp(1.0f)=2.7182817459106445
std::exp(1.0 )=2.7182818284590451
Exact: e=2.71828182845904523536...

Listing 4.11: Verifying the defaults for precision of constants, variables and functions.
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Strength Reduction

Strength reduction is an optimization method based on replacing expen-
sive arithmetic operations with approximately equivalent less expensive
operations.

One of the best known examples of strength reduction is the replacement
of division with multiplication by the reciprocal of the denominator. It works
because floating-point division is significantly more expensive than floating-
point multiplication (see, e.g., [27] for benchmark results). This particular
optimization is trivial in expressions involving constants. For example,
x*0.5 computes significantly faster than x/2.0. In loops, performance
can be improved by precomputing the reciprocal of the denominator and
multiplying by it, as illustrated in Listing 4.12.

Sub-optimal Optimized

1 // Expensive division in loop
2 for (int i = 0; i < n; i++)
3 A[i] /= B;
4

5 // Two divisions
6 // are expensive
7 for (int i = 0; i < n; i++)
8 P[i] = (Q[i]/R[i])/S[i];

1 const double Br = 1.0/B;
2 for (int i = 0; i < n; i++)
3 A[i] *= Br;
4

5 // One division and one
6 // multiplication is better
7 for (int i = 0; i < n; i++)
8 P[i] = Q[i]/(R[i]*S[i]);

Listing 4.12: Strength reduction: replacement of division with multiplication.

In some cases, depending on floating-point semantics (see Section 4.2.2),
the compiler can automatically perform strength reduction. However, doing it
explicitly like in Listing 4.12 may improve cross-platform and cross-compiler
portability of the code.

Strength reduction in expressions may take other forms. For instance, the
programmer may simplify expressions to expose opportunities for hardware-
supported transcendentals. Intel Xeon Phi coprocessor architecture supports
operations such as the reciprocal square root and base 2 logarithms and
exponentials. The programmer can take advantage of this functionality by
performing strength reduction as illustrated in Listing 4.13.
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Sub-optimal Optimized

1 // No hardware support for pow
2 double r = pow(r2, -0.5);
3

4 // Natural base exponentials
5 // are expensive
6 float v = expf(x);
7

8 // Linear interpolation in
9 // log-log space (=power-law)

10 double y = y0*exp(log(x/x0)*
11 log(y1/y0)/log(x1/x0));

1 // Hardware support for rsqrt
2 double r = 1.0/sqrt(r2);
3

4 // Base 2 exponentials
5 // are supported in hardware
6 float v = exp2f(x*1.442695f);
7

8 // The same result, faster
9 //

10 double y = y0*exp2(log2(x/x0)*
11 log2(y1/y0)/log2(x1/x0));

Listing 4.13: Left: non-optimized code uses functions not supported in hardware. Right:
optimized code produces approximately the same results but allows the compiler to instrument it
with more efficient or hardware-supported transcendentals.

Optimizations shown in Listing 4.13 may work for some architectures
and compilers, but not for others. For instance, while exp2() is expected
to be faster than exp() on Intel architectures with the Intel Math Library,
however, the effect may be opposite with other platforms and compilers. The
programmer may improve code portability using the preprocessor macros as
shown in Listing 4.14.

1 #ifdef __INTEL_COMPILER
2 #define FASTEXP exp2
3 #else
4 #define FASTEXP exp
5 #endif
6 y=FASTEXP(x);

Listing 4.14: Using preprocessor macros for performance portability.

It is important to stress again that expressions optimized with strength
reduction generally do not yield bitwise-identical results.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition



4.2. SCALAR AND GENERAL OPTIMIZATIONS 281

Common Subexpression Elimination

Sometimes the compiler can automatically detect when an expression is
re-used multiple times or within a loop, and precompute it, as was shown in
Listing 4.18. This procedure is known as common subexpression elimination.
To insure against situations when the compiler is unable to implement this
optimization, it can be expressed in the code as shown in Figure 4.15.

1 for (int i = 0; i < n; i++) {
2 for (int j = 0; j < m; j++) {
3 const double r=
4 sin(A[i])*cos(B[j]);
5 // ...
6

7 }
8 }

1 for (int i = 0; i < n; i++) {
2 const double sin_A=sin(A[i]);
3 for (int j = 0; j < m; j++) {
4 const double cos_B=cos(B[j]);
5 const double r=sin_A*cos_B;
6 // ...
7 }
8 }

Listing 4.15: Left: non-optimized code computes the value of sin(A[i]) for every iteration
in j. Right: optimized code eliminates redundant calculations of sin(A[i]) by precomputing
it. Note that the assignment of the variable cos_B will be eliminated by the compiler at -O2
and higher in a procedure known as constant propagation.
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4.2.4. Programming Practices for High Performance
This section presents a list of practices which we found to be helpful for

applications designed with the Intel C and C++ compiler. At the same time,
from working with third-party codes, and from feedback on our developer
training, we understand that these practices are not always followed by
experts in the field. That is because, at different times and with different
platforms and compilers, some of these practices either have no effect, or
have the opposite effect to what we observe with the Intel tools and platforms.
Therefore, we hope that the information in this section will be useful for
developers working today on applications for Intel parallel architectures
developed with the Intel C and C++ compilers.

Ternary Operator Trap

The ternary operator ?: is a short-hand expression for the if. . .else
statement. Sometimes the syntax of this operator can cause redundant calcu-
lations, like shown in the example below.

1 #define min(a, b) ( (a) < (b) ? (a) : (b) )
2 const float c = min(my_function(x), my_function(y));

Listing 4.16: In this sub-optimal code, three calls to my_function() will be made: two calls
to evaluate the condition (a<b) and one more call to substitute the result.

To avoid this trap, the programmer may precompute the expressions used
in the ternary operator.

1 #define min(a, b) ( (a) < (b) ? (a) : (b) )
2 const float result_a = my_function(x);
3 const float result_b = my_function(y);
4 const float c = min(a, b);

Listing 4.17: In this optimized code, only two calls to my_function() will be made.
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Using the const Qualifier

Whenever a local variable or a function argument is not supposed to
change value in the code, it is beneficial to declare it with the const
qualifier. This enables more aggressive compiler optimizations, including
precomputing commonly used combinations of constants. For example, the
code in Listing 4.18 executes almost 4x faster when T is declared with the
const qualifier. This code is representative of numerical integration with
the rectangle rule.

Sub-optimal Optimized

1 #include <cstdio>
2 int main() {
3 const int N=1<<28;
4 double T = (double)N;
5 double s = 0.0;
6 for (int i = 0; i < N; i++)
7 s += (double)i/T;
8 printf("Result=%e\n", s);
9 }

#include <cstdio>
int main() {
const int N=1<<28;
const double T = (double)N;
double s = 0.0;
for (int i = 0; i < N; i++)
s += (double)i/T;

printf("Result=%e\n", s);
}

vega@lyra% icpc noconst.cc
vega@lyra% tmr ./a.out
Result=1.342117e+08
Time: 0.400 s

vega@lyra% icpc const.cc
vega@lyra% tmr ./a.out
Result=1.342117e+08
Time: 0.110 s

Listing 4.18: The sub-optimal code on the left takes 4x longer to compute than the optimized
code on the right. The const qualifier on the variable T permits the compiler to precompute the
reciprocal 1/T and use multiplication instead of division in every iteration.

Analysis of assembly shows that in the optimized version with the const
qualifier, the compiler replaced division by T with multiplication by the
precomputed reciprocal 1/T. With multiplication being a cheaper operation
than division, performance was improved. Without the const qualifier, the
compiler was not able to make this strength reduction optimization, even
though floating-point semantics permits it at the default optimization level.
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Array Reference by Index instead of Pointer Arithmetic

Intel Compilers are able to better optimize the code when memory access
pattern in loops is clearly expressed. Specifically, addressing arrays by index
is used instead of pointers is generally beneficial (i.e., a[i] instead of
*(a+i)). Listing 4.19 Illustrates this recommendation.

Sub-optimal Optimized

1 #include <cstdio>
2 int main(){
3 const long N = 800;
4 float a[N*N], b[N*N], c[N*N];
5 a[:] = b[:] = 1.0f;
6 c[:] = 0.0f;
7 for(int i = 0; i < N; i++)
8 for(int j = 0; j < N; j++){
9 float* cp = c + i*N + j;

10 for(int k = 0; k < N; k++)
11 *cp += a[i*N + k]
12 * b[k*N + j];
13 }
14 printf("Result=%f\n", c[0]);
15 }

#include <cstdio>
int main(){
const long N = 800;
float a[N*N], b[N*N], c[N*N];
a[:] = b[:] = 1.0f;
c[:] = 0.0f;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
c[i*N + j] += a[i*N + k]

* b[k*N + j];

printf("Result=%f\n", c[0]);

}

user@host% icpc array_ptr.cc
user@host% tmr ./a.out
Result=800.000000
Time: 0.733 s

user@host% icpc array_index.cc
user@host% tmr ./a.out
Result=800.000000
Time: 0.124 s

Listing 4.19: The intentionally crippled code on the left takes more than 5x longer to compute
than the optimized code on the right. The only difference between the codes is the reference to
the array element c[i*N + j].

Optimization report explains why the example with pointer reference is
slower. The compiler decided not to vectorize the inner loop and implemented
it with scalar multiplications and additions. In contrast, with array notation,
the compiler was able to interchange the loops in j and k, which opened up
a unit-stride vectorization path, so the code was vectorized.
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Overhead of Abstraction

Complex C++ classes may introduce significant overhead for operations
that are expected to be fast for simple objects like C arrays. For example, data
containers may perform some operations to update their internal state with
every read or write operation. It may be possible to reduce the computational
expense of manipulations with complex classes by outsourcing a part of the
calculation to simpler objects.

For example, the calculation shown in Figure 4.20 was found in a scientific
code employing the CERN ROOT library [28]. The code performs binning
(i.e., hashing) of events marked by energy values into a histogram, in which
the values of the bins represent the number of events with energies between
the bin boundaries. The histogram is represented by the ROOT library’s
class TH1F, which offers additional histogram functionality required in
the project. However, the binning process is a bottleneck of the project,
because the method Fill, called over 109 times, involves unnecessary
overhead.

1 // class TH1F contains a histogram with the number of bins equal to
2 // nBins, which span the values from energyMin to energyMax. nBins
3 // is of order 100
4 TH1F* energyHistogram = new TH1F("energyHistogram", "", nBins,
5 energyMin, energyMax)
6

7 // Method TH1F::Fill adds an event with the value eventEnergy[i]
8 // to the histogram.
9

10 // nEvents is of order 1e9.
11 for (unsigned long i = 0; i < nEvents; i++)
12 energyHistogram->Fill( eventEnergy[i] );

Listing 4.20: This code employs the ROOT library to construct a histogram implemented in
class TH1F. The generation of the histogram is a bottleneck of the project.

The code was optimized by precomputing the values of the bins in the
histogram using a more lightweight object, an array of long integers. The
array was then loaded into the histogram using an overloaded Fill method,
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which takes the number of events in the bin, as opposed to adding a single
event at a time. As a result, the execution time of the binning process was
significantly reduced.

1 // array tempHistogram is used to prepare the histogram for loading
2 // into class TH1F
3 long tempHistogram[nBins]; tempHistogram[:] = 0;
4 const floatinvBinWidth = (energyMin - energyMax) / (float)nBins;
5 for (long i = 0; i < nEvents; i++) {
6 bin = (int)floorf(eventEnergy[i] * invBinWidth);
7 if ((0 <= bin) && (bin < nBins))
8 tempHistogram[bin]++;
9 }

10 // Now the histogram class is filled, but this time
11 // only nBins=100 calls to TH1F::Fill are made, instead of
12 // nEvents=1e9 calls
13 TH1F* energyHistogram = new TH1F("energyHistogram", "", nBins,
14 energyMin, energyMax);
15 for (int i = 0; i < nBins; i++)
16 energyHistogram->Fill(((float)i+0.5f)*binWidth,
17 (float)tempHistogram[i]);

Listing 4.21: This code produces approximately the same results as the code in Listing 4.20, but
works much faster, because the expensive method Fill is called fewer times.

The calculation of the histogram can be further accelerated through vec-
torization and thread parallelism. An example of these optimizations is
discussed in Section 4.4.1.

While the example above is specific to the ROOT library, the principle
illustrated here applies to other situations as well. When the overhead of
operations in a library function or class is beyond the control of the developer,
it may be possible to eliminate that overhead by precomputing some of the
data in lightweight objects like C arrays.
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4.2.5. Math Kernel Library for Scalar Arithmetic
Continuing the discussion of scalar optimization, it is natural to mention

the possibilities offered by Intel Math Kernel Library (Intel MKL). Intel
MKL is a comprehensive mathematical library for applications using Intel
Xeon processor and Intel Xeon Phi coprocessors. Full scope of Intel MKL
functionality is discussed in Section 5.1.

Here we summarize the section on scalar and general optimization by
pointing out that many of the tasks requiring these kind of optimizations are
implemented in Intel MKL. These implementations are tuned for Intel pro-
cessors and coprocessors. Table 4.5 summarizes the Intel MKL functionality
that programmers interested in this Section may find useful.

Functionality Tools available in Intel MKL
Mathematical functions Useful for applying to vectors larger than 40 elements.

Support for float, double, MKL_Complex8 and
MKL_Complex16 data types. Include: basic arithmetic,
linear transformations, square and cube roots, power, hy-
potenuse, exponential, logarithmic, trigonometric, hyper-
bolic, error, gamma, rounding functions. Able to scatter/-
gather non-unit stride vectors.

Statistical functions Random number generators, convolution and correlation,
summary statistics.

Data fitting functions Linear, piece-wise polynomial interpolations of scalar-
valued and vector-valued functions

Table 4.5: Intel MKL functionality related to scalar and general optimization.

Other facilities of MKL do not belong to this section as they are not
just scalar functions: they leverage multi-threading and distributed com-
puting. See Section 5.1 for the complete list that includes: BLAS, sparse
BLAS, PBLAS, LAPACK, ScaLAPACK, sparse solvers, eigensolver rou-
tines, Fourier transforms, partial differential equations support, and nonlinear
optimization problem solvers.

Examples in Listing 4.22 demonstrate one of the scalar functions at work:
Intel MKL random number generator.
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1 #include <cstdlib>
2 #include <cstdio>
3

4 int main(){
5 const size_t N =1<<29L;
6 const size_t F =sizeof(float);
7 float* A =(float*)malloc(N*F);
8 // Initialize RNG
9 srand(0);

10 for (int i = 0; i < N; i++){
11 A[i]= (float)rand()
12 /(float)RAND_MAX;
13 }
14

15 printf("Generated %ld random \
16 #s.\nA[0]=%e\n", N, A[0]);
17 free(A);
18 }

#include <cstdlib>
#include <cstdio>
#include <mkl_vsl.h>
int main() {
const size_t N= 1<<29L;
const size_t F= sizeof(float);
float* A= (float*)malloc(N*F);
VSLStreamStatePtr rnStream;
// Initialize RNG
vslNewStream( &rnStream,

VSL_BRNG_MT19937, 1 );
vsRngUniform( // Run RNG

VSL_RNG_METHOD_UNIFORM_STD,
rnStream, N, A, 0.0f, 1.0f);

printf("Generated %ld random \
#s.\nA[0]=%e\n", N, A[0]);
free(A);
}

vega@lyra% icpc -mmic rand.cc
vega@lyra%
vega@lyra% ssh mic0 \
> tmr ${PWD}/a.out
Generated 536870912 random #s.
A[0]=8.401877e-01
Time: 49.108 s

vega@lyra% icpc -mkl \
> -mmic rand-mkl.cc
vega@lyra% ssh mic0 \
> tmr ${PWD}/a.out
Generated 536870912 random #s.
A[0]=1.343642e-01
Time: 4.615 s

Listing 4.22: Comparison of random number generation on an Intel Xeon Phi coprocessor with
the C Standard Library (left-hand side) and Intel MKL (right-hand side).

Both codes in Listing 4.22 perform the same task: the generation of a set
of random numbers. However, the code in the left-hand side of the listing is
based on the C Standard General Utilities Library, and in the right-hand side,
the code is using the Intel MKL. The performance on the Intel Xeon Phi
coprocessor is better with MKL by a factor of more than 10x. In addition, the
MKL implementation is thread-safe and can be efficiently used by multiple
threads in an application. That is not true of the random number generator
implemented in the C Standard Library.
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4.3. Optimizing Vectorization

This section presents optimization advice for automatic vectorization.
The guidelines for developing applications suitable for auto-vectorization are
outlined: unit-stride access, elimination of real and assumed vector depen-
dence and data alignment, as well as some supplementary compiler functions,
such as vectorization pragmas and vectorization report, and programming
techniques for vectorization facilitation: strip-mining and regularizing the
vectorization pattern.

4.3.1. Diagnosing the Utilization of Vector Instructions
When one begins to port and optimize an application for execution on

Intel Xeon processors and/or Intel Xeon Phi coprocessors, it is important
to determine whether the existing application takes advantage of vector
instructions. There are multiple ways to do that:

1. When the performance-critical parts of the application are known, the
programmer may use the compiler arguments -qopt-report=n and
-qopt-report-phase:vec where n is an integer from 0 to 5 con-
trolling the level of report verbosity. With this argument, the compiler
generates the information about loops that are automatically vectorized or
not vectorized, along with brief explanations.

2. It is also possible to use the Intel VTune Amplifier XE in order to diagnose
the number of scalar and vector instructions issued by the code.

3. Finally, there is a simple and practical way to test the effect of auto-
matic vectorization on the application performance. First, compile and
benchmark the code with all the default compiler options. Then, compile
the code with arguments -no-vec -no-simd -no-openmp-simd
and benchmark again. With these options, automatic vectorization is dis-
abled. If the difference in the performance is significant, it indicates that
automatic vectorization already contributes to the performance. Note that
this method works best when the application is benchmarked with only
one thread. This reduces the impact of other factors (such as memory
traffic and multi-threading overhead) on the execution time of the code.
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4.3.2. Unit-Stride Access and Spatial Locality of Reference
Even though Intel compilers are able to vectorize loops with complex

data access patterns, the best performance is achieved when data is accessed
with unit stride. That is, in each iteration of a vectorized loop, scalar data
elements packed into the vector register must be contiguous in memory. The
rule of thumb for achieving unit-stride access is to use structures of arrays
(SoA) instead of arrays of structures (AoS).

For an illustration, consider the following physical problem (this examples
is based on Colfax Research publication [29] and available as Lab 4.02 –
see Section 6.2). Suppose we have m particles identified by index i. Each
particle is described by three Cartesian coordinates: ~r ≡ (ri,x, ri,y, ri,z)

and charge qi. We need to calculate the electric potential Φ(~R) at multiple
observation locations ~Rj ≡ (Rj,x, Rj,y, Rj,z), where index j denotes one of
n locations. The expression for that potential is given by Coulomb’s law:

Φ
(
~Rj

)
= −

m∑
i=1

qi√
(ri,x −Rj,x)

2 + (ri,y −Rj,y)
2 + (ri,z −Rj,z)

2
. (4.1)

Figure 4.1 is a visual illustration of the problem. In the left panel,m = 512
charges are distributed in a lattice-like pattern. Each of these particles
contributes to the electric potential at every point in space. The right panel
of the figure shows the electric potential at m = 128 × 128 points in the
xy-plane at z = 0 calculated using Coulomb’s law (Equation 4.1).
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Figure 4.1: Left: charged particles. Right: electric potential Φ(z = 0) produced by the particles.
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Elegant, but Inefficient Solution

To a physicist, it is natural to treat particles as the basis of physical models,
and therefore it may seem reasonable to design an object-oriented code by
defining the particle structure type as in Listing 4.23, and then declaring an
array of structures (AoS) of this type.

1 struct ChargeType { // Elegant, but ineffective data layout
2 float x, y, z, q; // Coordinates and value of this charge
3 };
4 ChargeType* particle; // Now declare an array of m point charges
5 particle = (ChargeType*)_mm_malloc(m*sizeof(ChargeType), 64);

Listing 4.23: Data organization as an array of structures (AoS), inefficient for vectorization.

Listing 4.24 demonstrates a function that calculates the electric potential
at a point ~R defined by quantities Rx, Ry and Rz in the code.

1 // This version performs poorly because of strided access to data
2 void CalculateElectricPotential(
3 const int m, // Number of charges
4 const ChargeType* particle, // Charge distribution (AoS)
5 const float Rx, const float Ry, const float Rz, // Observation pt
6 float & phi // Output: electric potential
7 ) {
8 phi=0.0f;
9 for (int i = 0; i < m; i++) { // This loop is auto-vectorized

10 // Non-unit stride between particle[i].x and particle[i+1].x
11 const float dx = particle[i].x - Rx;
12 const float dy = particle[i].y - Ry;
13 const float dz = particle[i].z - Rz;
14 phi -= particle[i].q/sqrtf(dx*dx+dy*dy+dz*dz); // Coulomb’s law
15 }
16 }

Listing 4.24: Inefficient solution for Coulomb’s law application: access to quantities x, y, z and
q has a stride of 4 rather than 1, because data is stored as AoS.
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We used this code in a multi-threaded calculation where different threads
compute the potential for different values of ~R. Benchmarks show that, as-
suming 10 floating-point operations per charge per location, the performance
of this code is 128 GFLOP/s on an Intel Xeon-based host, and 190 GFLOP/s
on an Intel Xeon Phi coprocessor.

The performance of this application can be improved by code optimization.
Indeed, consider the inner for-loop in line 9 of Listing 4.24. The variable
particle[i].x in the i-th iteration is 4*sizeof(float)=16 bytes
away in memory from particle[i+1].x used in the next iteration. This
corresponds to a stride of 16/sizeof(float)=4 instead of 1, which will
incur a performance hit when the data is loaded into the processor’s vector
registers. The same goes for members y, z and q of class Charge. Even
though Intel Xeon Phi coprocessors support gather/scatter vector instructions,
unit-stride access to vector data is almost always more efficient.

The left-hand side panel of Figure 4.2 illustrates the data layout in memory
and the non-unit stride gather operation required to load a set of coordinates
x into a vector register. In the next section we will optimize the code by
changing the data layout to a structure of arrays in order to reproduce the
unit-stride access illustrated in the right-hand side panel of Figure 4.2.

Figure 4.2: Difference in memory access between AoS and SoA
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Optimized Solution with Unit-Stride Access

To achieve unit-stride data access in the for-loop of the performance-
critical function CalculateElectricPotential, the data structure
needs to be re-organized. Instead of the inefficient struct ChargeType,
we can declare struct ChargeDistributionType containing the
properties of charges as arrays (the SoA approach), as shown in Listing 4.25.

1 struct ChargeDistributionType { // Efficient layout: SoA
2 const int m; // Number of charges
3 float *x, *y, *z, *q; // Arrays of x, y, z and q of particles
4 };
5 ChargeDistributionType particles;

Listing 4.25: Data storage as a structure of arrays is usually beneficial for vectorization.

With this new data structure, the function calculating the electric potential
takes the form shown in Listing 4.26.

1 // This version vectorizes better thanks to unit-stride data access
2 void CalculateElectricPotential(
3 const int m, // Number of charges
4 const ChargeDistributionType &particles, // Charge distrib. (SoA)
5 const float Rx, const float Ry, const float Rz, // Observation pt
6 float & phi // Output: electric potential
7 ) {
8 phi=0.0f;
9 for (int i = 0; i < particles.m; i++) {

10 // Unit stride between particles.x[i] and particles.x[i+1]
11 const float dx = particles.x[i] - Rx;
12 const float dy = particles.y[i] - Ry;
13 const float dz = particles.z[i] - Rz;
14 phi -= particles.q[i]/sqrtf(dx*dx+dy*dy+dz*dz); //Coulomb’s law
15 }
16 }

Listing 4.26: Efficient vectorization: unit-stride access to quantities x, y, z and q.

Inner for-loop in line 9 of Listing 4.26 has unit-stride data access, as
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particles.x[i] is immediately followed by particles.x[i+1]
in memory. The same is true for all other quantities accessed via the ar-
ray iterator i. The performance of this code is now 331 GFLOP/s on the
host (2.6x faster than non-optimized) and 527 GFLOP/s (2.8x faster than
non-optimized) on the coprocessor. The latter can be further increased
to 764 GFLOP/s by compiling the code with -fp-model fast=2 (see
Section 4.2.2). Figure 4.3 summarizes the results.
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Figure 4.3: Performance of the electric potential calculation with Coulomb’s law discussed in
Section 4.3.2, before and after optimization.

The above example demonstrates how converting data layout from an
array of structures to a structure of arrays results in unit-stride access to
data, which leads to significant performance improvements. The necessity
of unit-stride access is an inherent property of all computer architectures
with cache-line granularity of access to memory. It is a manifestation of a
more general prerequisite of high performance, locality of reference of data
in space. See also Section 4.5 for an illustration of how improving locality of
reference in time can improve performance by optimizing the cache traffic.
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4.3.3. Regularizing Vectorization Pattern

VPUs of Intel Xeon Phi coprocessors can process vector instructions on
vectors of exactly 16 or 8 elements in single and double precision, respec-
tively. At the same time, the Intel C++ Compiler is able to vectorize loops
for which loop count is not known at compilation time. Furthermore, load
and store instructions in the KNC architecture can operate only on 64-byte
aligned memory regions. However, this does not prevent the Intel C++ Com-
piler from vectorizing loops in which the alignment of the first element is
not known at compilation time.

In cases where the loop count or alignment situation is known only at
runtime, the compiler will implement a check at the beginning of the loop.
Depending on this check, the code may peel off a few iterations at the
beginning of the loop, or process the remainder (i.e., tail) of the loop with
scalar or masked vector instructions. Naturally, a loop with beginning or
remainder peeled off is less efficient than a loop that consists only of vector
iterations. Peeling is illustrated in Figure 4.4 (cases “Code Path 1” and “Code
Path 2” may be taken at runtime depending on the length of the loop and on
the data alignment situation).

Figure 4.4: Compiler may peel an irregular loop. To prevent that, the programmer may regularize
the vectorization pattern.
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The programmer can alleviate the load on the platform by regularizing the
pattern of vectorization, so that the operations are always vector and always
on aligned data. This may require three measures:

1. Padding the loop count to a multiple of the vector length
2. Padding data to a multiple of vector length
3. Aligning data on the appropriate boundary

We refer to these optimizations that lead to the elimination of loop peel
and remainder as “regularizing the vectorization pattern”. The resulting loop
may formally have more iterations, where in marginal iterations the processor
crunches garbage data (see Figure 4.4, case “Optimization”). However, the
performance of regularized loops on the Intel MIC architecture is generally
better than that of irregular loops, because the peeled iterations take more
clock cycles than a single vector iteration.

The compiler also supports semi-automated application of some of these
application. For instance, vectorization of loop remainder and assumption
of safe padding is described in the article “Utilizing Full Vectors and Use of
Option -qopt-assume-safe-padding”, which is a part of [30].
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Example: LU Decomposition

To demonstrate this procedure, consider the Doolittle algorithm of LU
decomposition (example presented here is based on a Colfax Research pub-
lication [31] and also available among Supplementary Code for Practical
Exercises as Lab 4.03 – see Section 6.2). The purpose of this algorithm
is to represent a square, non-degenerate matrix A as a product A = LU ,
where L is a unit lower triangular matrix, and U is an upper triangular matrix.
Such a decomposition is commonly used to solve systems of linear algebraic
equations.

The Doolittle algorithm applied to an n×nmatrix performs n−1 iterations
generally resembling the Gaussian elimination scheme. For iteration b, matrix
row b is multiplied by a certain factor and added to matrix rows b+ 1 through
n−1 so that the in the resulting matrix A(b), all elements in column b starting
from b + 1 are equal to zero. The coefficients of that multiplication are
recorded in a separate matrix L:

A(0) = A, (4.2)
A(b+1) = L(b)A(b), where (4.3)

L
(b)
ij =


1, if i = j,
li,b, if i > j and j = b,
0, otherwise,

(4.4)

li,b = −
A

(b)
i,b

A
(b)
b,b

. (4.5)

As a result, U ≡ A(n−1), and elements of L are

Li,j =


1, if i = j,
−li,j, if i < j,
0, otherwise.

(4.6)
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Baseline

A simplified implementation of this procedure is shown in Listing 4.27. It
is simplified because the algorithm does not involve pivoting (i.e., choosing
the best row to eliminate elements in other rows) and is not optimized. The
algorithm is single-threaded, and we are going to keep it this way: we
assume that this function is called from a parallel region to process multiple
independent matrices concurrently.

1 void LU_decomp(const int n, float* const A) {
2 // LU decomposition (Doolittle algorithm)
3 // In-place decomposition of form A=LU
4 // L is returned below main diagonal of A
5 // U is returned at and above main diagonal
6 for (int b = 0; b < n; b++) {
7 // Strength reduction:
8 const float recAbb = 1.0f/A[b*n + b];
9 for (int i = b+1; i < n; i++) {

10 A[i*n + b] = A[i*n + b]*recAbb;
11 for (int j = b+1; j < n; j++)
12 A[i*n + j] -= A[i*n + b]*A[b*n + j];
13 }
14 }
15 }

Listing 4.27: LU decomposition, non-optimized, with irregular inner loop.

Note that we have already applied a scalar optimization technique, strength
reduction, by precomputing the reciprocal of A[b*n+b] in line 8. This
reciprocal is later used in the loop for multiplication in line 10.

However, the vectorization aspect of this code still remains to be opti-
mized. Areas from optimization can be inferred from the optimization report
produced by the compiler. Listing 4.28 shows the relevant parts of the report
produced with the argument -qopt-report=4.

Indeed, the report indicates that the compiler implemented different ver-
sions of the loop depending on the alignment and aliasing situation at runtime.
Also, loop peel and remainder processing were prepared for use at runtime.

We established the baseline performance of this code by running the
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LU decomposition in multiple threads on a set of 104 matrices 128 × 128
elements in size. Each matrix was processed by only one of the active threads.
To convert execution time into tangible performance figures, we assumed
that each factorization requires (2/3)n3 FLOPs (this is the asymptotic sum
of the series 2n(n− 1) + 2(n− 2)(n− 1) + ...+ 2× 2× 1 for n→∞). Our
Intel Xeon Phi coprocessor then yielded 97 GFLOP/s, and the host system
144 GFLOP/s. Apparently, the inefficiencies in this code hamper the Intel
MIC architecture much more than the multi-core Intel Xeon CPU.

LOOP BEGIN at main.cc(11,7)
<Peeled, Multiversioned v1>
... PEEL LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at main.cc(11,7)
<Multiversioned v1>
... reference A has aligned access [ main.cc(12,2) ]
... LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at main.cc(11,7)
<Remainder, Multiversioned v1>
... unaligned access used inside loop body
... REMAINDER LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at main.cc(11,7)
<Multiversioned v2>
... non-vectorizable loop instance from multiversioning
LOOP END

Listing 4.28: Optimization report for Listing 4.27
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Regularizing vectorization

Now we will optimize the code by regularizing the vectorization pattern
in the inner loop. The inner loop in j has different loop counts in every
iteration in b. Additionally, it sometimes begins on an aligned data element,
other times on unaligned. To regularize this loop, instead of starting the inner
loop from j=b, let’s start it from jmin, which is the greatest multiple of 16
which does not exceed b. Our procedure also assumes that the matrix size,
n, is also a multiple of the vector length.

The resulting code is shown in Listing 4.29. We also established empiri-
cally that on the CPU, a multiple of 8 works well, while on the coprocessor,
multiples of 32 are better. Therefore, to optimize the code, we performed
target-specific tuning using the preprocessor macro __MIC__ (see Sec-
tion 2.2.6). Furthermore, it always starts on an aligned data element as long
as matrix A itself is aligned.

Naturally, the optimized version computes the addition and multiplica-
tion of a greater number of values, however, it does so in fewer processor
instructions and fewer clock cycles.

While regularization of vectorization by padding the iteration count is
good for performance, the programmer must control whether the additional
arithmetic operations preserve correctness. In our code, we had to introduce a
temporary matrix L in order to prevent the padded loop from overwriting the
elements below the main diagonal of A. Matrix L preserves these elements.
At the end of the calculation, L is copied into A and removed from memory.
This optimization improved the performance on the coprocessor by 30%
increasing it to 126 GFLOP/s. It also increased the CPU performance by
20% to 173 GFLOP/s.

Because there is still a significant gap between the host and coproces-
sor performance, we will continue with the optimization of this code in
subsequent sections. One of the techniques related to regularization of vec-
torization pattern is informing the compiler about alignment guarantees. This
is discussed in the next session.
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1 void LU_decomp(const int n,
2 float* const A) {
3 // LU decomposition (Doolittle algorithm)
4 // In-place decomposition of form A=LU
5 // L is returned below main diagonal of A
6 // U is returned at and above main diagonal
7 #ifdef __MIC__
8 const int tile=32;
9 #else

10 const int tile=8;
11 #endif
12 assert(n%tile==0);
13 // Must store L separately from A
14 float L[n*n] __attribute__((aligned(64)));
15 for (int i = 0; i < n; i++) {
16 L[i*n:n]=0.0f;
17 L[i*n+i]=1.0f;
18 }
19 for (int b = 0; b < n; b++) {
20 const int jMin = b - b%tile;
21 // Strength reduction:
22 const float recAbb = 1.0f/A[b*n + b];
23 for (int i = b+1; i < n; i++) {
24 L[i*n + b] = A[i*n + b]*recAbb;
25 // Regularized pattern of vector loop:
26 for (int j = jMin; j < n; j++)
27 A[i*n + j] -= L[i*n+b]*A[b*n + j];
28 }
29 }
30 // Copy temp matrix L into matrix A
31 for (int i = 0; i < n; i++)
32 for (int j = 0; j < i; j++)
33 A[i*n + j] = L[i*n + j];
34 }

Listing 4.29: Gaussian elimination with regularized inner loop.
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4.3.4. Compiler Hints: Aligned Data Notice
Data alignment on a 64-byte boundary is required for vector instructions

in the Many Integrated Core architecture of Intel Xeon Phi coprocessors.
The alignment of the first element in a pointer-based array is generally not
known at compile time. Therefore, in automatically vectorized loops, the
compiler must implement a check for alignment. Depending on the results
of the check, the application may peel off several iterations at the beginning
of the loop in order to reach the first aligned element. The alignment check
may take a significant time, especially for short loops, and multiple versions
of the code required for execution take up space in the L1 instruction cache.

If the programmer can guarantee that pointer-based arrays in a vectorized
loop are aligned, it is beneficial to tell the compiler to assume alignment
at the beginning of the loop. This may be done using #pragma vector
aligned applied to the whole loop or specifier __assume_aligned()
applied to individual arrays (see Section 3.1.10).

Applying this optimization to our LU decomposition code in Listing 4.29
results in the following (only the relevant snippet is shown below):

1 for (int i = b+1; i < n; i++) {
2 L[i*n + b] = A[i*n + b]*recAbb;
3 // Aligned data hint:
4 #pragma vector aligned
5 for (int j = jMin; j < n; j++)
6 A[i*n + j] -= L[i*n+b]*A[b*n + j];
7 }

Listing 4.30: Informing the compiler about alignment in the LU decomposition code.

Note that in order for the code in Listing 4.30 to work, array A must be
aligned, and the length of its rows, n, should be a multiple of the alignment
length. Otherwise, the application will crash with a segmentation fault. We
guarantee alignment of A in the body of the application that uses the function
LU_Doolittle(). This is done with methods discussed in Section 3.1.4.
We also check that n is a multiple of 16, which amounts to 64 bytes in single
precision. In practice, if a matrix inner dimension is not a multiple of 16, the
programmer may pad the matrix row length.

With #pragma vector aligned, performance on the coprocessor
increased by 13% to 142 GFLOP/s, and marginally decreased on the host.
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4.3.5. Compiler Hints: Pointer Disambiguation
Another hint given to us by the optimization report of the LU decomposi-

tion code (Listing 4.28) is that the compiler instrumented multiversioning.
This occurred because at compilation time, the compiler cannot be certain
whether the value of jMin is between 0 and n. Therefore, it is not certain
whether array references in the left-hand side and in the right-hand side of
line 7 are aliased (i.e., pointing to the same memory regions) or not.

We can gain additional performance by eliminating multiversioning. This
can be done as explained in Section 4.3.5, using #pragma ivdep. This
pragma instructs the compiler to ignore assumed vector dependencies, and
assume all pointers in the loop to be non-aliased. The same effect may be
achieved using the keyword restrict (see Section 3.1.9).

The result of this optimization in shown in Listing 4.31. The new pragma
can be combined with the pragma used in the previous step.

1 for (int i = b+1; i < n; i++) {
2 L[i*n + b] = A[i*n + b]*recAbb;
3 #pragma vector aligned
4 // Pointer disambiguation:
5 #pragma ivdep
6 for (int j = jMin; j < n; j++)
7 A[i*n + j] -= L[i*n+b]*A[b*n + j];
8 }

Listing 4.31: Informing the compiler about non-aliased pointers in the LU decomposition code.

Once pointers were disambiguated, the compiler dropped the assumption
of vector dependence, and the performance on the CPU was bumped by
around 6% to 174 GFLOP/s and on the coprocessor it increased by 10%
to 156 GFLOP/s. Furthermore, the optimization report no longer includes
information about multiversioning, which means that only one code path was
implemented, with non-aliased L and U.

When #pragma ivdep is used, the penalty for supplying aliased point-
ers may be incorrect results, without a warning or error message. The
programmer may manually implement a check for aliasing, but move it to
the top of the function, rather than to the inner loop, and then use the pragma
to allow the compiler to simplify the code.

c© Colfax International, 2013–2015

http://www.colfax-intl.com/


304 CHAPTER 4. OPTIMIZING PARALLEL APPLICATIONS

Summary

The summary of the optimizations discussed in the last three sections is
shown in Figure 4.5.
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Figure 4.5: LU decomposition code performance optimization summary.

The first set of bars corresponds to an non-optimized code, which was not
shown in the text, but which differs from Listing 4.27 only in that instead
of precomputing the reciprocal of A[b*n+b], there is a division by that
element in the vector loop. After that, regularizing the vectorization pattern
(Section 4.3.3) and using the compiler hints: aligned data notice and pointer
disambiguation led to further improvements.

The resulting performance is greater on the host system than on the
coprocessor. This is in part due to the fact that we are running a relatively
small problem and comparing performance of a coprocessor with 0.5 MiB of
L2 cache per core to the performance of a top of the line CPU with 2.5 MiB
of cache per core.
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At the same time, our performance result indicate that the optimization
process is not complete. There is nothing left to be gained from vectorization
tweaks. Minor performance gains may be tapped from tuning prefetching.
However, the key to further optimization of this problem is memory traffic
tuning. Indeed, matrices 128× 128 in size occupy 64 KiB of memory. With
4 hardware threads per core, they fit in the L2 cache, but clearly spill over
the L1 cache. This is confirmed by performance analysis in VTune (see
Figure 4.6), which highlights the fields “estimated latency impact” and “L1
compute to data access ratio”.

Figure 4.6: Summary of performance analysis in Intel VTune Amplifier.

Memory traffic tuning is a subject of a different conversation, which will
resume in Section 4.5. However, as a motivational example, we implemented
a version with optimized memory traffic, which runs 56% better than our
last version, achieving 244 GFLOP/s on the coprocessor. On the host, this
tuning increases performance to 233 GFLOP/s. We do not discuss this
implementation in the text, however, the reader is welcome to study the
corresponding code in the attachment to the book.
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4.3.6. Strip-Mining for Vectorization

Principles: Strip-Mining

Strip-mining is a technique that transforms a single loop into two nested
loops. The outer loop strides through “strips” or “tiles” of the iteration space,
and the inner loop operates on the iterations inside the strip (“mining” it).
Listing 4.32 demonstrates the strip-mining transformation.

1 // Original loop:
2 for (int i = 0; i < n; i++) {
3 // ... do work
4 }
5

6 // Strip-mining converts the original loop into two nested loops:
7 const int TILE=80;
8 for (int ii = 0; ii < n; i += TILE)
9 for (int i = ii; i < ii + TILE; i++) {

10 // ... do work
11 }

Listing 4.32: Strip-mining technique is usually implemented by the compiler “behind the
scenes”. However, it is easy to implement it manually, as shown in this listing.

This transformation can be used to allow vectorization to co-exist with
multi-threading. An example of such application will be discussed in this
section. The strip-mining technique can also be used to balance the par-
allelism in cores with parallelism in vectors as will be illustrated later in
Section 4.4.4.

The size of the tile must usually be chosen as a multiple of the vector
length in order to facilitate the vectorization of the inner loop. Furthermore,
if the iteration count n is not a multiple of the tile size, then the programmer
must peel off n%TILE iterations at the end of the loop.

Sometimes, strip-mining is used by the compiler “behind the scenes” in
order to apply thread parallelism to vectorized loops. However, in some
cases, explicit application of strip-mining may be necessary. An example of
such a case is discussed below.
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Example Problem: Computing a Histogram

We will illustrate the application of strip-mining with the problem of
computing a histogram (code of this example is available as Lab 4.04 – see
Section 6.2). Suppose array age contains floating-point numbers ranging
from 0 to 100 representing the ages, in years, n of people. The task is to create
array hist of size m, elements of which contain the number of people in age
groups 0–20 years, 20–40 years, 40–60 years, etc. We will assume m=5 (num-
ber of age groups covering the range 0-100), and group_width=20.0f
(how many years each group spans) and n=100000000 (large enough
number so that age does not fit in the L2 cache).

This workload represents a set of problems where contiguous variables
are interpolated onto a discrete grid. For example, in Monte Carlo particle
transport simulations, coordinates and velocities of particles may need to be
translated onto a spatial grid; in calculations involving piece-wise function
interpolations, the code must find the interpolation bins corresponding to the
values of function arguments.

A non-optimized serial C code that performs the histogram calculation is
shown in Listing 4.33. This code is not protected from situations when one
of the members of age[] is outside the range [0.0 . . . 100.0). We assume
that the user of the function Histogram() is responsible for ensuring that
the array age has only valid entries.

1 void Histogram(
2 const float* age, // Ages, values from 0.0f to 100.0f
3 const int n, // Size of array age, n=100000000
4 int* const hist, // Output: counts in groups
5 const int m, // Size of array hist, m=5
6 const float group_width // group_width=20.0f
7 ) {
8 for (int i = 0; i < n; i++) {
9 const int idx = int(age[i]/group_width);

10 hist[idx]++;
11 }
12 }

Listing 4.33: Non-Optimized histogram calculation code.
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Referring back to the earlier discussion on scalar optimization (Sec-
tion 4.2.3), we can see opportunity for strength reduction in line 9. Indeed,
the division by group_width can be replaced with multiplication by the
reciprocal of this number. As we will see below (see Figure 4.7), this opti-
mization improves performance on the CPU by 50% and on the coprocessor
by 160%.

Now let’s go back to the currently discussed optimization topic and asses
this code from the point of view of vectorization. Code in Listing 4.33, even
after strength reduction, is not optimal, because it cannot be auto-vectorized.
The problem with vectorization is true vector dependence in the access to
array hist. Indeed, consecutive iterations of the i-loop cause scattered
writes to hist, which is not possible to express with vector instructions.
However, the operation of computing the index idx does not have a vector
dependence, and therefore this part of the calculation can be vectorized.
Compiler optimization report, a fragment of which is shown in Listing 4.34,
confirms that reasoning.

Begin optimization report for: Histogram(const float *,
int, int *, int, float)

...
LOOP BEGIN at worker.cc(8,5)

...loop was not vectorized: vector dependence prevents
vectorization...

...vector dependence: assumed FLOW dependence between
line 10 and line 10

LOOP END

Listing 4.34: Vectorization report shows that histogram calculation is not vectorized.

To facilitate automatic vectorization, we can apply strip-mining. To “strip-
mine” the i-loop, we express it as two nested loops: the outer loop with index
ii and has a stride of TILE = 16, and an inner loop with index i that
“mines” the strip of indexes between ii and ii+TILE. This modification
will not help directly, however, it will allow the next step to happen. In the
next step, we can split the inner loop in i into two consecutive loops: one for
computing the index idx and the other incrementing the histogram values.
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The first of these loops can be auto-vectorized, and the second will remain
scalar.

Listing 4.35 demonstrates the code optimized with strip-mining and loop
splitting. It produces the same results as the code in Listing 4.33, but
faster, thanks to automatic vectorization. In addition to vectorization, we also
implemented strength reduction by replacing the division by group_width
with the multiplication by its reciprocal value.

1 void Histogram(const float* age, const int n, int* const hist,
2 const int m, const float group_width) {
3

4 const int TILE = 16; // Length of vectorized loop
5 const float recWidth = 1.0f/group_width; // Precompute the
6 // reciprocal
7

8 // Strip-mining the loop in order to vectorize the inner short
9 // loop. (Note: this algorithm works only if n%TILE == 0.)

10 for (int ii = 0; ii < n; ii += TILE) {
11 // Temporary storage for indices. Necessary for vectorization
12 int idx[vecLen] __attribute__((aligned(64)));
13

14 // Vectorize the multiplication and rounding
15 #pragma vector aligned
16 for (int i = ii; i < ii + TILE; i++)
17 idx[i-ii] = (int) ( age[i] * recWidth );
18

19 // Stochastic memory access, does not get vectorized
20 for (int c = 0; c < TILE; c++)
21 hist[idx[c]]++;
22 }
23 }

Listing 4.35: Vectorized histogram calculation code, with strength reduction and strip-mining.

We assume in this code that n is a multiple of TILE, i.e., n%TILE==0.
This assumption is easy to lift by adding a peel loop in i from n-n%TILE to
n. The choice of the value of TILE=16 is dictated by the fact vector registers
of Intel Xeon Phi coprocessors can fit 16 values of type int. Generally
speaking, TILE must be a multiple of 16; however, experiments show that
exactly 16 produces the best performance.
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The performance of codes in Listing 4.33 and Listing 4.35 can be found
in Figure 4.7. The scalar code performance is the baseline for this example.
Vectorization made possible by strip-mining improves the performance on
the CPU by 65% and on the coprocessor by 180%.
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Figure 4.7: Performance of histogram calculation with strength reduction and strip-mining to
assist automatic vectorization. Further optimization work is required.

The reason why the coprocessor is way behind the CPU in performance
is that the code is single-threaded. Now that scalar optimization and vector-
ization have been implemented, we will proceed with the parallelization of
this code in Section 4.4.

4.3.7. Additional “Tuning Knobs” for Vectorization
We have discussed compiler arguments and keywords (pragmas and qual-

ifiers) that may be used to fine-tune automatically vectorized loops. Refer
to the list in Section 3.1.10 for a more detailed summary of keywords and
arguments for vectorization.
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4.4. Optimization of Multi-Threading

Optimization advice for shared-memory parallel codes is presented in this
section. This section addresses the most basic performance considerations
for thread parallelism: reducing the synchronization overhead, exposing
thread parallelism to the compiler, and load balancing.

4.4.1. Avoiding Synchronization through Parallel Reduction
In this section we continue the optimization of the histogram calculation

introduced in Section 4.3.6. We will start where we left off with code
shown in Listing 4.35 (code of this example is available as Lab 4.04 – see
Section 6.2).

If we wanted to parallelize this code with OpenMP, a straightforward way
to do it would be by putting the OpenMP parallel loop pragma before the
outer loop as shown in Listing 4.36. The problem with this implementation
is that it produces incorrect results due to a race condition in line 11. Race
condition occurs when multiple threads concurrently increment the same
element of hist. This will lead to unpredictable program behavior and
incorrect results. See Section 3.2.5 for a refresher about race conditions.

1 #pragma omp parallel for
2 for (int ii = 0; ii < n; ii += TILE) {
3 int idx[vecLen] __attribute__((aligned(64)));
4

5 #pragma vector aligned
6 for (int i = ii; i < ii + TILE; i++)
7 idx[i-ii] = (int) ( age[i] * recWidth );
8

9 // RACE CONDITION leads to incorrect results:
10 for (int c = 0; c < TILE; c++)
11 hist[idx[c]]++;
12 }

Listing 4.36: Incorrect parallel code for histogram calculation with a race condition.

To stabilize a program with a race condition, mutexes may be used, which
generally incurs a performance penalty. This is often not the best way to
resolve race conditions; let’s see what happens when we try to use mutexes.
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Bad Idea: Mutexes

Atomic operations in OpenMP (see Section 3.2.6) are lightweight mutexes
suitable for protecting an increment operation as in our case. Listing 4.37
demonstrates an implementation of the histogram computation with atomic
operations. With #pragma omp atomic, the result of the increment is
guaranteed to be correct even if multiple threads access the same element of
hist at the same time.

1 #pragma omp parallel for
2 for (int ii = 0; ii < n; ii += TILE) {
3 int idx[vecLen] __attribute__((aligned(64)));
4

5 #pragma vector aligned
6 for (int i = ii; i < ii + TILE; i++)
7 idx[i-ii] = (int) ( age[i] * recWidth );
8

9 for (int c = 0; c < TILE; c++)
10 // Protect the ++ operation with the atomic
11 // mutex (inefficient!)
12 #pragma omp atomic
13 hist[idx[c]]++;
14 }

Listing 4.37: Parallel code to compute the histogram protected with atomic operations.

The second set of bars in Figure 4.8 reports the performance result for
this code. With multi-threading and atomic operations, performance on
the CPU is 20 times worse than in the single-threaded case, and on the
coprocessor it is 4 times worse than in the single-threaded case. The result
shows that the use of atomic operations in this code is not a scalable solution.
This is because every atomic operation partially serializes the execution
(see Section 3.2.6). Because we execute an atomic operation in every loop
iteration, this serialization, combined with the overhead of mutexes, results
in worse performance than in the single-threaded case.

Mutexes are a viable solution only if they are used infrequently in an
application; however, they are used too often in the histogram calculation. A
different approach must be taken to parallelize this code, as discussed next.
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Better Idea: Private Variables to Avoid True Sharing

As discussed in Section 3.2.7, an efficient method for avoiding synchro-
nization between threads is parallel reduction. In our case, the code performs
reduction into an array. Therefore, we cannot use the reduction clause
of OpenMP. However, we can implement reduction by giving each thread
an independent copy of array hist and then accumulating the results of all
threads at the end of the calculation. Listing 4.38 illustrates this idea.

1 #pragma omp parallel
2 { // Spawning threads before the for-loop in order to declare
3 // private variables to hold a copy of histogram in each thread
4 int hist_priv[m]; hist_priv[:] = 0;
5 int idx[vecLen] __attribute__((aligned(64)));
6

7 // Distribute work across threads
8 #pragma omp for
9 for (int ii = 0; ii < n; ii += TILE) {

10

11 #pragma vector aligned
12 for (int i = ii; i < ii + TILE; i++)
13 idx[i-ii] = (int) ( age[i] * recWidth );
14

15 for (int c = 0; c < TILE; c++)
16 // This time, writing into the thread’s private variable
17 hist_priv[idx[c]]++;
18 }
19

20 // Reduce private copies into global histogram
21 for (int c = 0; c < m; c++) {
22 // Protect the += operation with the lightweight atomic mutex
23 #pragma omp atomic
24 hist[c] += hist_priv[c];
25 }
26 }

Listing 4.38: Parallel reduction in the histogram calculation code.

In Listing 4.38, threads are spawned with #pragma omp parallel
before the loop begins. Variable int hist_priv[m] declared within the
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scope of that pragma is automatically considered private to each thread. In
line 17, each thread writes to its own histogram copy, and no race conditions
occur. Notice the absence of the word parallel in #pragma omp for
in line 18: the loop is already inside of a parallel region.

After the loop in line 9 is over, the loop in line 21 is executed in each
thread, accumulating the result of all calculations in the shared variable
hist. Atomic operations are still used here. However, this time they do
not incur a significant overhead. We have a total of m×T atomic increments,
where m=5, and T is the number of threads. In contrast, in the flawed
implementation in Listing 4.37, the code had to perform n atomic increments,
where n=100000000.

The third set of bars in Listing 4.8 corresponds to the optimized version
shown in Listing 4.38. The optimized parallel code performs 12 times faster
than the serial code on the CPU and 110 times faster than the serial code on
the coprocessor.
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Figure 4.8: Performance of histogram calculation with thread parallelism. The first set of bars
corresponds to Listing 4.35, the second to Listing 4.37 and the third to Listing 4.38
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Before we finish this section, take another look at the way that thread-
private storage is implemented in Listing 4.38. In this code, we make
hist_priv private to each thread by declaring it inside the parallel region.
There is an alternative way to make variables private, relying on clauses of
#pragma omp parallel, which is illustrated in Listing 4.39.

1 int hist_priv[m]; hist_priv[:] = 0;
2 int idx[vecLen] __attribute__((aligned(64)));
3 #pragma omp parallel shared(age, hist) firstprivate(hist_priv, idx)
4 {
5 #pragma omp for
6 for (int ii = 0; ii < n; ii += TILE) {
7

8 #pragma vector aligned
9 for (int i = ii; i < ii + TILE; i++)

10 idx[i-ii] = (int) ( age[i] * recWidth );
11

12 for (int c = 0; c < TILE; c++)
13 // This time, writing into the thread’s private variable
14 hist_priv[idx[c]]++;
15 }
16

17 // Reduce private copies into global histogram
18 for (int c = 0; c < m; c++) {
19 // Protect the += operation with the lightweight atomic mutex
20 #pragma omp atomic
21 hist[c] += hist_priv[c];
22 }
23 }

Listing 4.39: Parallel reduction (alternative implementation) in the histogram calculation code.

Approach shown in Listing 4.39 yields the same results as Listing 4.38,
and both methods are legitimate in C and C++. However, in Fortran, only the
method with clauses shared, private and firstprivate is possible.

We have achieved success with the optimization of histogram calculation,
however, we will re-use this example in Section 4.4.2 to illustrate another
optimization issue in multi-threaded applications known as false sharing.
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4.4.2. Elimination of False Sharing with Padding
False sharing is a situation similar to a race condition, except that it occurs

when two or more threads access the same cache line or the same block of
cache in a coherent cache system (as opposed to accessing the same data
element), and one of those accesses is a write. False sharing does not result
in a race condition, however, it negatively impact performance.

Performance degradation occurs because the x86 architecture processors,
as well as Intel Xeon Phi coprocessors, have coherent caches. When two or
more threads access different elements in the same cache line, the processor
must lock the whole cache line until the write operation is complete, and
coherence is enforced. The cache line size in most modern Intel architectures
is 64 bytes, and cache lines are mapped to memory on 64-byte boundaries.
Therefore, if one thread is writing to memory address A, and another thread
is reading from or writing to memory address B, which is within 64 bytes of
A, false sharing may occur.

Figure 4.9: Illustration of false sharing in parallel architectures with cache coherency.
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Example of False Sharing

To demonstrate false sharing, consider the histogram calculation problem
discussed in Section 4.4.1. In that section, we resolved race conditions using
thread-private variables (Listing 4.38). Now let’s try a different method.
Instead of declaring the variable hist_priv private to each thread, we will
declare a shared array of histograms, with a separate histogram container for
each thread. The code that implements this method is shown in Listing 4.40.

1 const int nThreads = omp_get_max_threads(); // Count threads
2 int hist_containers[nThreads][m]; // Array of histogram containers
3 hist_containers[:][:] = 0;
4 #pragma omp parallel
5 {
6 const int thr = omp_get_thread_num(); // Query current thread
7 int idx[vecLen] __attribute__((aligned(64)));
8

9 #pragma omp for
10 for (int ii = 0; ii < n; ii += TILE) {
11 #pragma vector aligned
12 for (int i = ii; i < ii + TILE; i++)
13 idx[i-ii] = (int) ( age[i] * recWidth );
14

15 for (int c = 0; c < TILE; c++)
16 // Writing into current thread’s own container
17 hist_containers[thr][idx[c]]++; // FALSE SHARING HERE
18 }
19 }
20

21 // Parallel region has ended, now we are back in initial thread
22 hist[:]=0;
23 for (int thr = 0; thr < nThreads; thr++)
24 // Reduce own copies into global histogram; no race condition
25 for (int c = 0; c < m; c++)
26 hist[c] += hist_containers[thr][c];

Listing 4.40: Histogram calculation with a shared array of histogram containers. False sharing
occurs if m is not a multiple of 16.

The code in Listing 4.40 may look like it should work similarly to the
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code in Listing 4.38, because each thread accesses its own region of memory.
At the first glance, this method is even better than the method with private
variables illustrated in Listing 4.38, because there are no mutexes at all in
this implementation. However, in practice, code in Listing 4.40 exhibits poor
performance on the host system (see the second set of bars in Figure 4.11)
and on the coprocessor.

The cause of performance degradation is false sharing. The value of
m=5 is rather small, so all histogram bins in the container for thread 0,
hist_containers[0][:], are within m*sizeof(int)=20 bytes of
the bins in the container for thread 1, hist_containers[1][:]. When
thread 0 and thread 1 are accessing their histogram containers simultaneously,
there is a chance of hitting the same cache line or the same block of the
coherent L1 cache, which results in one of the threads having to wait until
the other thread unlocks that cache line. In other words, false sharing occurs
because the data containers for different threads are too closely packed. The
data layout in this case is illustrated in the top panel of Figure 4.10.

Padding to Avoid False Sharing

If data must be written to adjacent memory locations by different threads,
false sharing situations may be avoided by padding. The amount of padding
must be at least equal to size of the cache line, which is 64 bytes. Listing 4.41
shows how padding can be done in the case considered above.

1 // Padding for inner dimension of hist_containers[][]
2 const int paddingBytes = 64;
3 const int paddingElements = paddingBytes / sizeof(int);
4 const int mPadded = m + (paddingElements-m%paddingElements);
5 int hist_containers[nThreads][mPadded]; // Padded containers
6

7 // ...The rest of the code without change

Listing 4.41: Padding the inner dimension of the array hist_thr eliminates false sharing.

The only difference between Listing 4.40 and Listing 4.41 is that the inner di-
mension of hist_containers is now mPadded instead of m. Increasing
the size of the inner dimension from m to mPadded separates the memory
regions in which different threads operate. This reduces the penalty paid for
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cache coherence, which the processor cache must enforce. As a result, false
sharing is eliminated.

The padded layout is illustrated in the bottom panel of Figure 4.10. In this
layout, each thread-private entry for hist_containers is located in its
own cache line. Furthermore, if the array hist_containers is allocated
on a 64-byte boundary, then each thread-private entry begins at the start of a
cache line.

Figure 4.10: Data layout for a shared container with thread-private sections. Top: no padding,
false sharing occurs when multple threads access the same cache line. Bottom: padded layout.
Each private entry occupies its own cache line.

Figure 4.11 summarizes the performance results of the code in Listing 4.40
and Listing 4.41. The latter code was compiled and benchmarked in three
variations: with paddingBytes=64, 128 and 256. For the last case, the
performance of the code is restored to the performance of the baseline code.

Note that false sharing in multi-dimensional arrays can be be avoided by
padding the inner dimension if only the outer dimension index is distributed
across threads. In C and C++, multi-dimensional arrays are stored in row-
major format, so the inner dimension of A[i][j] is in j. In Fortran,
column-major format is used, so the inner dimension of A(i,j) is i.

More information on false sharing can be found, for example, in [32].

c© Colfax International, 2013–2015

http://www.colfax-intl.com/


320 CHAPTER 4. OPTIMIZING PARALLEL APPLICATIONS

 Parallel Code
(private variables) 

 False Sharing
(no padding)

 Padded
to 64 bytes

 Padded
128 bytes

 Padded
to 256 bytes

0

5

10

15

20

 P
er

fo
rm

an
ce

, b
ill

io
n 

va
lu

es
/s

 (h
ig

he
r i

s b
et

te
r)

11.2 

0.723 

2.61 

5.46 

11.2 

13.9 

1.57 

13.6 13.6 13.6 

 Host System
 Intel Xeon Phi Coprocessor

Figure 4.11: The performance of histogram calculation for n=230 and m=5 using codes in
Listing 4.38 (“Baseline: Parallel Code”), Listing 4.40 (“Poor Performance: False Sharing”) and
Listing 4.41 (“Padding to 64/128/256 bytes”).

The example of histogram calculation that we have been using since
Section 4.3.6 has served us well: we learned how strip-mining can facilitate
automatic vectorization, how parallel reduction alleviates the overhead of
synchronization, and how to eliminate false sharing with padding. Further
minor performance improvements can be extracted out of this example with
techniques discussed in subsequent sections. For example, refer to the
Practical Exercises (Section 6.2) to see how parallel first touch allocation
may improve the host performance of this code. However, to better illustrate
the techniques that we discuss in the remainder of Section 4.4, let’s put the
histogram calculation to rest. From this point on, we will be using other
example applications in our discussion.
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4.4.3. Resolving Load Imbalance with Scheduling Control

In Section 3.2.3 we discussed how parallel loops can be executed in
different scheduling modes. Specifically, in OpenMP, static, dynamic
and guided modes are available, and scheduling granularity can also be
specified. Choosing a scheduling mode is often a trade-off. Lightweight,
coarse-grained scheduling modes incur little overhead, but may lead to load
imbalance. On the other hand, complex, fine-grained scheduling modes can
improve load balance, but may introduce significant scheduling overhead.

Consider a parallel for-loop that calls a thread-safe serial function in every
iteration shown in Listing 4.42.

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++)
3 BlackboxFunction(i, data[i]);

Listing 4.42: Sample parallel loop calling a serial function with variable execution time.

Suppose that the execution time of the function varies significantly from
call to call. Such an application is prone to load imbalance because some
of the parallel threads may be “lucky” to get a quick workload while other
threads may struggle with a more expensive task. “Lucky” threads will have
to wait for all other threads, however, the application cannot proceed further
until all of the loop iterations are processed. To improve the performance,
we can specify a scheduling mode and a grain size, as in Listing 4.43.

1 #pragma omp parallel for schedule(dynamic, 4)
2 // ...

Listing 4.43: The schedule clause for OpenMP parallel loop may improve load balance.

Here, the dynamic scheduling mode indicates that the iteration space
must be split into chunks of length 4, and these chunks must be distributed
across available threads. As threads finish with their task, they will receive
another chunk of the problem to work on. Other scheduling modes are
static, where iterations are distributed across threads before the calcula-
tions begin, and guided, which is analogous to dynamic, except that the
chunk size starts large and is gradually reduced later toward the end of the
calculation.
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The grain size of scheduling in Listing 4.42 is chosen as 4. Choosing the
grain size is a trade-off:
• with too small a grain size, too much communication between threads

and the scheduler may occur, and the application may be slowed down
by the task of scheduling;
• with too large a grain size, there are few chunks, so load balancing

opportunities may be limited.

In order to be effective, the grain size must be between 1 and n/T, where n
is the number of loop iterations and T is the number of parallel threads.

Because the optimal scheduling strategy depends on the number of threads,
performance portability may be an issue if the tuning parameters are hard-
coded. Porting an application from multi-core Intel Xeon-based host to
manycore Intel Xeon Phi coprocessor may require an adjustment in the
settings of scheduling. In imbalanced problems, guided scheduling mode
may often prove to be the most portable solution because of its self-adjusting
nature. In well-balanced problems, static scheduling with its more predictable
memory access pattern and low overhead may result in better portability.

Figure 4.12 illustrates the distribution of iterations between threads in
different scheduling modes. In this hypothetical example, n=32 iterations
are distributed across T=4 threads.

Figure 4.12: Loop scheduling modes in OpenMP.
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Example of Load Imbalance Resolution

As an example, we study a function that solves a non-homogeneous
system of linear algebraic equations M~x = ~b using the iterative Jacobi
method (code of this example is available as Lab 4.06 – see Section 6.2). We
construct a parallel loop that calls the Jacobi solver, and in every iteration, a
different vector~b is used for the problem (see Figure 4.44).

1 #pragma omp parallel for schedule(guided,4)
2 for (int c = 0; c < nBVectors; c++)
3 IterativeSolver(n, M, &b[c*n], &x[c*n], accuracy[c]);

Listing 4.44: Parallel loop that calls the Jacobi solver with different vectors ~b and requests a
different accuracy for every call.

The iterative Jacobi method (see Listing 4.45) is inherently variable in
the runtime, because for different vectors ~b, it may take different numbers
of iterations to obtain the solution ~c of the required accuracy. This by itself
may cause load imbalance, because some lucky threads will get workload
that requires few iterations, while others may get workload requiring more
iterations. For the sake of demonstration, we further exacerbate the load
imbalance by requesting different accuracy of solution for different loop
iterations. This causes the number of Jacobi iterations to fluctuate greatly
from one call of the solver to another.

We benchmarked the Jacobi solver code with various settings for the loop
scheduling mode. This was done by adding the clause schedule to the
OpenMP for-loop pragma as shown in Listing 4.44. Matrix size 256× 256
was used, and a total of 20000 matrices were processed. The results can be
found in Figure 4.13. On the host system, the runtime varies from 0.213 s to
0.401 s, with the default scheduling mode resulting in the worst performance.
On the coprocessor, the variation in runtime is from 0.189 s to 0.557 s, with
the default scheduling resulting in 0.315 s.

The “static” scheduling mode does not achieve optimum performance for
the tested chunk sizes. This is not surprising because the problem has poor
load balance. Notably, the case with chunk size 256 has almost double the
runtime of other cases. This is because there are a total of 20000/256 ≈ 78
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chunks, which is not enough to load all cores in coprocessor.
The “dynamic” and “guided” modes have runtime scheduling. They both

get close to the optimum performance for some chunk sizes. However, some
tuning is required to find the optimum. For low chunk sizes, there are many
chunks, so load can be balanced evenly at the cost of scheduling overhead. In
contrast, for large chunk sizes, there are few chunks, so load is not balanced
evenly, but the scheduling overhead is low. For dynamic scheduling, there is
a “sweet spot” in chunk size at the value of 4, while, with guided scheduling,
a grain size of 1 works as well as a chunk size of 4. That means that guided
scheduling requires less strict tuning due to its adaptive nature.

 d
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Figure 4.13: Performance of the parallel loop executing the Jacobi solver (Listing 4.45 and
Listing 4.44) for a set of vectors~b with various OpenMP loop scheduling modes.

For each application, the tradeoff between load balance and schedul-
ing overhead will be achieved with different scheduling modes and chunk
sizes. To test them all, the programmer may either use an OpenMP clause
schedule() as in Listing 4.44, or by leaving the scheduling mode unspec-
ified in the code, but setting the environment variable OMP_SCHEDULE to
the corresponding scheduling value.
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1 double RelativeNormOfDifference(const int n, const double* v1,
2 const double* v2) {
3 double norm2 = 0.0; double v1sq = 0.0; double v2sq = 0.0;
4 #pragma vector aligned
5 for (int i = 0; i < n; i++) {
6 norm2 += (v1[i] - v2[i])*(v1[i] - v2[i]);
7 v1sq += v1[i]*v1[i]; v2sq += v2[i]*v2[i];
8 }
9 return sqrt(norm2/(v1sq+v2sq)); // ||v1 - v2||/(||v1|| + ||v2||)

10 }
11 int IterativeSolver(const int n, const double* M, const double* b,
12 double* x, const double minAccuracy) {
13 // Iteratively solves the equation Mx=b with accuracy of at
14 // least minAccuracy using the Jacobi method
15 double accuracy;
16 double bTrial[n] __attribute__((align(64)));
17 x[0:n] = 0.0; // Initial guess
18 int iterations = 0;
19 do {
20 iterations++;
21 // Jacobi method
22 for (int i = 0; i < n; i++) {
23 double c = 0.0;
24 #pragma vector aligned
25 for (int j = 0; j < n; j++) {
26 c += M[i*n+j]*x[j];
27 x[i] = x[i] + (b[i] - c)/M[i*n+i];
28 }
29 }
30 bTrial[:] = 0.0; // Verification
31 for (int i = 0; i < n; i++) {
32 #pragma vector aligned
33 for (int j = 0; j < n; j++)
34 bTrial[i] += M[i*n+j]*x[j];
35 }
36 accuracy = RelativeNormOfDifference(n, b, bTrial);
37 } while (accuracy > minAccuracy);
38 return iterations;
39 }

Listing 4.45: Iterative Jacobi solver for non-homogeneous systems of linear algebraic equations.
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Diagnosing Load Imbalance with VTune

It is possible to detect situations where load imbalance causes performance
loss in a multi-threaded application. Intel VTune Amplifier XE can be used
for that (see Section 5.2 for more information about this tool). We created
a VTune project for the Jacobi solver running on the host. The type of
analysis used for this benchmark is called “Advanced hotspots”, we ran
the performance analysis on the host CPU. The benchmark was run for two
versions of the code: default loop scheduling and schedule(guided,4).
For each code version, the parallel loop was run 10 times. Results are shown
in Figure 4.14 (default scheduling) and Figure 4.15 (guided scheduling).

The top panel of Figure 4.14 is the summary information compiled by
VTune. In this panel, two metrics are highlighted with red: the CPI rate
and the potential gain in OpenMP region after elimination of idling time.
Also, this panel contains a histogram showing the elapsed time that the code
spent with different numbers of cores utilized. The data in this concurrency
histogram is spread across all core counts, indicating poor concurrency.

The bottom panel of Figure 4.14 contains the bottom-up view of the anal-
ysis. Here, the prime hotspot is identified as function IterativeSolver,
and __kmp_wait_template is shown to have significant imbalance or
serial spinning time. At the bottom, the screenshot shows the timeline of the
load in different cores. Brown color indicates running, and orange shows spin
time. The orange gaps in the timelines are the telltale sign of load imbalance.
They show that while some cores were done with their workload, they had to
wait for other cores.

Figure 4.15 has the same information, but for optimized code with guided
scheduling. In the summary screenshot the concurrency histogram has most
of the measurements in the ideal range (almost all cores utilized). In the
bottom-up view, __kmp_wait_template is gone from the top hotspots
list, and the timeline is mostly all brown with tiny orange streaks at the
synchronization points at the end of every iteration. This is what a well-
balanced application profile should look like.
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Figure 4.14: Top panel: Summary view for VTune analysis of the Jacobi solver (Listing 4.45
and Listing 4.44) on the host system with default scheduling.
Bottom panel: bottom-up view of the same analysis.
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Figure 4.15: Top panel: Summary view for VTune analysis of the Jacobi solver (Listing 4.45
and Listing 4.44) on the host system with guided scheduling.
Bottom panel: bottom-up view of the same analysis.
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4.4.4. Dealing with Insufficient Parallelism

Intel Xeon Phi coprocessors feature up to 61 cores each supporting 4
hardware threads in each, a total of up to 244 logical processors. Such degree
of hardware parallelism may be difficult to utilize for some algorithms. For
instance, algorithms in which parallel loop count is smaller than the number
of logical processors will not perform well on the coprocessor. A possible
solution to this problem is a modification to the parallelization strategy that
increases the iteration space exposed to thread parallelism. For instance,
parallelism can be re-distributed outward, from vectors to threads, or inward,
from MPI processes to threads.

In this section we demonstrate two simple, yet efficient techniques for
increasing available thread parallelism in an application: strip-mining and
loop collapse. Both of them allow to expose more parallelism at the cost of
reducing per-thread workload.

Principles: Loop Collapse

Loop collapse is a technique that converts two nested loops into a single
loop. This technique can be applied either automatically (for example,
using the collapse clause of #pragma omp for), or explicitly. Loop
collapse is demonstrated in Listing 4.46.

1 #pragma omp parallel for
2 for (int i = 0; i < m; i++)
3 for (int j = 0; j < n; j++)
4 // m iterations are distributed across threads
5

6 #pragma omp parallel for collapse(2)
7 for (int i = 0; i < m; i++)
8 for (int j = 0; j < n; j++)
9 // m*n iterations are distributed across threads

Listing 4.46: Loop collapse exposes more thread parallelism in nested loops. The first piece of
code does not use loop collapse; the second relies on the automatic loop collapse functionality.

It is also possible to explicitly instrument loop collapse as shown in
Figure 4.47. This approach may allow tweaks that favorably interact with
the scheduling modes (Section 4.4.3) and with data locality.
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1 // The example below demonstrates explicit loop collapse.
2 // A total of m*n iterations are distributed across threads
3 #pragma omp parallel for
4 for (int c = 0; c < m*n; c++) {
5 const int i = c / n;
6 const int j = c % n;
7 // ... do work
8 }

Listing 4.47: Explicit implementation of loop collapse.

Example: Sweep along a Short, Wide Matrix

To illustrate the usage of loop collapse and strip-mining for problems with
insufficient parallelism, we consider the problem of performing a reduction
(sum, average, or another cumulative characteristic) along the rows of a
matrix M[m][n] (code for this example is available as Lab 4.05 – see
Section 6.2). The principles demonstrated here are also applicable to certain
stencil codes and other applications with little thread parallelism but a large
amount of vector parallelism.

The task is to use M compute m scalar values defined by this equation:

Si =
n∑
j=0

Mij, i = 0 . . .m. (4.7)

Assume that m is small (smaller than the number of threads in the system),
and n is large (large enough so that the matrix does not fit into cache). For
specificity, we will use m=4 and n=100000000. A straightforward imple-
mentation of summing the elements of each row is shown in Listing 4.48.

This implementation suffers from insufficient parallelism, because m is
too small to keep all cores occupied. In fact, this is a bandwidth-bound
problem, because memory access has a regular pattern, and the arithmetic
intensity is equal to 1. Therefore, the performance concern is utilizing all
memory controllers, rather than all cores. There are 16 memory controllers
in the Knights Corner architecture. The performance of this code, expressed
in GB/s (the amount of data in matrix M processed per second), is 44 GB/s
on the host system and 10 GB/s on an Intel Xeon Phi coprocessor.
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1 void SumColumns(const int m, const int n, long* M, long* s){
2 #pragma omp parallel for
3 for (int i = 0; i < m; i++) { // m=4
4 long sum = 0;
5 for (int j = 0; j < n; j++) // n=100000000
6 sum += M[i*n + j];
7 s[i] = sum;
8 }
9 }

Listing 4.48: Non-Optimized function SumColumns() calculates the sum of the elements in
each row of matrix M. When the number of rows, m, is smaller than the number of threads in the
system, the performance of this loop suffers from a low degree of parallelism.

To improve the performance of this application, the amount of exploitable
parallelism in the code must be expanded. In the remainder of this section,
we will implement three optimization techniques:

1. First, we will try to move the parallel pragma into the inner loop, which
has more iterations.

2. Second, we will attempt to use the loop collapse functionality of OpenMP
(this could work, but does not).

3. Finally, we will apply the strip-mining technique and loop collapse.
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Optimization Option 1: Parallelize Inner Loop

To improve parallelism, one may try to parallelize the inner loop, which
has more iterations, as shown in Listing 4.49. In this case, the number of
iterations for thread parallelism is huge, so there is sufficient parallelism.
Furthermore, according to the optimization report (Listing 4.50), the compiler
is able to make multi-threading in the j-loop to co-exist with vectorization.

1 void SumColumns(const int m, const int n, long* M, long* s){
2 for (int i = 0; i < m; i++) { // m=4
3 long sum = 0;
4 // Parallelizing the inner loop to have more thread parallelism
5 #pragma omp parallel for reduction(+: sum)
6 for (int j = 0; j < n; j++) // n=100000000
7 sum += M[i*n+j];
8 s[i] = sum;
9 }

10 }

Listing 4.49: Function SumColumns() with thread parallelism applied to inner loop instead
the outer loop (compare to Listing 4.48).

...
OpenMP Construct at worker.cc(5,1)

remark #16200: OpenMP DEFINED LOOP WAS PARALLELIZED
...
LOOP BEGIN at worker.cc(5,1)

remark #25084: Preprocess Loopnests: Moving Out Store
[ worker.cc(7,7) ]

remark #15300: LOOP WAS VECTORIZED
...
LOOP END
...

Listing 4.50: Vectorization report for Listing 4.49. Thread parallelism in the j-loop co-exists
with vectorization.

Note that in order to properly perform reduction (summation) along the
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row, we had to use the clause reduction(+: sum) for variable sum
in the OpenMP pragma. This is because with parallelized i-loop, different
threads will be contributing to the total value of s[i].

With parallel inner loop, the performance on the coprocessor jumps up to
162 GB/s. It also marginally improves on the host to 45 GB/s.

Even though we are observing good acceleration with an Intel Xeon Phi
coprocessor, there is an indication that this is not the optimum performance.
The value of performance on the host, 45 GB/s, is considerably lower than the
host system bandwidth measured by the STREAM benchmark. STREAM
achieves 64 GB/s for the “copy” test and 85 GB/s for the “triad” test on our
host system.

There are two reasons for sub-optimal performance:

1. The OpenMP threads are spawned and terminated in every i-iteration,
which incurs parallelization overhead. This may be a minor effect
for our parameters of choice (m=4 and n=100000000), however,
the larger the value of m and the smaller the value of n, the greater
performance penalty will this inefficiency cause.

2. When the inner loop is parallelized, the OpenMP library does not see
the whole scope of the data processed by the problem, and has less
freedom for optimal load scheduling.

Even though with parallelized inner loop, we observed a performance
increase on the coprocessor, we will mark this method as sub-optimal for this
problem because of the problems stated above. Let’s see if we can resolve the
issue of insufficient parallelism in this code without re-spawning the parallel
region multiple times, and still exposing the whole problem to thread and
vector parallelism.
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Optimization Option 2 (Inefficient): Loop Collapse

In an attempt to instrument a better algorithm, the programmer can use
the OpenMP functionality of loop collapse, as shown in Listing 4.51.

1 void SumColumns(const int m, const int n, long* M, long* s){
2 s[0:m] = 0;
3 #pragma omp parallel
4 {
5 // Each thread will need a private container
6 long sum[m]; sum[:] = 0;
7 // Loop collapse expands iteration space:
8 // distributing m*n iterations across all threads
9 #pragma omp for collapse(2)

10 for (int i = 0; i < m; i++) // m=4
11 for (int j = 0; j < n; j++) // n=100000000
12 sum[i] += M[i*n+j];
13 // Reducing from thread containers to the output array
14 for (int i = 0; i < m; i++)
15 #pragma omp atomic
16 s[i] += sum[i];
17 }
18 }

Listing 4.51: Row-wise matrix reduction with an attempt to expand the iteration space by
collapsing nested loops.

OpenMP Construct at worker.cc(3,1)
remark #16201: OpenMP DEFINED REGION WAS PARALLELIZED

...
LOOP BEGIN at worker.cc(9,5)
...loop was not vectorized: vector dependence prevents vectorization
LOOP END

Listing 4.52: Vectorization report for Listing 4.51. Loop collapse precludes vectorization.

With loop collapse, having a scalar variable sum to avoid race conditions
is no longer sufficient. That is because in Listing 4.49, sum had a separate
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instance for each value of i. Now, with collapsed loops in Listing 4.51,
different threads may be operating on the same value of i. To avoid data
races, we gave each thread a private container long sum[m]. After the
parallel run, all thread-private containers are reduced into the shared container
s using atomic operations. Such a procedure for reduction was demonstrated
in Section 4.4.1.

While the collapse(2) directive makes OpenMP expand the iteration
space into two loops, the code works slowly on both the host system and the
coprocessor. On the host, we observer 46 GB/s and on the coprocessor only
8 GB/s.

Even though we did not achieve optimal performance with this optimiza-
tion, we are on the right track, because we expose the most parallelism to the
compiler.

The failure of the compiler to vectorize collapsed thread-parallel loops
is not due to a fundamental property of this algorithm, but due to the com-
plicated nature of code analysis in such case. In the next optimization step,
we will assist the compiler by increasing the amount of nesting with the
strip-mining technique. This will allow us to retain vectorization in the
inner loop, at the same time exposing the whole iteration space to thread
parallelism. Strip-mining was previously discussed in Section 4.3.6.
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Optimization Option 3 (Optimal): Strip-Mining and Loop Collapse

Finally, consider the code in Listing 4.53, which employs strip-mining
in order to transform the j-loop into two nested loops, and utilizes the loop
collapse directive on the outer i-loop and the new jj-loops.

1 void SumColumns(const int m, const int n, long* M, long* s){
2 const int tile = 10000;
3 assert(n%tile == 0);
4 s[0:m] = 0;
5 #pragma omp parallel
6 {
7 // Each thread will need a private container
8 long sum[m]; sum[:] = 0;
9 // Loop collapse expands iteration space:

10 // distributing m*(n/tile) iterations across threads
11 #pragma omp for collapse(2)
12 for (int i = 0; i < m; i++)
13 for (int jj = 0; jj < n; jj+=tile)
14 for (int j = jj; j < jj+tile; j++)
15 sum[i] += M[i*n+j];
16 // Reducing from thread containers to the output array
17 for (int i = 0; i < m; i++)
18 #pragma omp atomic
19 s[i] += sum[i];
20 }
21 }

Listing 4.53: This code improves on the version in Listing 4.51 by strip-mining the inner loop.
This allows OpenMP to balance the load across available threads, while automatic vectorization
succeeds in the inner loop.

This code retains the structure designed in Listing 4.51 and adds to it
another level of nesting. The compilation report now indicates that the loop
in line 14 is vectorized. The length of the inner loop, expressed with variable
tile, is chosen empirically. It has to be long enough to allow sufficient
workload in each thread, and it should also be a multiple of the cache line to
ensure aligned access to data in every instance of the j-loop. We assume that
n is a multiple of tile. If it is not, the programmer must modify the bounds
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of the jj-loop and add a peel loop at the end of the code (see Listing 4.58).
Note that even though we have an atomic construct in line 18, we do

not have the kind of penalty for it that we observer in Section 4.4.1. That
is because in Listing 4.53, the atomic operation is performed outside the
innermost loop in line 14. We will have a total of m × T atomic additions,
where T is the number of threads, which amounts to approximately 1000. In
contrast, the innermost loop in line 14 performs m × n additions, which
amounts to hundreds of millions of operations. Having an atomic operation
in that loop would have been disastrous for performance.

Figure 4.16 contains a summary of the performance of all versions of the
row-wise matrix reduction algorithm considered in this section.

 Unoptimized  Parallel inner loop  Collapse nested loops  Strip-mine and collapse0

50

100

150

200

 P
er

fo
rm

an
ce

, G
B

/s
 (h

ig
he

r i
s b

et
te

r)

44.2 44.9 46.4 

88.4 

10 

162 

8 

189  Host System
 Intel Xeon Phi Coprocessor

Figure 4.16: Performance of all versions of the row-wise matrix reduction code (Listing 4.48,
Listing 4.49, Listing 4.51 and Listing 4.53) on the host system and on the Intel Xeon Phi
coprocessor.

Evidently, our last optimization attempt is the best of all cases we had
considered so far. It achieves 88 GFLOP/s on the host and 189 GFLOP/s
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on the coprocessor. Both values are greater than the values achieved by the
STREAM benchmark on the respective platforms in any of its four tests.
This indicates that we are very near the optimum performance.

Note that the STREAM benchmark performs both reads and writes, and
our code performs only reads. This is why it was able to achieve greater
bandwidth than STREAM.
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Diagnosing Insufficient Parallelism with VTune

Insufficient parallelism may be seen in the VTune profile of the appli-
cation. We captured screenshots of VTune analysis of the non-optimized
(Listing 4.48) and optimized (Listing 4.53) matrix sweep codes in Figure 4.17.
These analyses were performed on the host with the analysis type “Concur-
rency” (however, “Advanced Hotspots” would have yielded the same results).

The bottom-up list of hotspots in the non-optimized version (top panel of
Figure 4.17) has function __kmp_fork_barrier on top, taking almost
10 more CPU time than the main function SumColumns(). Having an
OpenMP function at the top of the hotspots list is a red flag in itself pointing to
issues with thread parallelism. The red band in front of SumColumns in the
column “Effective Time by Utilization” indicates that most of the time, thread
concurrency in this function was in the “Poor” range. The timeline of the
non-optimized code confirms these indicators of multi-threading inefficiency,
showing that only 4 threads were working (brown stripes) while all other
threads were spinning (orange stripes).

After optimization (bottom panel of Figure 4.17), the OpenMP function
__kmp_fork_barrier is still among the top hotspots, however, now it
takes just over 10% of the CPU time. The main function, SumColumns(),
is now the top hotspot, with the majority of its runtime spent in the “Ideal”
range of thread concurrency (this is shown by the extent of the green band
in the “Effective Time by Utilization” column). The timeline in this screen-
shot also shows good thread utilization: all bands are mostly brown with
intermittent minor orange streaks.

The orange streaks in the optimized code timeline point to spin time. This
is not unusual in memory bandwidth-bound applications, which this one is.
Metrics designed for compute-bound applications, such as CPI (cycles per
instructions) ratio and spin time, may appear abnormally high in VTune,
even though the achieved bandwidth is optimal.
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Figure 4.17: Thread concurrency profile of host implementation of the row-wise matrix reduction
code. Top panel: non-optimized code (Listing 4.48). Bottom panel: optimized code with strip-
mining and loop collapse (Listing 4.53).
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4.4.5. Thread Affinity Optimization

The Intel OpenMP library has the ability to bind OpenMP threads to a set
of logical or physical cores. This functionality is available in both Intel Xeon
processors and Intel Xeon Phi coprocessors. Such binding, known as thread
affinity, may improve application performance. For example, it makes sense
to use thread affinity in the following cases:

1. In HPC applications that utilize the whole system, OpenMP threads
may migrate from core to another according to OS decisions. This
leads to performance penalties because the migrated thread must fetch
the cache contents into the new core’s L1 cache. Using thread affinity,
the programmer can forbid migration and thus improve performance
as well as dramatically boost power efficiency (see [33]);

2. For memory bandwidth-bound applications, best performance is
usually achieved with one software thread per physical core. In this
case, thread affinity must place consecutive software threads on differ-
ent physical cores, skipping additional hyper-threads (in Intel Xeon
CPU) or hardware threads (in Intel Xeon Phi coprocessor) in that core;

3. For compute-bound applications, the best performance is usually
achieved with multiple threads per core. Thread affinity for these
applications must bind software threads to logical processors (hyper-
threads in CPU or hardware threads in MIC architecture). Ordering
may be important: threads with adjacent numbers are likely to work on
adjacent data subsets, so they should be placed on the same physical
core to share the cache (L1 cache in Intel Xeon or L1 and L2 caches in
Intel Xeon Phi architecture);

4. In offload applications for Intel Xeon Phi coprocessors, core 0 man-
ages offload tasks, so calculations should not be scheduled on it. Intel
OpenMP excludes core 0 from thread affinity mask on Xeon Phi;

5. In Non-Uniform Memory Access (NUMA) systems (platforms with
two- or four-way Intel Xeon processors), thread affinity can be used
to partition the system between independent processes, sharing the
compute node’s resources. For example, in a two-way NUMA system
with two processes, thread affinity must bind threads of one process to
the first socket and threads of the other process to the second socket.
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The KMP_AFFINITY Environment Variable

Thread affinity in OpenMP applications can be controlled at the applica-
tion level by setting the environment variable KMP_AFFINITY. A detailed
explanation of the format of the variable is given in Listing 4.54. Table 4.6
explains the meaning of the arguments.

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Listing 4.54: Syntax of thread affinity settings with the environment variable KMP_AFFINITY.

In the value of KMP_AFFINITY, the key parameter is type. It deter-
mines the pattern of thread distribution across cores. Usually, it is set to
compact or scatter. compact means that each thread is placed as
close as possible to to the previous one, and scatter means that each
thread is placed as far as possible from the previous one. Additionally, on an
Intel Xeon Phi coprocessor, type balanced is supported, which is useful
for 2 or 3 threads per core. Finally, type my be set to explicit, which
means that instead of a pattern, threads will be bound according to an explicit
proclist.

Other arguments of KMP_AFFINITY are <modifier>, of which the
most useful are verbose (OpenMP will print on the screen the affin-
ity mask) and granularity=fine or granularity=core. fine
granularity binds threads to specific hyper-threads/hardware threads, and
core binds threads to physical cores, permitting migration between hyper-
threads/hardware threads.

Finally, permute and offset are integer arguments. The former in-
dicates that the in the affinity pattern, the order of levels in the machine
topology map must be permuted (useful, for example, for binding consec-
utive threads to consecutive cores instead of consecutive hyper-threads).
The latter indicates the starting position for thread assignment (useful for
partitioning the system between different processes).

As of Intel Parallel Studio XE 2015 Update 1, the default affinity type
on Intel Xeon processors is KMP_AFFINITY=none, and on Intel Xeon Phi
coprocessors KMP_AFFINITY=scatter.
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Argument Default Description
modifier nonverbose,

respect,
granularity=core

verbose/nonverbose control whether the application must print informa-
tion about the supported affinity upon OpenMP library initialization: number of
packages (i.e., processors), number of cores in each package, number of thread
contexts in each core, and OpenMP thread bindings to physical thread contexts.
respect/norespect control whether to respect the affinity mask in place for
the thread that initializes the OpenMP run-time library
warnings/nowarnings control whether to print warning messages for the
affinity interface
granularity=<specifier> describes the lowest level that OpenMP
threads are allowed to float within a topology map. The values of
<specifier> are core or fine (the latter is equivalent to thread). With
granularity=core, threads bound to a core are allowed to float between
the different thread contexts (logical processors). With granularity=fine,
each thread is bound to a specific thread context.
proclist=[<proc_list>] specifies an explicit mapping of OpenMP
threads to OS procs. The format of <proc_list> is a comma-separated string
containing the numerical identifiers of OS procs or their ranges, and float lists
enclosed in brackets {}. Example: proclist=[7,4-6,{0,1,2,3}]maps
OpenMP thread 0 to OS proc 7, threads 1, 2 and 3 to procs 4, 5 and 6, respec-
tively, and thread 4 is allowed to float between procs 0, 1, 2 and 3.

type none type=compact assigns each OpenMP thread to a thread context as close as
possible to the previous thread. This type is beneficial for compute-intensive cal-
culations.
type=scatter is the opposite of compact: OpenMP threads are distributed
as evenly as possible across the system. This type is beneficial for bandwidth-
bound applications.
type=balanced is supported only in the MIC architecture and is a compro-
mise between scatter and balanced.
type=explicit assigns thread affinity according to the list specified in the
proclist= modifier.
type=disabled completely disables affinity interface and forces the
OpenMP library to behave as if the affinity interface was not supported by the
operating system
type=none does not bind OpenMP threads to particular thread contexts. Com-
piler still uses the OpenMP thread affinity interface to determine machine topol-
ogy, unlike with type=disabled.

permute 0 For compact and scatter affinity maps, controls which levels are most sig-
nificant when sorting the machine topology map. A value for permute forces the
mappings to make the specified number of most significant levels of the sort the
least significant, and it inverts the order of significance. The root node of the tree
is not considered a separate level for the sort operations.

offset 0 indicates the starting position (proc ID) for thread assignment.

Table 4.6: Arguments of the KMP_AFFINITY environment variable. This summary table is
based on the complete description in the Intel C++ Compiler Reference Guide.
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Low-level Affinity Interface

In addition to using the variable KMP_AFFINITY, the programmer may
use the low-level affinity interface supported by Intel Compilers. That
interface allows to set affinity using function calls from the application
code. Functions implementing this interface support only explicit processor
lists, and do not support patterns similar to scatter and compact. Low-
level affinity interface has precedence over the high-level method with the
environment variable KMP_AFFINITY. See the Compiler Reference for
more information.

OS Procs

Using KMP_AFFINITY=verbose can help to determine the runtime
mapping of threads to sockets and cores. Diagnostic output generated by this
variable also reveals that there is an intermediate mapping used by OpenMP
for affinity settings, which uses OS procs to enumerate threads. OpenMP
maps software threads to OS procs, and the operating system maps OS procs
to logical processors. The mapping of OS procs can be queried by viewing
the Linux system file /proc/cpuinfo. The lines beginning with the word
“processor” in this file contain the OS procs numbers.

Affinity on Coprocessors and KMP_PLACE_THREADS

To set the number of OpenMP threads in an application, the variable
OMP_NUM_THREADS may be used. On coprocessors, a more descriptive
variable KMP_PLACE_THREADS can be used to specify not only the total
number of threads, but also the number of threads per core. The syntax is

KMP_PLACE_THREADS=<N>C,<M>t

where <N> is an integer specifying the number of cores and <M> is the num-
ber of threads per core. For example, KMP_PLACE_THREADS=60C,3t
creates 180 threads, distributing 3 threads per core across 60 cores. Usage of
KMP_PLACE_THREADS does not replace KMP_AFFINITY, but comple-
ments it. One of the advantages of using it is that when the user requests one
core less than the number of physical cores, core 0 on coprocessor will be
automatically excluded from the affinity mask. This is beneficial for offload
applications, because core 0 is used for data movement tasks.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition

https://software.intel.com/en-us/node/522691


4.4. OPTIMIZATION OF MULTI-THREADING 345

KMP_AFFINITY Usage Examples

Examples of usage are given below. We assume a two-way processor with
2 cores per socket and enabled hyper-threading (a total of 4 physical cores or
8 logical processors):

1) To set a compute-optimal affinity for a single process:

export OMP_NUM_THREADS=8
export KMP_AFFINITY=compact,granularity=fine

2) To set a bandwidth-optimal affinity for a single process:

export OMP_NUM_THREADS=4
export KMP_AFFINITY=scatter,granularity=fine

3) To bind threads consecutively to physical cores:

export OMP_NUM_THREADS=4
export KMP_AFFINITY=compact,granularity=fine,1,0
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4) To bind threads to the second CPU socket:
export OMP_NUM_THREADS=4
export KMP_AFFINITY=compact,granularity=fine,0,4

5) Same as previous, but allow migration within a core:
export OMP_NUM_THREADS=4
export KMP_AFFINITY=compact,granularity=fine,1,0

6) In offload, bind 2 threads per core on a 61-core coprocessor with pattern
“scatter”, excluding core 0 from affinity mask:
export MIC_ENV_PREFIX=XEONPHI
export XEONPHI_KMP_PLACE_THREADS=60C,2t
export XEONPHI_KMP_AFFINITY=scatter,granularity=fine

7) Same as previous, but with pattern “compact”:
export MIC_ENV_PREFIX=XEONPHI
export XEONPHI_KMP_PLACE_THREADS=60C,2t
export XEONPHI_KMP_AFFINITY=compact,granularity=fine
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Example: Compute-Bound Application Tuning, DGEMM

For applications in which cache utilization and arithmetic performance are
more important than memory bandwidth, it is beneficial to place threads close
to each other on the processors. Affinity of type compact usually works
best for compute-bound application. Failing to set affinity can be expensive,
because by default, on processors, affinity is not set, and on coprocessors it
defaults to scatter.

As an illustration, we benchmarked the Intel MKL implementation of
Double-precision General Matrix-Matrix Multiply (DGEMM) on matrices
of size 8000× 8000. The application was run on the host and, independently,
on the coprocessor as a native executable. Code for this example is available
in Lab 4.07 – see Section 6.2. Figure 4.18 demonstrates our results.

 OMP_NUM_THREADS not set
(KMP_PLACE_THREADS not set*)

KMP_AFFINITY not set 

 OMP_NUM_THREADS=48
(KMP_PLACE_THREADS=61C,2t*)

KMP_AFFINITY not set 

 OMP_NUM_THREADS=48
(KMP_PLACE_THREADS=61C,4t*)

KMP_AFFINITY=compact,1 (compact*)
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 Affinity Tuning for a Compute-Bound Application (DGEMM)
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Figure 4.18: Performance of DGEMM with and without affinity settings. This example illus-
trates the effect of thread affinity on compute-bound applications on processors and coprocessors.
* Values with an asterisk apply to configuration on the Intel Xeon Phi coprocessor.
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First, we ran the application without setting affinity or the number of
threads. In this case, thread assignment was set by the OpenMP library to
the default values: 48 threads on the host with no affinity, and 244 threads on
the coprocessor with affinity of type scatter. With these settings, the host
yielded 226± 2 GFLOP/s and the coprocessor 428± 1 GFLOP/s.

The second step was tuning the number of threads. On our 24-core host
with 2-way hyper-threading, the natural choice is between 48 and 24 threads.
We have found that setting OMP_NUM_THREADS=24 and 48 yields the
same performance. On the 61-core coprocessor, we tested different numbers
of threads using KMP_PLACE_THREADS instead of OMP_NUM_THREADS.
Reasonable values to try are 61C,4t, 61C,3t, 61C,2t and 61C,1t.
The best results were obtained with 61C,2t (using all cores, 2 threads per
core), and DGEMM achieved 574± 3 GFLOP/s.

Finally, we tuned the thread affinity type together with the number of
threads. On the host, the best result is obtained by using either the com-
bination: OMP_NUM_THREADS=24, KMP_AFFINITY=compact or the
combination OMP_NUM_THREADS=48, KMP_AFFINITY=compact,1.
This result is 476 ± 1 GFLOP/s. On the coprocessor, the best result was
achieved with thread affinity compact and 4 threads per core (61C,4t),
and this result is 955 ± 1 GFLOP/s, which is close to the theoretical peak
performance of the 7120P coprocessor.
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Example: Bandwidth Tuning and KMP_AFFINITY=scatter

In applications bound by memory bandwidth, it is usually beneficial to use
1 thread per core on processors and 1-2 threads per core on the coprocessor.
This reduces thread contention on memory controllers. Additionally, affin-
ity type scatter improves the effective bandwidth because all memory
controllers are utilized uniformly.

Tuning thread affinity for bandwidth typically yields smaller speedup
than tuning for compute intensity (see previous example). That is because
on coprocessors, the default affinity is scatter, so even without setting
KMP_AFFINITY, the application uses optimal affinity type. On host pro-
cessor, by default, affinity is not set, however, its hardware-rich architecture
is able sustain good memory traffic even without thread affinity.

To test affinity tuning, we implemented a code that copies one array into
another using an OpenMP parallel loop (Listing 4.55). This workload is
similar to the “copy” test of the STREAM benchmark [34]. Code for this
example is available in Lab 4.07 – see Section 6.2.

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++)
3 B[i] = A[i];

Listing 4.55: Microkernel for testing memory bandwidth with array copy.

We tested array copy for array size n=320,000,000 and element type
double. The application first ran the test on the host. Then the same
application performed offload and ran the benchmark on the coprocessor.
Results are shown in Listing 4.19.

The first attempt to run the application, without affinity settings, yields
good result “out of the box”: 69 ± 1 GB/s on the host and 151 ± 1 GB/s
on the coprocessor. This is not surprising, because, as mentioned above,
the coprocessor uses a favorable affinity type scatter by default, and the
bandwidth on the host is not very sensitive to affinity settings. These results
are close to the highly-tuned STREAM benchmark values [35].

However, we can do 10% better on the host by setting one thread per
core (OMP_NUM_THREADS=24) and KMP_AFFINITY=scatter for this
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application. As the second set of bars in Figure 4.19 shows, this increases
host bandwidth to 77± 1 GB/s. However, at the same time, the coprocessor
bandwidth drops to 98±2 GB/s. This is an inadvertent effect of environment
variable forwarding to the offloaded code: variable OMP_NUM_THREADS
propagated to the coprocessor and resulted in only 24 threads operating there.

 OMP_NUM_THREADS not set
KMP_AFFINITY not set

MIC_ENV_PREFIX not set
O_KMP_PLACE_THREADS not set

OMP_NUM_THREADS=24
KMP_AFFINITY=scatter

MIC_ENV_PREFIX not set
O_KMP_PLACE_THREADS not set

OMP_NUM_THREADS=24
KMP_AFFINITY=scatter
MIC_ENV_PREFIX=O

O_KMP_PLACE_THREADS=60C,4t
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 Affinity Tuning for a Bandwidth-Bound Application with Offload (Array Copy)

 Host System 
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Figure 4.19: Performance of array copy with and without affinity settings. This example illus-
trates how to tune affinity settings in offload applications and for bandwidth-bound workloads.

We know how to resolve environment variable name collision for offload
application from Section 2.2.9. In the third attempt, we added two environ-
ment variables: MIC_ENV_PREFIX=O (the letter “O” is for offload) and
O_KMP_PLACE_THREADS=60C,4t. Note that on a 61-core processor,
our offload application is restricted to 60 cores because core 0 is reserved for
data movement. With these settings, performance on the host remained at
the optimized value of 77 GB/s, and on the coprocessor it went back to the
high value 151± 1 GB/s.
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Example: Partitioning System Between Multiple Processes

Consider situations when multiple independent computing processes op-
erate on a processor or a coprocessor. Such situations may occur:

a) in batch processing tasks. The user may set up a queue of independent
jobs, and a scheduler application assigns jobs to free “slots” in a cluster
or a batch farm. Several “slots” per compute node or per coprocessor may
be used;

b) when one Intel Xeon Phi coprocessor is shared between multiple host
processes, and

c) in native MPI applications with multiple ranks placed on one coprocessor.

We will not discuss the last case, because Intel MPI has its own way of
process pinning (see Section 4.7.2). However, for the first two cases, there
are situations where partitioning the processor or coprocessor between mul-
tiple processes yields better performance than running one process. These
situations are:

a) the application has poor thread scalability, i.e., one T -threaded process de-
livers less performance than the cumulative performance of N processes
with T/N threads each.

b) the application is running in a NUMA system based on a two- or four-way
Intel Xeon processor; in this case binding one process to each CPU socket
guarantees that it will operate on its NUMA-local memory.

As an example of such a case, we benchmarked a Discrete Fast Fourier
Transform (DFFT) of a large one-dimensional array using the FFT function-
ality of Intel MKL. The array size is 226 in double precision. We ran the
benchmark on our two-way host system and on an Intel Xeon Phi coproces-
sor. Code for this example is available in Lab 4.07 – see Section 6.2. Results
are shown in Figure 4.20.

We began by running one process that occupies all 48 threads on the host,
and, similarly, one process that uses all 240 threads on the coprocessor. The
variable KMP_AFFINITY=none was not set, so threads were allowed to
migrate between cores. In this test, the host delivered 31.2 GFLOP/s, and
the coprocessor 5.7 GFLOP/s.
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After that, in an effort to improve the cumulative performance, we ran two
24-threaded processes on the host and two 120-threaded processes on the
coprocessor. Each of them delivered less than one process using the whole
system, but the sum of their performances was 41.5 GFLOP/s on the host
and 11.2 GFLOP/s on the coprocessor.

 1 process
OMP_NUM_THREADS=

48 (240*)
KMP_AFFINITY

not set 

 2 processes
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OMP_NUM_THREADS=

24 (120*)
KMP_AFFINITY=

compact,0,<OFFSET> 
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 Affinity Tuning for an Application with Limited Scalability (DFFT)
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Figure 4.20: Performance of DFFT with and without affinity settings. This example illustrates
how affinity settings help to partition a platform between multiple independent processes.
* Values with an asterisk apply to configuration on the Intel Xeon Phi coprocessor.

Clearly, as the second test shows, using fewer threads per process yields
better performance. However, we expect that, especially on our two-way
host, binding each process to the respective CPU socket should perform even
better, because only NUMA-local memory will be used. This is why in the
next test, we set thread affinity for each process. Each process had a different
affinity setting:

- On the host, both processes used OMP_NUM_THREADS=24, but the first
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process had affinity set to KMP_AFFINITY=compact,0,0 and the
second to KMP_AFFINITY=compact,0,24.

- On the coprocessor, both processes used OMP_NUM_THREADS=120, but
the first process had affinity set to KMP_AFFINITY=compact,0,0 and
the second to KMP_AFFINITY=compact,0,120.

The affinity settings shown above use used the parameter offset of variable
KMP_AFFINITY. The first process populated 24 (or 120 threads) starting
from offset 0, and the second populated the same number of threads starting
from offset 24 (120). The result of this setting was that, as expected, the net
performance of the two processes on the host increased to 54.5 GFLOP/s,
but changed little on the coprocessor.

An offset of 0 maps to different OS procs on the host and on the coproces-
sor. On the host, it maps to OS proc 0, which corresponds to socket 0, core 0,
thread 0. On the coprocessor, it maps to OS proc 1, which corresponds to
core 1, thread 0. Subsequent OS procs map to cores and treads in a different
way on the host and on the coprocessor. However, the bottom-line effect of
the above affinity settings is the optimal partitioning of the system. This non-
uniform mapping is done in the OpenMP library to relieve the programmer
from dealing with the complexity of the architecture (specifically, with the
fact that on a 61-core coprocessor, OS proc 0, 241, 242 and 243 correspond
to core 0, threads 0-3, which are reserved for offload tasks).

Finally, in order to take full advantage of partitioning the system, we
ran the last test with as few threads per process as possible. On the host,
we were able to run 48 single-threaded DFFT processes, and on the co-
processor, memory limitation allowed us to run only 10 processes with
24 threads each. Affinity was set using the offset parameter. For ex-
ample, on the host, single-threaded processes {0; 1; 2; etc.}, had affin-
ity set to { compact,0,0; compact,0,1; compact,0,2; etc.}; on
the coprocessor, the respective 24-threaded processes had compact,0,0,
compact,0,24, compact,0,48, etc.

With that last effort, we nearly doubled the performance on the host to
103.1 GFLOP/s and tripled on the coprocessor to 34.6. GFLOP/s.

Affinity optimizations for the coprocessor discussed here are applica-
ble to situations where multiple offload processes share cores on a single
coprocessor. In this case, MIC_ENV_PREFIX may need to be used.
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4.4.6. Diagnosing Parallel Efficiency, Scalability Tests
In the process of porting and optimizing applications on Intel Xeon pro-

cessors and Intel Xeon Phi coprocessors, the programmer must ensure good
parallel scalability of the application. On a multi-core CPU host, applica-
tions must efficiently scale to tens of threads in order to harness the task
parallelism of Intel Xeon processors. On the Intel MIC architecture, the
application must have a good scaling up hundreds of threads. Excessive
synchronization, insufficient exposed parallelism and false sharing may limit
the parallel scalability and prevent performance gains on the Intel Xeon Phi
architecture.

A simple scalability test may help to assess the need for shared-memory
algorithm optimization. The methodology of this test may be designed as
below:

Step 1: Set thread affinity to KMP_AFFINITY=scatter for bandwidth-
bound or KMP_AFFINITY=compact,1 for compute-bound ap-
plications (drop the ,1 on the host if hyper-threading is disabled).
Benchmark the code with one thread. On the host, set one thread
with OMP_NUM_THREADS=1 and on the coprocessor, use the syn-
tax KMP_PLACE_THREADS=1C,1t.

Step 2: Proceed benchmarking the code with more threads, keeping only
one thread per core (i.e., on the host, increase OMP_NUM_THREADS
to the number of physical cores on the CPU; on the coprocessor, use
2C,1t, 3C,1t, ..., 60C,1t).

Step 3: After that, start increasing the number of threads per core (on the
host, test twice the number of physical cores if hyper-threading is
enabled; on the coprocessor, try 60C,2t, 60C,3t and 60C,4t).

The performance of a well-optimized compute-bound application must scale
linearly in Step 2, and also for going from 60C,1t to 60C,2t. Further
performance increase in Step 3 for such an application should be marginal.
If scalability is not linear in Step 2, and if performance drops in Step 3, the
application may be bandwidth-bound. If significant performance increase
is observed in Step 3, the application likely has a significant latency-bound
component.
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To illustrate this test with an example, we performed this procedure for the
compute-bound applications discussed in Section 4.3.2 and for the bandwidth-
bound application discussed in Section 4.4.4. Raw performance results are
displayed in Figure 4.21 and the parallel efficiency (ratio of raw performance
to linear extrapolation of single-threaded performance) in Figure 4.22.
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Figure 4.21: Scalability tests: raw performance results.
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Figure 4.22: Scalability tests: parallel efficiency.
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4.5. Memory Access Optimization
4.5.1. General Considerations

Computing applications can be classified by the efficiency of their memory
access as:

i) Compute-bound. That means that the application saturates the through-
put of ALUs or VPUs, so that memory traffic takes an insignificant
fraction of CPU cycles.

ii) Bandwidth-bound. Such applications are limited not by the arithmetic
performance, but by the rate at which memory controllers can deliver
data from the main memory to processor cores.

iii) Latency-limited workloads are also limited by memory traffic, but
by the latency of memory access rather than the rate of data transfer
(bandwidth).

Latency-limited code segments may not perform well on the Intel MIC
architecture. Generally, they would need to be changed to take advantage of
caches in a better fashion (for example, using data transformations or data
relayout techniques) as well as to employ efficient latency-hiding techniques
(such as prefetching). Such algorithmic changes should be applicable to
general-purpose CPUs as well, but usually have a bigger performance effect
on the many-core architecture.

Both compute-bound and bandwidth-bound workloads can run more
efficiently on the many-core platform than on multi-core general-purpose
processors. In some cases, the programmer may optimize a bandwidth-bound
application by changing the order of compute and memory access operations,
so the application gets closer to being compute-bound and works faster both
on multi-core and manycore platforms (again, this is not always possible).

Usually, for applications with data size N and arithmetic complexity
O(N), the best case scenario is working in the bandwidth-bound regime.
However, for stronger complexity scaling (e.g., O(N logN) or O(Nα) for
α > 1), there is a single parameter of the algorithm which determines
whether the application is compute- or bandwidth-bound. This parameter is
arithmetic intensity, the number of arithmetic operations performed on each
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data element fetched from memory while it is still in the processor’s registers
or cache. Better understanding of the impact of this parameter is provided by
an analytical tool called the roofline model discussed below.

Arithmetic Intensity

The estimate of the theoretical peak performance in double precision
(64-bit floating-point numbers) for a 60-core Intel Xeon Phi coprocessor
clocked at 1.0 GHz and utilizing 512-bit vector registers is

Arithm. Performance = 60×1.0×(512/64)×2 = 960 GFLOP/s. (4.8)

Here, the factor 2 assumes that the fused multiply-add operation is employed,
performing two floating-point operations per cycle. At the same time, the
peak memory bandwidth of this system performing 6.0 GT/s using 8 memory
controllers with 2 channels in each, working with 4 bytes per channel, is

Memory Bandwidth = 6.0× 8× 2× 4 = 384 GB/s. (4.9)

This amounts to 384/8 = 48 billion floating-point numbers per second
(in double precision). Therefore, in order to sustain optimal load on the
arithmetic units of an Intel Xeon Phi coprocessor, the code must be tuned to
perform no less than 960/48 = 20 floating-point operations on every number
fetched from the main memory. Arithmetic intensity greater than 20 makes
the code compute-bound; much less than 20 makes it bandwidth-bound.

In comparison, a system based on two twelve-core Intel Xeon E5 proces-
sors clocked at 2.7 GHz (see Table 1.2) delivers up to

Arithm. Perf. = 2 × 12× 2.7× (256/64)× 2 = 518 GFLOP/s (4.10)

with a memory bandwidth

Memory Bandwidth = 2 × 59.7 = 119 GB/s, (4.11)

where the additional factor of 2 in the estimate of performance reflects the
presence of two ALUs (Arithmetic Logic Units) in each Ivy Bridge processor.
Even though this processor does not have an FMA instruction, xAXPY-like
algorithms may favorably utilize the processor’s pipeline and employ both
ALUs. The threshold arithmetic intensity for transitioning from bandwidth-
bound to compute-bound workload is 518/(119/8) ≈ 35.
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Roofline Model

Generally, the more arithmetic operations per memory access a code
performs, the easier it is to fully utilize the arithmetic capabilities of the
processor. That is, high arithmetic intensity applications tend to be compute-
bound. In contrast, low arithmetic intensity applications are bandwidth-
bound, if they access memory in a streaming manner, or latency-bound if
their memory access pattern is irregular.
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Figure 4.23: Basic roofline model for a host with two Intel Xeon E5 processors and for an Intel
Xeon Phi coprocessor.

The relationship between the arithmetic intensity and the resource limita-
tion of an application can be better understood with the help of the roofline
model. Roofline model is a theoretical tool for assessing the optimization
options of HPC applications. This model was suggested by Williams, Water-
man & Patterson [36]. To build the roofline model for a specific architecture,
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one plots two lines on a log-log graph where the arithmetic intensity is plot-
ted along the horizontal axis, and performance (in GFLOP/s) on the vertical
axis. The two lines correspond to the bandwidth (a line with a unit slope
normalized to the expected bandwidth) and to the peak arithmetic perfor-
mance (a horizontal line normalized to the expected peak performance). The
point where these two lines intersect corresponds to the maximum bandwidth
and maximum arithmetic performance. An example of the roofline model is
shown in Figure 4.23.

The utility of the roofline model plot is in its predictive power in the
selection of code optimization options. Any application can be thought of as
a column in this plot positioned at the arithmetic intensity of the application
and extending upwards until it hits the “roof” represented by the model. If
the column hits the sloping part of the roof (the bandwidth line), then the
application is bandwidth-bound. Such an application may be optimized by
improving the memory access pattern to boost the bandwidth or by increasing
the arithmetic intensity. If the column hits the horizontal part of the roof
(the performance line), then the application is compute-bound. Therefore, it
may be optimized by improving the arithmetic performance by vectorization,
utilization of specialized arithmetic instructions, or other arithmetic-related
methods.

The roofline model can be extended by adding ceilings to the model.
Figure 4.24 demonstrates an extended roofline model for the host system with
two Intel Xeon E5 processors and for a single Intel Xeon Phi coprocessor.
In this figure, an additional model is produced by introducing a realistic
memory bandwidth efficiency η=50%. Additionally, we introduced a ceiling
“without FMA” for the coprocessor and “one ALU” for the host. One of
these ceiling correspond to applications that do no employ the fused multiply-
add operation on the coprocessor, or do not fill the host processor pipeline
in a fashion that utilizes both arithmetic logic units (ALUs) of Ivy Bridge
processors. This assumption reduces the maximum arithmetic performance
by approximately a factor of 2. Another ceiling additionally assumes that
the application is scalar, i.e., does not use vector instructions. In double
precision, this reduces the theoretical peak performance on the host by a
factor of 4 and on the coprocessor by a factor of 8 (see Section 1.3.2 for
additional discussion on this subject).
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Figure 4.24: Extended roofline model for a host with two Intel Xeon E5 processors and for an
Intel Xeon Phi coprocessor with a realistic bandwidth efficiency factor and additional ceilings.

The information in the roofline model plot can be used to preduct which
optimizations are likely to benefit a given application. It also indicates
the threshold arithmetic intensity at which the workload transitions from
bandwidth-bound to compute-bound. The arithmetic intensity is a property
of the numerical algorithm and can be varied for algorithms more expensive
than O(N). Code optimizations that improve the memory performance and
increase the arithmetic intensity are presented in the current section.
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Cache Misses

Intel processors and coprocessors have similar memory hierarchy: a large,
but relatively slow RAM is cached with a smaller, but faster L2 cache, which,
in turn, is cached by an even smaller and even faster L1 cache, residing in
direct proximity of the core registers. See Figure 1.9 for KNC core topology
and Table 1.3 for cache properties.

One aspect of cache organization distinguishes Intel Xeon processors
from Intel Xeon Phi coprocessors. Intel Xeon processors have the L2 cache
symmetrically shared between all cores, while in Intel Xeon Phi coprocessors,
the L2 cache can be viewed as slices local to every core and connected via
the CRI (Figure 1.8 illustrates the die layout).

Any algorithm that operates on data in RAM incurs cache misses when
the data is loaded from RAM into all levels of cache hierarchy for the first
time. Additionally, if the data set does not fit in the cache, the algorithm
will incur additional cache misses as it processes the data, because the same
data may be evicted from cache and fetched from RAM or lower-level cache
multiple times. Every cache miss on a read operation makes the thread stall
until the data requested by the thread is fetched from memory. A cache miss
on a write does not necessarily stall the thread, because it may not need to
wait until the data is written.

The latencies of communication with caches can be masked (i.e., over-
lapped with calculations). In Intel Xeon processors, hyper-threads and
out-of-order execution are used on the hardware level to mask latencies. In
Intel Xeon Phi coprocessors, 4 hardware threads per core play this role.

Sometimes it is possible to use special techniques to reduce the occurrence
of cache misses in an algorithm:
1) permuting nested loops when it improves the locality of data access;
2) loop tiling (also known as loop blocking) for algorithms with nested loops

acting on multi-dimensional arrays;
3) recursive cache-oblivious algorithms,
4) loop fusion and inter-procedural optimization.

These methods are described in Sections 4.5.2, 4.5.3 and 4.5.5. Additionally,
for multi-socket Intel Xeon processors, first touch memory allocation is an
important optimization (see Section 4.5.4).
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4.5.2. Loop Tiling

Loop tiling is a technique for memory traffic optimization in algorithms
that involve nested loops, multidimensional arrays, and regular access pat-
terns. This technique is also known as “strip-mine and permute”, because to
tile a loop, the programmer strip-mines (see Section 4.4.4) the inner or the
outer loop and permutes some of the loops in the resulting code.

Cache Blocking

A loop tiling pattern known as “cache blocking” is shown in Listing 4.56.
In this pattern, the inner (presumably, unit-stride) loop gets strip-mined, and
in the resulting three nested loops, the outer two are permuted.

1 for (int i = 0; i < m; i++) // Plain nested loops
2 for (int j = 0; j < n; j++)
3 compute(a[i], b[j]); // Memory access is unit-stride in j
4

5 for (int jj = 0; jj < n; j+=TILE) // Tiled loops (cache blocking)
6 for (int i = 0; i < m; i++)
7 for (int j = jj; j < jj + TILE; j++) // Return to b[jj] sooner
8 compute(a[i], b[j]); // Memory access still unit-stride in j

Listing 4.56: Schematic organization of loop tiling: cache blocking.

To analyze this optimization, let us assume that the array b does not fit in
cache. Then, in the non-optimized version (lines 1 through 3 in Listing 4.56),
for every iteration in i, all the data of b will have to be read from memory
into cache, evicted from cache and then fetched again in the next i-iteration.
Re-organization of the loops with tiling (lines 5-8 in Listing 4.56) ensures
that the code re-uses the value of b[jj] after only TILE iterations while it
is still in a cache.

Ideally, the data spanned by the innermost loops in a cache-blocked
algorithm should utilize the whole cache. This means that the size of the tile
must be tuned to the specifics of computer architecture.

The loop in i can be tiled in a similar manner (see Listing 4.57), improving
the locality of access to array a[i].
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1 for (int ii = 0; ii < m; ii += TILE) // Tiling in both i and j
2 for (int jj = 0; jj < n; jj += TILE)
3 for (int i = ii; i < ii + TILE; i++)
4 for (int j = jj; j < jj + TILE; j++)
5 compute(a[i], b[j]); // Memory access is unit-stride in j

Listing 4.57: Double loop tiling.

Special precautions should be taken with loop tiling. It is best to make
array termination conditions as simple as possible, and use constants for
tile sizes, in order to facilitate automatic vectorization. Specifically, when
the values of m and n are not multiples of the tile size TILE, it is better to
peel off some iterations as shown in the first part of Listing 4.58 than to
compose a compact code with poorly known vector loop length (as shown in
the commented out section ofn Listing 4.58).

1 // Efficient approach with redundant code for processing remainder:
2 // (m - m%TILE) is always a multiple of TILE
3 for (int ii = 0; ii < m - m%TILE; ii+=TILE)
4 for (int j = 0; j < n; j++)
5 for (int i = ii; i < ii + TILE; i++)
6 compute(a[i], b[j]);
7

8 for (int i = m - m%TILE; i<m; i++) // Remaining iterations
9 for (int j = 0; j < n; j++)

10 compute(a[i], b[j]);
11

12 /* Inefficient approach below! Two problems:
13 1) iMax is not a compile-time constant
14 2) Loop count varies from iteration to iteration
15 for (int ii = 0; ii < m; ii+=TILE) {
16 const int iMax = (ii+TILE > m ? m : ii+TILE);
17 for (int j = 0; j < n; j++)
18 for (int i = ii; i < iMax; i++)
19 compute(a[i], b[j]);
20 } */

Listing 4.58: Peeling the tiled loop when m is not a multiple of TILE.
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Register Blocking (Unroll and Jam)

Another pattern of loop tiling, known as register blocking or “unroll
and jam”, is when the outer loop gets strip-mined, and in the resulting
three nested loops, the inner two are permuted, however, vectorization is
retained in the same loop as the in original code. Listing 4.60 shows this
transformation. The outer loop is automatically vectorized using #pragma
simd, which works best when the value of TILE a compile-time constant
(see Listing 4.59) and is not large.

1 for (int ii = 0; ii < m; ii += TILE) // Tiling (unroll and jam):
2 #pragma simd
3 for (int j = 0; j < n; j++) // Vectorization in j
4 for (int i = ii; i < ii + TILE; i++)
5 compute(a[i], b[j]);

Listing 4.59: Loop tiling for the purpose of register blocking (unroll and jam) with #pragma
simd to vectorize the second innermost j-loop.

Unlike cache blocking, which targets data reuse in caches, the unroll-and-
jam technique targets data reuse in processor registers.

With multiple nesting and tiling levels, the vector loop may be the third
innermost. In this case, #pragma simd may fail, however, manually
unrolling an inner loop re-enables automatic vectorization (see Listing 4.60).

1 for (int jj = 0; jj < n; jj += 4) // Explicit: j-tile is 4
2 for (int ii = 0; ii < m; ii += 4) // Explicit: i-tile is 4
3 #pragma simd
4 for (int k = 0; k < p; k++)
5 for (int i = ii; i < ii + 4; i++) {
6 compute(a[i], b[jj + 0], c[k]); // Unrolling in i in to
7 compute(a[i], b[jj + 1], c[k]); // vectorize in k
8 compute(a[i], b[jj + 2], c[k]);
9 compute(a[i], b[jj + 3], c[k]);

10 }

Listing 4.60: Double “unroll and jam” with manual unrolling to retain vectorization in k.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition



4.5. MEMORY ACCESS OPTIMIZATION 365

Tuning Loop Tiling

Tuning the tiled code requires trying different values for tile size. Fur-
thermore, optimal values for tile size may be different for different loop
dimensions. Additionally, optimal values may be different on the CPU-based
host and on a MIC architecture coprocessor. Listing 4.61 demonstrates how
to deal with these situations.

1 #ifdef __MIC__
2 // Tuned values of tile sizes for the MIC architecture
3 const int iTILE = 4;
4 const int jTILE = 1024;
5 #else
6 // Tuned values of tile sizes for the CPU architecture
7 const int iTILE = 8;
8 const int jTILE = 2048;
9 #endif

10

11 // ...

Listing 4.61: Tiled loops may require tuning of the tile size for different loop dimensions and
for different architectures.

Finally, tuning of tiled codes generally requires trying most of all the
possible loop permutations. Generally, it is possible to reason why one
order of loop nesting may be beneficial to another. Considerations for this
reasoning include: unit-stride access, amount of data in containers traversed
by different loop indices, sharing of variables between threads, and having
sufficient parallelism in the outer loops. However, the interaction between
these factors is often difficult to predict, while benchmarking up to (n!)
possible orders of n nested loops is usually a feasible task.

Examples of loop tiling in non-trivial situations may be found, for exam-
ple, in [18]. A simpler educational example of memory traffic optimization
with loop tiling is given in this section.
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Example: Loop Tiling in Matrix-Vector Multiplication

Consider the problem of multiplying matrix A of size m×n by vector b of
length n. For specificity, consider m=1024 and n=524288. The resulting
vector c of size m is calculated as

ci =
m∑
j=0

Aijbj, i = 0, 1, . . . , (n− 1). (4.12)

A simple parallel code for this operation can be written as in Listing 4.62.
See Lab 4.08 in Section 6.2 for complete code of this example.

1 void Multiply(const double* const A, const double* const b,
2 double* const c, const long n, const long m){
3 assert(n%8 == 0);
4 #pragma omp parallel for
5 for (long i = 0; i < m; i++)
6 #pragma vector aligned
7 for (long j = 0; j < n; j++)
8 c[i] += A[i*n+j] * b[j];
9 }

Listing 4.62: Non-optimized code for matrix-vector multiplication.

This code uses OpenMP for thread parallelism in the outer loop and relies
on automatic vectorization in the inner loop. We also assumed that the length
of the rows of matrix A is a multiple of 64 bytes (this can be achieved by
padding the rows if necessary), and that the matrix itself as well as vector b
are allocated on 64-byte aligned boundaries (see Section 3.1.4). With these
assumptions, the data alignment hint #pragma vector aligned (see
Section 4.3.4) is used for additional performance. It is evident that the scalar,
vector and thread aspects of this code’s performance are optimized.

To establish the baseline performance, we ran this code with affinity
setting KMP_AFFINITY=scatter on the host and on an Intel Xeon Phi
coprocessor in the native mode. The performance was estimated in FLOP/s
by dividing the number of operations, 2 ×m × n, by the calculation time.
The result, shown in Figure 4.25, is 16.0 ± 0.1 GFLOP/s on the host and
30.7± 0.7 GFLOP/s on the coprocessor.
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It is easy to see that the achieved performance is sub-optimal. In the
course of the calculation, each element of A is used only once. Therefore,
neglecting the traffic of vector b, the amount of time required for matrix-
vector multiplication equals the amount of time required to read matrix A.
Assuming memory bandwidth of around 80 GB/s on the host and 160 GB/s
on the coprocessor, one can estimate that the optimal performance of the
application is around 20 GFLOP/s on the host and 40 GFLOP/s on the
coprocessor, which is 25-30% greater than we observed.

The problem is that the amount of time required for reading b is not neg-
ligible, even though this vector occupies far less memory than the matrix A.
That is because each element of b is used m=1024 times. With n=524288,
vector b occupies 4 MiB, which exceeds the amount of L1 cache per core on
Intel Xeon processors and Intel Xeon Phi coprocessors. It also exceeds the
size of the L2 cache per core on coprocessors. Because b does not fit in the
cache, it will have to be fetched from the main memory multiple times.

Loop tiling can help to avoid fetching b multiple times by re-using its
elements several times (in other words, by increasing the arithmetic intensity
of the calculation). We will perform loop tiling next.
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Applying Tiling

Listing 4.63 shows the first version of optimized matrix-vector multiplica-
tion code with loop tiling. To arrive at this code, we had to experiment to
decide whether to tile in i or in j, in which order to nest the loops, and what
tile size to use.

1 void Multiply(const double* const A, const double* const b,
2 double* const c, const long n, const long m){
3 const long jTile = 4096L;
4 assert(n%jTile == 0);
5 #pragma omp parallel
6 {
7 double temp_c[m] __attribute__((aligned(64)));
8 temp_c[:] =0;
9

10 #pragma omp for
11 for (long jj =0; jj < n; jj+=jTile)
12 for (long i = 0; i < m; i++)
13 #pragma vector aligned
14 for (long j =jj; j < jj+jTile; j++)
15 temp_c[i] += A[i*n+j] * b[j];
16

17 for(long i = 0; i < m; i++) {
18 #pragma omp atomic
19 c[i]+= temp_c[i];
20 }
21 }
22 }

Listing 4.63: Matrix-vector multiplication code with loop tiling.

The performance of this code is 19.2 ± 0.1 GFLOP/s on the host and
32.5± 0.2 GFLOP/s on the coprocessor, which is 20% and 6% better than
before tiling, respectively. Even though these values are better than be-
fore optimization, we are still short of the expected performance of around
40 GFLOP/s on the coprocessor. Therefore, we will continue optimization in
the next step.
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Tiling + Strip-Mining

One may notice that after tiling, the outer loop is the loop in jj. For
our parameters, it has n/jTile=128 iterations. This should be alarming,
because it is not enough to keep the 244 hardware threads on the coprocessor
busy. We have already studied a similar case in Section 4.4.4 and found
that strip-mining and loop collapse can help performance by expanding the
parallel iteration space. This naturally leads us to the next optimization
step, where we will strip-mine the loop in i. After that, the outer loops
in ii and jj may be collapsed to expand the parallel iteration space as
shown in Listing 4.64. This increases the performance on the host by 6% to
20.3± 0.2 GFLOP/s and on the coprocessor by 10% to 35.6± 0.1 GFLOP/s.

1 void Multiply(const double* const A, const double* const b,
2 double* const c, const long n, const long m){
3 const long iTile = 64L; assert(m%iTile == 0);
4 const long jTile = 4096L; assert(n%jTile == 0);
5 #pragma omp parallel
6 {
7 double temp_c[m] __attribute__((aligned(64)));
8 temp_c[:] =0;
9 #pragma omp for collapse(2)

10 for (long jj =0; jj < n; jj+=jTile)
11 for (long ii = 0; ii < m; ii+=iTile)
12 for (long i = ii; i < ii+iTile; i++)
13 #pragma vector aligned
14 for (long j =jj; j < jj+jTile; j++)
15 temp_c[i] += A[i*n+j] * b[j];
16 for(long i = 0; i < m; i++) {
17 #pragma omp atomic
18 c[i]+= temp_c[i];
19 }
20 }
21 }

Listing 4.64: Matrix-vector multiplication code with tiling, strip-mining and loop collapse.
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Figure 4.25: Performance of matrix-vector multiplication with loop tiling and cache-oblivious
recursion applied for memory traffic optimization.

We have achieved speedup by a factor of 1.2 on the host and on the copro-
cessor using loop tiling to improve memory traffic. Doing so increased the
arithmetic intensity of the usage of vector b and, thus, shifted the application
to the right in the roofline model (see Section 4.5.1). In practice, depending
on the problem, the impact of memory traffic optimization may be far greater,
especially in applications for Intel Xeon Phi coprocessors.

Even though we achieved success here, we will proceed to learn in the next
section an alternative to loop tiling known as cache-oblivious methods. As a
motivation for this new method, find the last set of bars in Figure 4.25 titled
“Recursive Cache-Oblivious Method”. That last result takes the performance
up one more notch, finally meeting our expected performance goal based
on bandwidth estimates. The method used for this case is discussed in
Section 4.5.3.
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4.5.3. Cache-Oblivious Recursive Methods

An alternative approach to memory traffic optimization, known as cache-
oblivious algorithms, may yield better performance than tiled algorithms, at
the same time not requiring strict tuning to the cache size.

Principles

Cache-oblivious algorithms introduced by Prokop [37] and subsequently
elaborated by Frigo et al. [38] recursively divide the data set into smaller
and smaller chunks. Regardless of the cache size of the system, recursion
will eventually reach a small enough data subset that fits into the cache.
Listing 4.65 illustrates this approach.

1 // Non-Optimized algorithm
2 void CalculationNonOptimized(void* data, const int size) {
3 for (int i = 0; i < n; i++) {
4 // ... perform work;
5 }
6 }
7

8 // Optimized recursive cache-oblivious algorithm
9 void CalculationOptimized(void* data, const int size) {

10 if (size < recursionThreshold) {
11 for (int i = 0; i < size; i++) {
12 // ... perform work sequentially
13 }
14 } else {
15 // Recursively split the data set
16 CalculationRecurse(&data[0], size/2);
17 CalculationRecurse(&data[size/2], size/2);
18 }
19 }

Listing 4.65: Schematic recursive cache-oblivious algorithm.

In practice, continuing recursion until the problem size is 1 operations
is not optimal, as the overhead of function calls may outweigh the benefit
of cache-efficient data handling. In addition, having just 1 operation per
function precludes vectorization. For this reason, a threshold is introduced at
which the recursion stops, and a sequential algorithm is applied.
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For truly parallel problems, the recursive algorithm shown in Listing 4.65
is straightforward to parallelize using the fork-join model of parallelism.
Listing 4.66 illustrates how this may be done in OpenMP.

1 // Optimized recursive cache-oblivious algorithm
2 void CalculationOptimized(void* data, const int size) {
3 if (size < recursionThreshold) {
4 // ...
5 } else {
6 // Recursively split the data set and use
7 // OpenMP tasks to parallelize the recursion
8 #pragma omp task
9 {

10 CalculationRecurse(&data[0], size/2);
11 }
12 CalculationRecurse (&data[size/2], size/2);
13 #pragma omp taskwait
14 }
15 }
16

17 // The function must be called from a single thread
18 // in a parallel region as shown below.
19 #pragma omp parallel
20 {
21 #pragma omp single
22 {
23 CalculationOptimized(myData, originalSize);
24 }
25 }

Listing 4.66: Schematic recursive cache-oblivious algorithm.

Implementation of parallel recursion in Intel Cilk Plus is even simpler,
with _Cilk_spawn and _Cilk_sync used instead of #pragma omp
task and #pragma omp taskwait, respectively.

Naturally, if the calculation must return results, the programmer must
take care of avoiding race conditions. This may be done using thread-private
containers, similarly to the case shown in Section 4.4.1.
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Cache-Oblivious Matrix-Vector Multiplication

Listing 4.67 demonstrates a recursive implementation of matrix-vector
multiplication which we started to optimize in Section 4.5.2. See Lab 4.08 in
Section 6.2 for complete code of this example.

1 void recursMultiply(const double* const A, const double* const b,
2 double* const c, const long n, const long m, const long lda){
3 const long jThreshold = 8192L; assert(n%jThreshold == 0);
4 const long iThreshold = 64L; assert(m%iThreshold == 0);
5 if ((m<=iThreshold) && (n<=jThreshold)) { // Recursion threshold
6 for (long i = 0; i < m; i++)
7 #pragma vector aligned
8 for (long j = 0; j < n; j++)
9 c[i] = A[i*lda+j] * b[j]; // Matrix-vector multiplication

10 } else { // Recursive divide-and-conquer
11 if (m*jThreshold > n*iThreshold) { // Split i-wise
12 double c1[m/2] __attribute__((aligned(64)));
13 #pragma omp task
14 { recursMultiply(&A[0*lda + 0], &b[0], c1, n, m/2, lda); }
15 double c2[m/2] __attribute__((aligned(64)));
16 recursMultiply(&A[(m/2)*lda + 0], &b[m/2], c2, n, m/2, lda);
17 #pragma omp taskwait
18 c[0:m/2] += c1[0:m/2]; c[m/2:m/2] += c2[0:m/2]; // Reduction
19 } else { // Split j-wise
20 double c1[m] __attribute__((aligned(64)));
21 #pragma omp task
22 { recursMultiply(&A[0*lda + 0], &b[0], c1, n/2, m, lda); }
23 double c2[m] __attribute__((aligned(64)));
24 recursMultiply(&A[0*lda + n/2], &b[0], c2, n/2, m, lda);
25 #pragma omp taskwait
26 c[0:m] += c1[0:m]; c[0:m] += c2[0:m]; // Reduction
27 } } }
28

29 void Multiply(const double* const A, const double* const b,
30 double* const c, const long n, const long m){
31 #pragma omp parallel
32 #pragma omp single
33 { recursMultiply(A, b, c, n, m, n); } }

Listing 4.67: Matrix-vector multiplication with cache-oblivious parallel recursion.
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Performance result with the cache-oblivious algorithm is shown in Fig-
ure 4.25. The application achieves 21.2 ± 0.3 GFLOP/s on the host and
42.1± 0.2 GFLOP/s on the coprocessor, respectively. This is 4% and 18%
greater than the best case with the tiled algorithm. These results meet and
even slightly exceed our theoretical performance expectation based on band-
width estimates, which are 20 GFLOP/s and 40 GFLOP/s on the host and on
the coprocessor, respectively.

Figure 4.26 explains why the recursive algorithm achieves high perfor-
mance, and why data locality in this algorithm may be better than in the tiled
implementation.

Figure 4.26: Order of matrix tile traversal in serialized tiled algorithm (Listing 4.64) and
recursive algorithm (Listing 4.67).

The blue arrows indicate the pattern of memory access to the respective
strips in vector b in a serial (i.e., single-threaded) implementation. Within
each strip, the data of b is re-used a total of 64 times. At the next level of
caching, locality of access is determined by how soon the algorithm re-visits
any given strip. The tiled algorithm moves away from the original strip
and re-visits it only after traversing the entire length of b. In contrast, the

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition



4.5. MEMORY ACCESS OPTIMIZATION 375

recursive algorithm stays in the vicinity of any given strip, re-visiting it
immediately, then after 2 more strips, then after 10 strips. This behavior
translates to the parallel algorithm, because strips are assigned to threads
roughly in the same order as in the serial algorithm.

Generally speaking, translation of the memory access pattern of the se-
quential algorithm to that of the parallel algorithm is not trivial and depends
on the scheduling mode. For instance, we have found an implementation
of the tiled algorithm (see Section 4.5.2), which achieves a slightly higher
performance on the host than the recursive algorithm (23 GFLOP/s on our
system). However, the same implementation works slightly worse than the
recursive method on the coprocessor (achieving 37 GFLOP/s). Thus, the
recursive solution appears to be more portable. Readers wishing to experi-
ment more in this area may want to know that this implementation of tiled
algorithm requires tuning

i) the loop scheduling mode (static,1 works best) and
ii) the first touch allocation pattern (the same exact pattern as in the usage

of matrix A works best).

The technique of bandwidth optimization by choosing the first touch pattern
is discussed in Section 4.5.4.
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4.5.4. First Touch Allocation and NUMA Policy
NUMA, or Non-Uniform Memory Architecture, is a general term for

shared-memory computing systems in which cores and memory are parti-
tioned into nodes, and the latency and bandwidth of access between different
nodes is different.

An example of a NUMA system is a multi-socket computer based on
Intel Xeon processors (see Figure 4.27). In such a solution, access by a core
to a memory bank is faster if that memory bank is controlled by the socket
containing that core. This applies to latency and to bandwidth. Memory
banks controlled by a socket are often referred to as “local” or “NUMA-local”
memory with respect to that socket.

Figure 4.27: Example of a NUMA architecture: server board of our SXP8600 workstation based
on a two-way (i.e., dual-socket) Intel Xeon processor.

Two memory behaviors in Linux may be important for optimization of
applications in NUMA systems:
1) Memory pages for data are assigned when they are first touched by a

thread, rather than during the call to malloc.
2) In NUMA systems, the default page allocation policy is local, i.e., pages

are allocated close to the thread that touched them.

The consequence of these properties is that for parallel applications, the
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programmer must ensure favorable first touch pattern. That is, arrays must
be first touched with the same parallel pattern as the pattern with which they
will be used. For instance, arrays used in parallel regions must be initialized
also from parallel regions (see, e.g., Listing 4.68).

1 float* matrix = (float*) _mm_malloc(N*ld*sizeof(float));
2

3 // Bad practice: first touch with a single thread
4 // for (int c = 0; c < N*ld; c++)
5 // matrix[c] = 0.0f;
6

7 // Bad first touch: with the wrong parallel pattern
8 // #pragma omp parallel for schedule(dynamic,1)
9 // for (int c = 0; c < N*ld; c++)

10 // matrix[c] = 0.0f;
11

12 // Good first touch: same parallel pattern as in usage
13 #pragma omp parallel for
14 for (int i = 0; i < N; i++)
15 for(int j = 0; j < ld; j++)
16 matrix[i*ld + j] = 0.0f;
17

18 // Scenario of usage of the data container "matrix"
19 #pragma omp parallel for
20 for (int i = 0; i < N; i++)
21 for(int j = 0; j < ld; j++)
22 b[i] += matrix[i*ld + j]*x[j];

Listing 4.68: Memory allocation on first touch: good and bad practices.

Sometimes, the pattern in which an array is used is so complex that just
touching an array by from a parallel region is not sufficient to ensure a
favorable memory allocation. In these cases, first touch by a “dry run” of the
calculation may help to improve performance.

Additionally, some applications may use an array in more than one par-
allel calculation, and a memory allocation favorable for one phase of the
application may be unfavorable for another. In these cases, a tradeoff must
be sought, for example, performing first touch by the more computationally
demanding phase. An example of such case may be found in [21].
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Example:

To illustrate the performance impact of first touch, we will re-visit the
matrix-vector multiplication code developed in Section 4.5.3. First touch in
this problem is important only for matrix A, because our cache optimizations
rendered cache traffic in b and c insignificant.

First, we benchmarked the same application as in Section 4.5.3, but with
matrix A first touched with a serial loop instead of a parallel loop (see
Listing 4.69). The resulting performance on the two-way CPU was reduced
by almost a factor of 2, to 13.0±0.4 GFLOP/s. However, on the coprocessor,
performance was not affected, because it is not a NUMA system.

1 double * A = (double*) _mm_malloc(sizeof(double)*n*m, 64);
2 for (long i = 0; i < m; i++)
3 for (long j = 0; j < n; j++)
4 A[i*n+j] = i;

Listing 4.69: Memory allocation on first touch with a serial region.

After that, we restored the initialization of matrix A to what it was in
Section 4.5.3, where the matrix is initialized with a parallel loop (List-
ing 4.70). This, indeed, recovered the performance observed in Section 4.5.3:
21.2± 0.2 GFLOP/s on the host and 42.0± 0.3 GFLOP/s on the coprocessor.

1 double * A = (double*) _mm_malloc(sizeof(double)*n*m, 64);
2 #pragma omp parallel for
3 for (long i = 0; i < m; i++)
4 for (long j = 0; j < n; j++)
5 A[i*n+j] = i;

Listing 4.70: Memory allocation on first touch with a parallel region.

Finally, after some experimentation, we established that a 5% perfor-
mance increase is possible by optimizing the first touch pattern as shown
in Listing 4.71. In this case, it rows of A are given one by one to threads 0,
1, 2, 3, etc. Because we used KMP_AFFINITY=scatter, it means that
every even-numbered row is touched by CPU 1, and every odd-numbered
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row by CPU 2. Apparently, such placement of matrix A avoids a load skew
observed in the previous case, and achieves 22.2± 0.3 GFLOP/s on the host
and remains unchanged at 42.1± 0.3 on the coprocessor.

1 double * A = (double*) _mm_malloc(sizeof(double)*n*m, 64);
2 #pragma omp parallel for schedule(static,1)
3 for (long i = 0; i < m; i++)
4 for (long j = 0; j < n; j++)
5 A[i*n+j] = i;

Listing 4.71: Memory allocation on first touch with a parallel region and scheduling tweak.

Measurements discussed above are summarized in Figure 4.28.
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Figure 4.28: Recursive matrix-vector multiplication: different first touch patterns for A.
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4.5.5. Cross-Procedural Loop Fusion
When different stages of data processing are executed in loops of similar

structure, it may be beneficial to fuse such loops. Loop fusion is another
loop optimization in which two disjoint loops that have the same iteration
count are merged into a single loop. This optimization is safe only if the
data dependence between the two loops is such that the fused loop retains
the same semantics as the original two loops. Loop fusion is often beneficial
for performance, because it increases data locality. Listing 4.72 illustrates
loop fusion.

1 // Two distinct loops operating on the same data
2 for (int i = 0; i < n; i++)
3 ProcessingStage1(inData[i], outData[i]);
4 for (int i = 0; i < n; i++)
5 ProcessingStage2(outData[i]);
6

7 // The above code expressed as a fused loop
8 for (int i = 0; i < n; i++) {
9 ProcessingStage1(inData[i], outData[i]);

10 ProcessingStage2(outData[i]);
11 }

Listing 4.72: Loop fusion may reduce memory traffic by increasing temporal data locality.

Loop fusion is beneficial for cache performance, because in the case of
two disjoint loops, by the time that the first loop is finished, the beginning of
the data set may have been evicted from caches. However, in a fused loop,
all stages of data processing occur while the data is still in the caches. In
addition, loop fusion may help to reduce the memory footprint of temporary
storage if such storage was needed in order to carry some data from one loop
to another.

If two loops that are candidates for fusion are located within the same
lexical scope, Intel compilers may fuse them automatically. Intel compilers
also capable of some inter-procedural optimization. However, automatic
loop fusion may fail if the compiler does not see both loops at compile time
(e.g., the loops are located in separate source files), or if additional measures
must be taken for value-safe fusion. In cases when automatic loop fusion
fails, the programmer may need to implement it explicitly.
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Example: Fusing Data Generation and Processing

Opportunities for loop fusion often occur in pipelined data processing.
Listing 4.73 shows a synthetic example, in which some data is generated
and then processed (full code for this exercise is availabe in Lab 4.09 – see
Section 6.2). A total of m = 10000 data sets are generated, each containing
n = 40000 numbers. Data generation in our archetypal example is done by
producing random numbers with Intel MKL. The processing of data involves,
for each data set, a single pass in which the mean and the standard deviation
are computed for that data set. Results are returned as the set of m values
of the mean and standard deviation for each set. This specific processing
pipeline is not in itself a meaningful workload; rather, it represents a class of
applications with pipelined processing of multiple data sets.

1 void GenerateData(const int m, const int n, float* const allData) {
2 #pragma omp parallel for
3 for (int i = 0; i < m; i++) {
4 float* data = &allData[i*n]; // Fill data set in i-th position
5 // ...
6 }
7 }
8

9 void AnalyzeData(const int m, const int n, const float* allData) {
10 #pragma omp parallel for
11 for (int i = 0; i < m; i++) {
12 float* data = &allData[i*n]; // Use data set in i-th position
13 // ...
14 }
15 }
16

17 void RunProcess(const int m, const int n) {
18 // ... Setup omitted ...
19 float* data = (float)_mm_malloc(sizeof(float)*n*m, 64);
20 GenerateData(m, n, allData);
21 AnalyzeData(m, n, allData);
22 }

Listing 4.73: Generation and processing of data in functions with disjoint parallel loops.
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Benchmarking this code yields a baseline performance of 2.77± 0.02 bil-
lion values processed per second on the host, and 2.68± 0.04 billion values
per second on the coprocessor (see Figure 4.29).

The absolute value of these performance measurements are difficult to
relate to the theoretical peak performance of the hardware. This is be-
cause the actual workload involves generation of normally distributed ran-
dom numbers with Intel MKL. However, opportunities for optimization
are apparent from the structure of the code. Indeed, the entire data set is
n×m×sizeof(float)=1.5 GiB in size. During the data generation step,
the entire data set is accessed once, and during the analysis step, it is accessed
a second time. Because 1.5 GiB is far greater than the size of the cache in
the system, the second access will go to the main memory.

To optimize the application, we can fuse the parallel loops in func-
tions GenerateData() and AnalyzeData() and move them out into
RunProcess(), as shown in Listing 4.74.

1 void GenerateData(const int n, const int i, float* const data) {
2 // ... Generate a single data set number i...
3 }
4

5 void AnalyzeData(const int n, const int i, const float* data) {
6 // ... Analyze a single data set number i...
7 }
8

9 void RunProcess(const int m, const int n) {
10 // ... Setup omitted ...
11 float* data = (float)_mm_malloc(sizeof(float)*n*m, 64);
12 #pragma omp parallel for
13 for (int i = 0; i < m; i++) {
14 float* data = &allData[i*n]; //Process dataset in i-th position
15 GenerateData(n, i, data);
16 AnalyzeData(n, i, data);
17 }
18 }

Listing 4.74: Fused parallel loops in one function.

This optimization alone improves the performance on the host by 20% and
on the coprocessor by 6%. More importantly, it opens up an opportunity for
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another memory traffic optimization: shrinking down the memory footprint
of the application.

Indeed, the large array allData in Listing 4.73 was only necessary
to carry the data from function GenerateData() to AnalyzeData().
This is no longer needed in Listing 4.74 where the loops over the data sets
are fused. Therefore, function RunProcess() may be re-written as in
Listing 4.75. There, one array of size n is allocated in every thread instead
of m=10000 such arrays.

1 void RunProcess(const int m, const int n) {
2 // ... Setup omitted ...
3 #pragma omp parallel for
4 for (int i = 0; i < m; i++) {
5 float data[n] __attribute__((aligned(64))); // Smaller array
6 GenerateData(n, i, data);
7 AnalyzeData(n, i, data);
8 }
9 }

Listing 4.75: Loop fusion allows to shrink the application memory footprint by eliminating
unnecessary scratch data containers.

After shrinking the memory footprint, the performance went up another
27% on the host and 57% on the coprocessor, achieving 4.22 and 4.45 billion
values per second on the respective platforms. This is because the application
data now fits completely in the level 2 cache both on the CPU and on the
coprocessor. Therefore, the data generation step does not require memory
accesses.

The effect of loop fusion and with reduced scratch memory footprint is
shown in Figure 4.29. The complete working code for this example can be
found among the Exercises (see Section 6.2).
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Figure 4.29: Performance of the code generating and analyzing pseudo-random data. The non-
optimized case is shown in Listing 4.73, and the optimized case in Listing 4.74 and Listing 4.75.
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4.5.6. Advanced Topic: Prefetching

Intel Xeon processors and Intel Xeon Phi coprocessors improve cache
traffic on the hardware level with the help of hardware prefetchers. These
devices monitor memory access pattern of running applications, train to it,
and predictively issue requests to fetch data from memory into caches several
cycles before this data is used by the core. Intel Xeon processors have L1
and L2 hardware prefetchers, and Intel Xeon Phi coprocessors have only an
L2 hardware prefetcher.

In addition to hardware prefetching, Intel Xeon processors and Intel Xeon
Phi coprocessors support software prefetch instructions. These instructions
request that a certain address (cache line) is fetched from memory into a
cache. Software prefetch instructions do not stall execution, and therefore
they can be issued many cycles before the fetched line is used by the core.
The time between the prefetch instruction and the instruction consuming the
data on the core is called the prefetch distance. In loops, prefetch distances
are typically measured in the number of iterations between the prefetch
instruction and data consumption.

The Intel compilers automatically insert prefetch instructions into the
compiled code for the MIC architecture at optimization level -O2 and
above. The prefetch distance and prefetched variables are computed us-
ing heuristics. These heuristics work for array accesses (e.g., A[i][j]
or B[i*n+j]) and pointer accesses where the address can be predicted in
advance (e.g, *(A+(i*n+j)*8)). However, by default, the compiler does
not issue prefetch instructions for accesses in the form A[B[i]]. Such
indirect prefetching can be forced by using a pragma of the form #pragma
prefetch A:0:2 before the loop. Here 0 means issue prefetch with
vprefetch0 (hint-0) and 2 means use a prefetch distance of 2 (possibly
vectorized) iterations. It is possible to see the report on compiler prefetching
using the compiler argument -opt-report=3.

To fine-tune the application performance, the programmer may wish to
control software prefetching. If this approach is taken, it is advisable to
first turn off automatic compiler prefetching using the compiler argument
-no-opt-prefetch (to disable prefetching in the whole source file) or
placing #pragma noprefetch before a function or a loop (for a more
fine-grained control). After that, prefetching can be modified with the argu-
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ment -opt-prefetch-distance (to affect the whole file) or effected
with the intrinsic _mm_prefetch() or #pragma prefetch (for pre-
cise control of each variable).

The following general considerations may be helpful in the planning of
prefetch optimization:

a) It is possible to diagnose whether the performance of a particular ap-
plication can be improved with software prefetching. The most simple
test is to turn off prefetching in the whole application or a particular
loop or function. If the performance drops significantly, then prefetching
plays an important role, and fine-tuning the prefetch distances can lead to
performance increase.

b) Prefetching is more important for Intel Xeon Phi coprocessors than for
Intel Xeon processors. This is in part explained by the fact that Intel
Xeon cores are out-of-order processors, while Intel Xeon Phi cores are
in-order. Out-of-order execution allows Intel Xeon processors to overlap
computation with memory latency. Additionally, the lack of a hardware
L1 prefetcher on Intel Xeon Phi coprocessors makes software prefetching
necessary on the lowest level of cache traffic.

c) Loop tiling and recursive cache-oblivious algorithms (see Section 4.5.2
and Section 4.5.3) improve application performance by reducing cache
traffic, and, therefore, prefetching becomes less important for algorithms
optimized with these techniques.

d) If software prefetching maintains good cache traffic, hardware prefetching
does not come into effect.

Additional information on prefetching on Intel Xeon Phi coprocessors
can be found in this presentation by Rakesh Krishnaiyer [39]. The Intel
C++ Compiler Reference Guide has detailed information about pragmas
prefetch and noprefetch and compiler argument -opt-prefetch.
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4.6. Offload Traffic Control

Applications that use the coprocessor in the offload mode can benefit from
the optimization of the communication between the host and the coprocessor.
In this section, we demonstrate the fundamental strategies for optimizing
communication in offload applications: memory buffer retention and data
persistence on the coprocessor between offloads.

4.6.1. Bandwidth Optimization with Persistent Buffers
In Section 2.2.4 we mentioned that by default, the offload library allocates

memory buffers for offloaded arrays before offload and deallocates them after
offload, which may result in performance loss. In this section we will verify
this statement with benchmarks and also verify the that effecting memory
buffer persistence is a viable solution.

Default Offload Mode

The code demonstrated in Listing 4.76 will be used for benchmarking the
default offload mode.

1 // Default offload procedure:
2 // 1) allocate memory on coprocessor,
3 // 2) transfer data,
4 // 3) deallocate memory on coprocessor
5 for (int trial = 0; trial < nTrials; trial++) {
6 const double t0 = omp_get_wtime();
7 #pragma offload_transfer target(mic:0) in(data: length(size))
8 const double t1 = omp_get_wtime();
9 printf("The offload latency=%.6f s, bandwidth=%.3f GB/s",

10 (t1-t0), 1e-9*size/(t1-t0));
11 }

Listing 4.76: Transfer of data to the coprocessor in the default offload mode.

This function transfers array data to the coprocessor in the default mode.
At the beginning of each offload, the offload library will allocate memory
for the respective array on the coprocessor, then the data will be transferred
over the PCIe bus, calculations will be performed, and memory will be
deallocated.
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Memory Buffer Retention Between Offloads

Consider the case when a function performing offload is called multiple
times, and all or some of the pointer-based arrays sent to the coprocessor have
the same size. Then offload can be optimized using the clauses free_if
and offload_if in order to preserve the memory allocated for the array
on the coprocessor (see also Section 2.2.4) as shown in Listing 4.77.

1 // Allocate and retain a buffer on the coprocessor
2 #pragma offload_transfer target(mic:0) \
3 in(data: length(size) alloc_if(1) free_if(0))
4

5 for (int trial = 0; trial < nTrials; trial++) {
6 const double t0 = omp_get_wtime();
7 // Re-use the buffer retained on the coprocessor:
8 #pragma offload_transfer target(mic:0) \
9 in(data: length(size) alloc_if(0) free_if(0))

10 const double t1 = omp_get_wtime();
11 printf("The offload latency=%.6f s, bandwidth=%.3f GB/s",
12 (t1-t0), 1e-9*size/(t1-t0));
13 }
14

15 // Delete the buffer on the coprocessor
16 #pragma offload_transfer target(mic:0) \
17 in(data: length(size) alloc_if(0) free_if(1))

Listing 4.77: Optimized offload with memory buffer retention.

Benchmarks of the default and optimized offload traffic are shown in
Figure 4.30 and Figure 4.31. For each mode of offload, we benchmarked the
“in” and “out” data transfer direction.

The effect of memory buffer retention on the offload performance is
very significant. For large arrays, memory buffer retention increases the
bandwidth of data movement almost by a factor of 2.8, achieving 6.8 GB/s.
For smaller arrays, the effect is even more dramatic because the latency of
the memory allocation operation comes into play. The latency of small array
offload into a retained memory buffer is around 10 µs, while without buffer
retention it is as high as 2000 µs.
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Example: Matrix-Matrix Multiplication with Offload

To illustrate memory buffer retention in practice, we will benchmark a
synthetic application performing matrix-matrix multiplication using the Intel
MKL implementation of DGEMM. We assume that multiple matrices are
initialized on the host, then copied to the coprocessor for multiplication, and
the result is returned back to the coprocessor. See Lab 4.10 for complete
code (refer to Section 6.2).

The arithmetic complexity of DGEMM scales as O(n3) while its data size
scales asO(n2). As we established in Section 1.3.4, in this case, the larger the
size of the matrix, the less significant the offload time becomes. Therefore,
to simulate a more challenging situation, we will multiply relatively small
matrices with n=1024, and do it with nMatrices=8 sets of matrices.

An initial implementation of this workload is shown in Listing 4.78.

1 for(int i = 0; i < nMatrices; i++) {
2 double* A = &A_arr[i*n*n];
3 double* B = &B_arr[i*n*n];
4 double* C = &C_arr[i*n*n];
5 #pragma offload target(mic:0) \
6 in(A: length(n*n)) in(B: length(n*n)) out(C: length(n*n))
7 {
8 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
9 n, n, n, 1.0, A, n, B, n, 0.0, C, n);

10 }
11 }

Listing 4.78: DGEMM in the offload mode with default offload options.

Timing this code inside and outside the scope of the offload pragma
indicates that the effective performance of matrix-matrix multiplication (i.e.,
taking into account data movement time) is 58± 4 GFLOP/s. If we neglect
the data movement time, the performance is ≈ 115 GFLOP/s. The effective
bandwidth of data movement (i.e., taking into account the memory buffer
allocation time) is ≈ 1.5 GB/s. See also Figure 4.33).

This situation is clearly not optimal: data movement slows down the
computation by almost a factor of 2, and the bandwidth of data movement
is a factor of 4 lower than the practical value of ≈ 6 GB/s (see Figure 4.31).
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Let’s optimize the code by retaining the memory buffer into which matrices
are copied between offloads. According to Figure 4.31, we should achieve
around 6 GB/s for data movement.

1 // Allocate a buffer for all sets of matrices:
2 #pragma offload_transfer target(mic:0) \
3 in(A_buff: length(n*n) alloc_if(1) free_if(0)) \
4 in(B_buff: length(n*n) alloc_if(1) free_if(0)) \
5 in(C_buff: length(n*n) alloc_if(1) free_if(0))
6

7 for(int i = 0; i < nMatrices; i++) {
8 double* A = &A_arr[i*n*n];
9 double* B = &B_arr[i*n*n];

10 double* C = &C_arr[i*n*n];
11

12 // Transfer the i-th set of matrices into the buffer
13 #pragma offload_transfer target(mic:0) \
14 in(A[0:n*n]: into (A_buff[0:n*n])) \
15 in(B[0:n*n]: into (B_buff[0:n*n]))
16

17 #pragma offload target(mic:0) \
18 in(A_buff: length(0) alloc_if(0) free_if(0)) \
19 in(B_buff: length(0) alloc_if(0) free_if(0)) \
20 in(C_buff: length(0) alloc_if(0) free_if(0))
21 { // Perform DGEMM on the coprocessor without moving data
22 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
23 n, n, n, 1.0, A_buff, n, B_buff, n, 0.0, C_buff, n);
24 }
25

26 // Get the results out of the buffer
27 #pragma offload_transfer target(mic:0) \
28 out(C_buff[0:n*n]: into (C[0:n*n]))
29 }
30

31 // Deallocate the buffer from the coprocessor
32 #pragma offload_transfer target(mic:0) \
33 in(A_buff: length(n*n) alloc_if(0) free_if(1)) \
34 in(B_buff: length(n*n) alloc_if(0) free_if(1)) \
35 in(C_buff: length(n*n) alloc_if(0) free_if(1))

Listing 4.79: DGEMM in the offload mode with memory buffer retention.
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Listing 4.79 demonstrates a solution with memory buffer retention. We
used just one buffer for all the sets of matrices that we needed to multiply.
To copy the respective data set into the buffer, we used the specifier into in
#pragma offload_transfer.

The result of this optimization is an increase in the effective perfor-
mance (i.e., taking into account data movement time) by a factor of 4.6
to 269 ± 1 GFLOP/s. Additional timing inside the offload region shows
that the performance on the coprocessor (i.e., neglecting data movement) is
≈ 600 GFLOP/s. Timing the offload_transfer pragmas shows that
data movement takes around 55% of the total computation time and proceeds
at a bandwidth of ≈ 5.8 GB/s.

We achieved two improvements with memory buffer retention:

1) Effective bandwidth of data movement to the coprocessor was accelerated
from 1.6 to 5.8 GB/s, because with buffer retention, data movement does
not involve memory allocation.

2) The performance of the computational part was boosted from 115 to
600 GFLOP/s. The root cause of the quenched compute performance
with default offload settings (the 115 GFLOP/s measurements) is overhead
present in the COI library. This overhead is related to the creation of
virtuall memory pages for the newly allocated memory buffer. This
overhead may be eliminated in later versions of MPSS.

Despite the increased performance, we see that the latency of data move-
ment slows the computation down from the 600 GFLOP/s that it achieves
directly on the coprocessor to an effective performance of 270 GFLOP/s. At
the same time, because our goal is to multiply several sets of matrices, we
could potentially gain another factor of 2 in performance by overlapping com-
munication with computation. This optimization is shown in Section 4.6.2.
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4.6.2. Masking Offload Latency with Double Buffering

In Section 4.6.1, the time spent on data movement turned out to be compa-
rable to the computation time. This scenario can be optimized by overlapping
some of the communication with computation using a technique known as
double buffering. To execute double buffering, we can use the asynchronous
offload functionality in the explicit offload model. See Lab 4.10 for complete
implementation of this example (refer to Section 6.2).

To implement double buffering, we will have to create two sets of buffers:
one for holding the matrices currently being multiplied and another one for
holding matrices to be multiplied in the next iteration. Then we can start
asynchronous offload executing DGEMM and, concurrently with it, start
staging in data for the next set of matrices. The timeline in this algorithm
is shown in Figure 4.32, where it is also juxtaposed with the single-buffer
approach taken in Section 4.6.1.
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Figure 4.32: Timeline of single-buffered (non-optimized) and double-buffered (optimized)
offload application running DGEMM on multiple sets of matrices Ai, Bi and Ci (i =
0, 1, . . . , n− 1).

With double buffering, the first iteration and the last iteration are special.
In the first iteration, we have to send the first set of data into the coprocessor,
however, there is no calculation to run in the background at that time. In the
last iteration, we have to fetch the last set of results from the coprocessor,
but there are no more concurrent calculations running at that time. This
is why in our implementation (Listing 4.80), the loop in i runs from 1 to
nMatrices-2 The first and the last iteration are not shown in that listing,
but can be found in the exercises accompanying the book.
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1 for(int i = 1; i < nMatrices-1; i++) {
2 double* A_trans = &A_arr[(i+1)*n*n]; // We send the next data set
3 double* B_trans = &B_arr[(i+1)*n*n]; // We send the next data set
4 double* C_trans = &C_arr[(i-1)*n*n]; // We receive previous reslt
5

6 #pragma offload target(mic:0) signal(A_buff_calc) \
7 in(A_buff_calc: length(0) alloc_if(0) free_if(0)) \
8 in(B_buff_calc: length(0) alloc_if(0) free_if(0)) \
9 in(C_buff_calc: length(0) alloc_if(0) free_if(0))

10 {
11 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
12 n, n, n, 1.0, A_buff_calc, n, B_buff_calc, n, 0.0, C_buff_calc, n);
13 }
14

15 #pragma offload_transfer target(mic:0) \
16 in(A_trans[0:n*n]: into (A_buff_trans[0:n*n])) \
17 in(B_trans[0:n*n]: into (B_buff_trans[0:n*n])
18

19 #pragma offload_transfer target(mic:0) \
20 out(C_buff_trans[0:n*n]: into (C_trans[0:n*n]))
21

22 #pragma offload_wait target(mic:0) wait(A_buff_calc)
23

24 // Swapping Buffers
25 if(i%2==1) {
26 A_buff_trans=A_buff2; B_buff_trans=B_buff2; C_buff_trans=C_buff2;
27 A_buff_calc =A_buff1; B_buff_calc =B_buff1; C_buff_calc =C_buff1;
28 } else {
29 A_buff_trans=A_buff1; B_buff_trans=B_buff1; C_buff_trans=C_buff1;
30 A_buff_calc =A_buff2; B_buff_calc =B_buff2; C_buff_calc =C_buff2;
31 }
32 }

Listing 4.80: DGEMM in the offload mode with double buffering.

Double buffering masks data movement latency in all iterations except the
first and the last one. The performance that we achieved is 391±17 GFLOP/s.
This performance is a result of overlapping most of the communication pro-
ceeding at an effective 5.0 GB/s with computation running on the coprocessor
at about 600 GFLOP/s.
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Figure 4.33 summarizes the results of Section 4.6.1 and 4.6.2.

Figure 4.33: Optimization of DGEMM in the offload mode with memory retention and asyn-
chronous offload for communication masking.
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4.7. Optimization Strategies for MPI Applications

MPI applications in computing systems with Intel Xeon Phi coprocessors
face three unique challenges:

1. When the workload is shared between the host processors and the
coprocessors on an equal basis, the computing system becomes het-
erogeneous. In traditional homogeneous computing clusters, one may
orchestrate work sharing based on the assumption that equal parts
of the work take equal amounts time on any two compute devices.
However, in computing systems with Intel Xeon Phi coprocessors, the
same amount of work may take different time depending on whether
it is processed by a host processor or by a coprocessors, because they
perform computation at different rates. Therefore, work scheduling
now must either take into account the relative performance of different
compute units, or utilize dynamic scheduling to balance the workload.

2. Without multi-threading (shared memory parallelism), the total number
of MPI processes on a single compute node (coprocessor) can be as
high as 240. This an order of magnitude greater than in CPU-based
systems. These numerous processes may produce excessive amounts of
MPI communication. If communication quenches the performance of
the algorithm, the programmer must consider communication-efficient
algorithms or efficient communication fabrics. Hybrid OpenMP/MPI
programming can be employed in order to reduce the number of MPI
processes by utilizing multi-threading within each process.

3. Coprocessors have smaller amount of memory per core than typical
CPU-based systems. Because of that, pure MPI applications requiring
up to 240 processes per coprocessor can run into memory limitations.
Once again, hybrid OpenMP/MPI approach may alleviate the load
on the memory subsystem if some of the data can be shared between
processes. In some cases, the number of threads per MPI process may
be a tuning parameter of the application.

In this section, discuss these challenges and provide examples of MPI
application optimization in these areas.
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4.7.1. Static Load Balancing

Here we consider an application that uses Intel Xeon Phi coprocessors
as additional compute nodes in a heterogeneous cluster (see Figure 3.6) and
discuss load balancing possibilities for this setup.

Example Problem: Asian Option Pricing

We illustrate load balancing in MPI for an application that uses a Monte
Carlo method for pricing Asian options (full code is available in Lab 4.11
– see Section 6.2). This problem does not require intensive data transfer,
and every Monte Carlo trial is independent from other trials. Therefore,
this method can be categorized as an embarrassingly parallel algorithm.
Figure 4.34 schematically illustrates the core of the calculation.

Figure 4.34: Asian option pricing.

Let’s take a brief discourse to understand the underlying problem. Options
are contracts which allow one party to buy or sell, on some future date, an
asset (e.g., a stock) from/to the other party at a “strike price” agreed upon
the signing of contract. A contract to buy is called a “call option”, and a
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contract to sell is a “put option”. A style of options called Asian options
has the feature that the option payoff is calculated based on the mean price
(arithmetic or geometric) of the asset, sampled at prearranged instances. This
reduces the risks associated with market volatility and short-term market
manipulation. To make profit, the seller of the option must set a price that
offsets the anticipated risks associated with the asset price fluctuations.

For risk analysis of Asian options, a Monte Carlo simulation method can
be used (see Figure 4.34). In this method, multiple stochastic histories of
the asset price are simulated based on the available information on the asset
volatility. Details of the method are discussed in [40]. Here, we will focus on
the implementation of the parallel algorithm for this Monte Carlo method.

Suppose our task is to price N options, where for each option we have
different sets of parameters such as starting price, volatility, time averaging
interval, etc. For each option, we will simulate P random paths (i.e., stock
price timelines) and perform statistical analysis using these simulations. To
parallelize this algorithm in a cluster, we will adopt the following approach:

1) N options (i.e., sets of parameters for option pricing) are distributed
across all MPI processes.

2) Each process will analyze one option at a time.

3) Within each option, P random paths will be distributed across OpenMP
threads, and within each thread, across multiple vector lanes.

We have already covered the optimization of vector and multi-threaded
calculations, and therefore here, we will only focus on the distribution of
work across MPI processes.
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Asian Option Pricing without Load Balancing

In Listing 4.81 we demonstrate an initial approach to the problem in MPI.

1 void ComputeOnAllNodes(
2 const int nOptions, // Number of option parameters to price
3 const OptionType* const option, // Array of option parameters
4 PayoffType* payoff, // Array of option parameters
5 const int mpiWorldSize, // Size of MPI world for load distribution
6 const int myRank, // My ID
7 ) {
8

9 //Calculating workload share based on the rank
10 const double optionsPerProcess =
11 double(nOptions)/double(mpiWorldSize);
12 const int myFirstOption = int(optionsPerProcess*(myRank));
13 const int myLastOption = int(optionsPerProcess*(myRank+1));
14

15 // Static, even load distribution: assign options to ranks
16 for (int i = myFirstOption; i < myLastOption; i++) {
17 ComputeOptionPayoffs(option[i], payoff[i]);
18 }
19

20 // Collect results from all processes to reportingRank
21 if (myRank == reportingRank) {
22 MPI_Reduce(MPI_IN_PLACE, (float*)payoff, 4*nOptions,
23 MPI_FLOAT, MPI_SUM, reportingRank, MPI_COMM_WORLD);
24 } else {
25 MPI_Reduce((float*)payoff, (float*)payoff, 4*nOptions,
26 MPI_FLOAT, MPI_SUM, reportingRank, MPI_COMM_WORLD);
27 }
28 }

Listing 4.81: Even load distribution in Asian option pricing.

Here, function ComputeOptionPayoffs() receives one set of op-
tion parameters and performs a computation for it. Multi-threading and
vectorization are inside of this function.

From the calculation in lines 10-13, it is obvious that each MPI process
receives approximately the same number of options to price. If each work-
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item (i.e., option) takes the same amount of time to process, then load
balancing will not be an issue on a homogeneous platform. However, once
the platform becomes heterogeneous (i.e., some MPI processes run on CPUs
and other on coprocessors), load imbalance may occur.

We benchmarked this calculation, first using just the host CPU with two
MPI processes (one process per socket) as shown in Listing 4.82. This
configuration yielded a performance of 2.9 · 109 random values processed
per second (see also the first set of bars in Figure 4.41).

vega@lyra% # Linking host executable called "app"
vega@lyra% mpiicpc -qopenmp -mkl -xhost -o app *.o #
vega@lyra% cat machines-cpu.txt # Machine file for CPU-only run
lyra:2
vega@lyra% mpirun -machine machines-cpu.txt $PWD/app # Run on host
// ... Executable "app" runs on CPUs

Listing 4.82: Executing an MPI application on the CPU architecture.

After that, we used two Intel Xeon Phi coprocessor for the calcula-
tion, placing one MPI process on each (see Listing 4.83). This resulted
in 6.2 · 109 values per second performance.

vega@lyra% # Linking coprpcessor executable called "app-MIC"
vega@lyra% mpiicpc -qopenmp -mkl -mmic -o app-MIC *.oMIC # MIC exec
vega@lyra% cat machines-mic.txt # Machine file for MIC-only run
lyra-mic0:1
lyra-mic1:1
vega@lyra% export I_MPI_MIC=1 # Enable MIC support in Intel MPI
vega@lyra% LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MIC_LD_LIBRARY_PATH
vega@lyra% export LD_LIBRARY_PATH # Locate MIC libraries
vega@lyra% mpirun -machine machines-mic.txt $PWD/app # Run on MIC
// ... Executable "app-MIC" runs on coprocessors

Listing 4.83: Executing an MPI application on the MIC architecture.

Finally, we joined forces of the CPU and the coprocessors and ran a
heterogeneous calculation (Listing 4.84). This calculation performed at
5.8 · 109 values per second, which is worse than coprocessor-only setup.
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vega@lyra% cat machines-het.txt # Machine file for heterogeneous
lyra:2
lyra-mic0:1
lyra-mic1:1
vega@lyra% export I_MPI_MIC=1 # Enable MIC support in Intel MPI
vega@lyra% LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MIC_LD_LIBRARY_PATH
vega@lyra% export LD_LIBRARY_PATH # Locate MIC libraries
vega@lyra% export I_MPI_MIC_POSTFIX="-MIC" # Get name of MIC exec.
vega@lyra% mpirun -machine machines-het.txt $PWD/app # Run on all
// ... Executable "app" runs on CPUs
// ... Executable "app-MIC" runs on coprocessors

Listing 4.84: Executing an MPI application on a heterogeneous system comprised of processors
and coprocessors.

Note that in the last setup, we had to use different executables for the CPU
architecture and for the coprocessor architecture. The former was named app
and the latter app-MIC. To use a machine file in this setup (which restricts
us to specifying only one executable in the command line), we employed the
environment variable I_MPI_MIC_POSTFIX (see Section 2.4.3 for more
information).

Obviously, the latter performance result of 5.8 · 109 values per second is
disappointing. Considering the embarrassingly parallel nature of the problem,
we would expect the performance of the host to add up with the performance
for the coprocessors for a total of 2.9 · 109 + 6.2 · 109 = 9.1 · 109 values per
second.

As mentioned above, the problem may be traced to imperfect load balance.
Indeed, in our setup, half the options were processed on the host and the
other half on two coprocessors. Coprocessors were done with their share of
the work while the host was only half way done with its share.

One of the ways to remedy this situation is static load balancing.
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Static Load Redistribution

To redistribute the load, we can introduce a work sharing parameter α
quantitatively defined as

α =
BCPU

BMIC

, (4.13)

where BCPU and BMIC are the number of options processed on the CPU
architecture and on the MIC architecture, respectively. If the number of
CPU-based ranks is equal to the number of MIC-based ranks, then the value
α = 1.0 reproduces the case of unbalanced application with even load
distribution (Listing 4.81). Values α > 1.0 assign more work to processes
running on CPUs. Correspondingly, for α < 1.0, all CPU processes receive
less work than all MIC architecture processes. The optimal value of α
depends on the specific problem and computing system components (the
number of coprocessors, the clock frequency of host processors, etc).

An implementation of a code with static load balancing will have to
compute the following:

1) For each MPI process, it will have to determine whether it runs on a CPU
or on a MIC architecture coprocessor.

2) Each MPI process will have to know its rank within the group performing
computation on CPUs or on coprocessors.

To perform the former task, an array rankTypes of size equal to the
MPI world size may be computed and propagated across all processes as
shown in Listing 4.85.

1 int rankTypes[mpiWorldSize];
2 rankTypes[:] = 0;
3 MPI_Barrier(MPI_COMM_WORLD);
4 #ifdef __MIC__
5 rankTypes[myRank] = 1;
6 #endif
7 MPI_Allreduce(MPI_IN_PLACE, &rankTypes, mpiWorldSize,
8 MPI_INT, MPI_SUM, MPI_COMM_WORLD);

Listing 4.85: Determining which ranks belong to the CPU and to the MIC architecture.
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To determine each rank’s place within the CPU or the MIC team, the MPI
functionality of groups may be used as shown in Listing 4.86.

1 // Create two new groups: all CPUs and all MICs:
2 // 1. Create a list of ranks that are CPUs and MICs
3 std::vector<int> cpuRanks, micRanks;
4 for (int i = 0; i < mpiWorldSize; i++) {
5 if (rankTypes[i] == 0) cpuRanks.push_back(i);
6 if (rankTypes[i] == 1) micRanks.push_back(i);
7 }
8

9 // 2. Create MPI groups, one of CPUs and another of MICs
10 MPI_Group newGroup, origGroup;
11 MPI_Comm_group(MPI_COMM_WORLD, &origGroup);
12 if (rankTypes[myRank] == 0) {
13 MPI_Group_incl(
14 origGroup, cpuRanks.size(), &cpuRanks[0], &newGroup); }
15 else {
16 MPI_Group_incl(
17 origGroup, micRanks.size(), &micRanks[0], &newGroup); }
18

19 // 3. Query my place in the new group
20 int myGroupRank;
21 MPI_Group_rank(newGroup, &myGroupRank);

Listing 4.86: Determining the rank of a process among the group of processes running on the
same architecture.

The result will be an integer myGroupRank, which is a zero-based
identificator of the process within the group comprised of processes on the
same architecture as the current rank.

Note that this functionality is closely related to MPI communicators. A
communicator may be created with the new groups, allowing collective
communication that proceeds only within one of the groups and not within
the MPI world. This note is purely informational; we do not need to use the
communicator functionality for the problem at hand.

With the groups created, we can query the parameter α (in this example
we set it via the environment variable OPTIONS_ALPHA) and compute
the fraction of the workload to be processed on all CPU ranks as shown in
Listing 4.87.
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1 double alpha = 1.0; // Default value: equal work to CPUs and MICs
2 if (getenv("OPTIONS_ALPHA") != NULL)
3 alpha = atof(getenv("OPTIONS_ALPHA")); // Load balancing param.
4

5 const int lastOptForCPUs =
6 int(alpha*nOptions*double(cpuRanks.size())/mpiWorldSize);

Listing 4.87: Determining which ranks belong to the CPU and to the MIC architecture.

Finally, static load balancing may be expressed as in Listing 4.88.

1 int myFirstOpt, myLastOpt;
2 if (rankTypes[myRank] == 0) { // I am a MIC-based rank
3 const double optionsPerProcess =
4 double(lastOptForCPUs)/double(cpuRanks.size());
5 myFirstOpt = int(optionsPerProcess*(myGroupRank));
6 myLastOpt = int(optionsPerProcess*(myGroupRank+1));
7 } else { // I am a CPU-based rank
8 const double optionsPerProcess =
9 double(nOpts-lastOptForCPUs)/double(micRanks.size());

10 myFirstOpt=lastOptForCPUs+int(optionsPerProcess*(myGroupRank));
11 myLastOpt=lastOptForCPUs+int(optionsPerProcess*(myGroupRank+1));
12 }
13

14 // This rank will process options from myFirstOpt to myLastOpt
15 for (int i = myFirstOpt; i < myLastOpt; i++) {
16 ComputeOptionPayoffs(option[i], payoff[i]);
17 }
18

19 // ... MPI_Reduce to follow as before

Listing 4.88: Statically partitioning the workload beween MPI processes.

To take advantage of the load balancing property of the implementation
in Listing 4.88, we will need to tune the value of α. This may be done either
by analytical estimates, or by performing a calibration run. To illustrate the
impact of α on performance, we did the latter, and results of calibration are
shown in Figure 4.35.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition



4.7. OPTIMIZATION STRATEGIES FOR MPI APPLICATIONS 405

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

P
er
fo
rm
an
ce
 (
10
9  
va
lu
es
/s
)

Value of parameter α

Baseline (even load)

Optimal load balance

Too much load
on coprocessors

Too much load
on CPU

Figure 4.35: Load balancing: performance of the Asian options pricing Monte Carlo code as a
function of the parameter α.

The optimal performance of the heterogeneous code that uses two pro-
cesses on a two-way CPU and one process on each of two coprocessors is
9.0 · 109 values per second (see Figure 4.41). This is close to the theoretical
maximum performance that we estimated assuming perfect scalability across
the processors and coprocessors of our system. The difference between
the unbalanced application and the application with static load balancing is
depicted in Figure 4.36 and Figure 4.37.

Static load balancing allowed us to scale a Monte Carlo calculation across
the host and the coprocessor with near-optimal performance. However, this
approach is not always optimal. Static load balancing requires fine tuning
of parameters for every computing system configuration, which may be
inconvenient. In addition, this approach may not produce good results if
the calculation time varies from one work item to another. In this situation,
some processes may be “unlucky” to receive a longer workload, and all other
processes will have to wait for the slowest process at the synchronization
point. The solution to both problems is dynamic load balancing, which we
discuss in Section 4.7.2 and Section 4.7.3.
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Figure 4.36: Heterogeneous MPI application without load balancing. Each MPI process receives
the same share of work for processing, regardless of the architecture that it is executing on.

Figure 4.37: Heterogeneous MPI application with static load balancing. The share of work for
each process is determined by the architecture on which the process is executing. Mapping of
work-items to processes is assigned statically at the beginning of the run.
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4.7.2. Dynamic Work Scheduling
With dynamic load balancing, MPI processes that finish with their share

of work receive additional work. If the scheduling scheme is optimized, then
it is not necessary to calibrate the application for every system configuration,
and fluctuations of the execution time from one part of the problem to another
are naturally absorbed.

In this section we will show how to implement dynamic load balancing in
the boss-worker model using MPI communication between processes. Boss
— one of the MPI processes — is dedicated to assigning parts of the problem
(called “work-items” in this context) from a global queue to workers — the
rest of MPI processes in the application. When a worker finishes its assigned
work-item, it reports back to the boss to receive either another item, or a
command to terminate calculations.

Figure 4.38: Heterogeneous MPI application with dynamic load balancing in the boss-worker
model. One of the MPI processes, “boss” (in this case, rank 0 process), is dedicated to distributing
work-items to other processes (workers).
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Boss-Worker Scheme Implementation

To illustrate dynamic load balancing in MPI, we will use the same exam-
ple problem as in Section 4.7.1, Asian option pricing with a Monte Carlo
method (full code is available in Lab 4.11 – see Section 6.2).. The core
of the calculation remains the same, however, additional communication
for dynamic work scheduling is included in the code of each process. The
code that implements this scheduling algorithm is shown in Listing 4.89,
Listing 4.90 and Listing 4.91.

Listing 4.89 shows code executed in every MPI process. This code
branches on the value of the rank: the boss (rank 0) runs the function
DistributeWork() and workers (all other ranks) run ReceiveWork().
At the end of the calculation, an MPI barrier is used before collective com-
munication which delivers results for reporting. In some applications, this
part of the work may not be necessary, as results can be delievered inside of
DistributeWork()/ReceiveWork().

1 void ComputeOnAllNodes(
2 const int nOptions, // Number of option parameters to price
3 const OptionType* const option, // Array of option parameters
4 PayoffType* payoff, // Array of option parameters
5 const int mpiWorldSize, // Size of MPI world for load distribution
6 const int myRank // My ID
7 ) {
8 MPI_Status mpiStatus;
9

10 if (myRank == 0) // Boss’s branch
11 DistributeWork(nOptions, option, mpiWorldSize);
12 else // Workers’ branch
13 ReceiveWork(option, payoff, myRank);
14

15 MPI_Barrier(MPI_COMM_WORLD);
16

17 // ... MPI_Reduce to follow as before
18 }

Listing 4.89: Dynamic partitioning of the workload beween MPI processes.
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In Listing 4.90, the worker part of the code is shown. Before a worker
begins calculation, it waits for a message from the boss (rank 0) with the
value of optionIdx indicating the number of the work-item to process. In
our implementation, all workers already have the data for all work items, so
only the indices of work-items are exchanged. Naturally, in other applica-
tions, this message exchange can also carry the data of the work-item and,
potentially, return the result to the boss process. When the work-item is
processed, the worker waits for more messages, until the received message
contains termination signal, which indicates the end of the calculation. This
scheme is similar to the dynamic scheduling mode for OpenMP loops (see
Section Section 4.4.3).

1 void ReceiveWork(
2 const OptionType* const option, // Array of option parameters
3 PayoffType* payoff, // Array of option parameters
4 const int myRank, // My ID
5 ) {
6 int optionIdx = 0;
7 MPI_Status mpiStatus;
8 bool terminate = false;
9

10 MPI_Send(&myRank,1,MPI_INT,0,1,MPI_COMM_WORLD); // Request work
11 while(!terminate) {
12 // Get the next option to process
13 MPI_Recv(&optionIdx,1,MPI_INT,0,1,MPI_COMM_WORLD,&mpiStatus);
14 if(optionIdx == terminate_val) {
15 terminate = true;
16 } else {
17 // Process the assigned option
18 ComputeOptionPayoffs(option[optionIdx], payoff[optionIdx]);
19

20 // Request more work
21 MPI_Send(&myRank,1,MPI_INT,0,1,MPI_COMM_WORLD);
22 }
23 }
24 }

Listing 4.90: Worker algorithm for dynamic load distribution.
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Finally, Listing 4.91 contains the boss part of the process. The main
loop in this code proceeds to distribute indices of work-items to process
between the workers, untill all work-items have been processed. After that,
the boss sends out termination signals to all workers. Note the usage of the
wildcard source mask MPI_ANY_SOURCE in MPI_Recv(). This is the
key in dynamic scheduling: whichever worker is the first to report for work
will receive the next work-item.

1 void DistributeWork(
2 const int nOptions, // Number of option parameters to price
3 const OptionType* const option, // Array of option parameters
4 const int mpiWorldSize // Size of MPI world for load distribution
5 ) {
6 int option_index = 0;
7 MPI_Status mpiStatus;
8

9 // Distribute option parameters to work on, one by one
10 int terminates_sent = 0;
11 while(terminates_sent < mpiWorldSize-1) {
12 int workerId;
13 // Wait for a request for work from any worker
14 MPI_Recv(&workerId,1,
15 MPI_INT,MPI_ANY_SOURCE,1,MPI_COMM_WORLD,&mpiStatus);
16 if(option_index < nOptions) {
17 // Assign the next option to the requesting worker
18 MPI_Send(&option_index,1,MPI_INT,workerId,1,MPI_COMM_WORLD);
19 option_index++;
20 } else {
21 // All work completed; send termination signal
22 MPI_Send(&terminate_val,1,MPI_INT,workerId,1,MPI_COMM_WORLD);
23 terminates_sent++;
24 }
25 }
26 }

Listing 4.91: Boss algorithm for dynamic load distribution.
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MPI Process Pinning and Accommodating the Boss Process

The boss-worker implementation listed above assumes that the boss is rank
0, and no work is performed in this rank. Because we have multi-threading
inside of MPI processes (as shown in Figure 3.6), the cores assigned to
the boss will be idle. It may not be a problem if the number of workers is
much greater than 1, however, in our setup with 2 processes on the host (see
Figure 4.38), the compute power wasted in the idling threads of the boss
process can become costly.

To assign fewer threads to the boss (and, therefore, to have fewer idling
threads), it is possible to execute, for instance, 3 processes on the host
instead of 2. However, there still will be a problem rooted in the way that
Intel MPI inter-operates with OpenMP. By default, Intel MPI uses process
pinning, i.e., affinity of processes to hardware components is enforced. This
generally has a positive effect, ensuring NUMA locality of computation akin
to the example with system partitioning in Section 4.4.5. However, with 3
processes, process pinning will still dedicate several cores to the boss and
fewer than half the cores of the system to each worker.

One possible solution to this problem is to disable pinning. This can
be done by setting the environment variable I_MPI_PIN=0 as shown in
Listing 4.92.

vega@lyra% cat machines-cpu.txt # Machine file for CPU-only run
lyra:1 # Boss
lyra:2 # Two workers
vega@lyra% export I_MPI_PIN=0 # Disable process pinning in MPI
vega@lyra% mpirun -machine machines-cpu.txt $PWD/app # Run on host
// ... Executable "app" runs on CPUs

Listing 4.92: Disabling process pinning in an MPI application with a boss process.

Indeed, with pinning disabled, we can safely increase the number of
threads per worker so that workers utilize all cores. The boss will have
minimal interference with the workers, as it will migrate across all threads
in the system. This method has worked well in other applications (e.g., [40]
uses more paths per option and works well with disabled pinning because
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the load per core is greater). However, in our case, disabling pinning leads to
performance degradation because affinity of threads to cores is lost.

On the host, we achieve a performance of 1.6 · 109 values per second,
on two coprocessors 3.9 · 109 values per second, and on the host together
with two coprocessors 6.3 · 109 values per second (see the third set of bars
in Figure 4.41). Interestingly, the scaling from CPU-only and MIC-only to
heterogeneous calculation appears to be “super-linear”, i.e., 6.3 > (1.6+3.9).
This is because when the boss process is moved from coprocessors to the
host, the performance of the coprocessors is improved. The net result in
the heterogeneous system is better than that without load balancing (we
measured 5.8 · 109 values per second in this case), but worse than with static
scheduling (9.0 · 109 values per second).

The messages of this exercise are:

1. Dynamic load scheduling allows to improve heterogeneous application
performance over schemes with no scheduling.

2. The presence of a boss process that manages the queue may detract
resources from the system, which may be a significant penalty if the
system is not very large.

3. Process pinning in Intel MPI has positive effect on performance.
4. Disabling process pinning in order to accommodate the boss process

may or may not work depending on the nature of the workload.

Additionally, it is worth mentioning that the boss-worker scheduling
scheme may require some tuning. For instance, if the latency of commu-
nication becomes comparable to the work-item processing time, it may
be beneficial to increase the granularity of scheduling. E.g., handing out
multiple work-items to each worker may improve results.

Besides the centralized boss-worker scheme, dynamic load balancing may
be performed using collective scheduling schemes such as work stealing
[41].

A general drawback of dynamic load balancing schemes is that from
one run to another, the distribution of work across MPI processes may vary
depending on runtime conditions and MPI message arrival times. As a
consequence, the result of a calculation is not bitwise-reproducible from run
to run if the calculation involves random numbers or not precisely associative
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operations. This is true of almost all applications except those operating
exclusively on integers.

In Section 4.7.3 we will illustrate another Intel MPI functionality: multi-
threaded communication. This will allow us to improve our boss-worker
scheme, because we will be able to retain process pinning.
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4.7.3. Multi-threading within MPI Processes
Intel MPI inter-operates with Intel OpenMP by allowing multi-threading

inside of MPI processes. Intel MPI detects NUMA nodes, ordering of
OS procs and cache sharing between cores, and uses this information for
partitioning the system between multiple MPI processes. The tool cpuinfo
shows the architecture information available to Intel MPI (see Listing 4.93).

vega@lyra% cpuinfo
...
===== Processor composition =====
Processor name : Intel(R) Xeon(R) E5-2697 v2
Packages(sockets) : 2
Cores : 24
Processors(CPUs) : 48
Cores per package : 12
Threads per core : 2

===== Processor identification =====
Processor Thread Id. Core Id. Package Id.
0 0 0 0
1 0 1 0
2 0 2 0
...
12 0 0 1
13 0 1 1
...
===== Placement on packages =====
Package Id. Core Id. Processors
0 0,1,2,3,4,5,8,9,10,11,12,13 (0,24)(1,25)(2,26)...
1 0,1,2,3,4,5,8,9,10,11,12,13 (12,36)(13,37)(14,38)...

===== Cache sharing =====
Cache Size Processors
L1 32 KB (0,24)(1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)...
L2 256 KB (0,24)(1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)...
L3 30 MB (0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,...

Listing 4.93: Using the Intel MPI tool cpuinfo.

This section discusses two models of multi-threading in MPI:
1. computing in multiple threads, communicating from one thread, and
2. computing and communicating from multiple threads.
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Tuning Thread and Process Parallelism

By default, the MPI runtime library partitions the system evenly between
all processes running on any given compute node, and uses process pinning
to restrict the OpenMP scaling in each process to its respective partition of
the resources. As a part of the pinning process, Intel MPI sets the number of
OpenMP threads for each process. To control the number of MPI processes
versus the number of OpenMP cores, the best method is modifying number
of processes per host specified in the machine file.

The optimal number of MPI processes per CPU or per coprocessor may
be a tuning parameter of the application. For example, in the case of the
Monte Carlo code (Section 4.7.1), using two workers per host rather than
one allowed to pin them to their respective sockets. This improves NUMA
locality of the data used by the processes. As another example, the dynamic
load balancing scheme (Section 4.7.2) may suffer if too many processes are
used per node because the amount of MPI communication will increase.

Tuning the number of MPI processes per host can be even more important
in bandwidth-bound applications. For example, in [22], tuning the number
of threads was necessary to control the length of the inner loops, effectively
implementing domain tiling across different MPI processes (see Figure 4.39).
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application (figures from [22]).
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MPI Calls from OpenMP Threads

By default (i.e., if the procedures shown in Listing 2.11 and Listing 2.12
are followed), inter-operation between MPI and OpenMP may not involve
MPI calls from a parallel OpenMP region. In applications that must perform
MPI communication from OpenMP threads within MPI processes, special
measures must be taken.

1. The thread-safe version of Intel MPI Library must be linked by using
the compiler flag -mt_mpi.

2. MPI must be initialized with the call MPI_Init_thread() as
shown in Listing 4.94.

1 int required=MPI_THREAD_SERIALIZED;
2 int provided;
3

4 MPI_Init_thread(&argc, &argv, required, &provided);
5

6 if (provided < required){
7 if (rank == 0)
8 printf("Requested threading support is not available.\n";
9 exit(1);

10 }

Listing 4.94: Hybrid OpenMP and MPI initialization.

Here, parameter required parameter can be one of the following:

MPI_THREAD_SINGLE The process is single-threaded.
MPI_THREAD_FUNNELED The process may be multi-threaded, but the

application must ensure that only the main thread makes MPI calls.
MPI_THREAD_SERIALIZED The process may be multi-threaded, and

multiple threads may make MPI calls, but only one at a time.
MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no restric-

tions.

The call to MPI_Init_thread() will set the value of parameter
provided to the value granted by the implementation.
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Example: Boss-Worker Model with Multi-Threading

We can use a multi-threaded MPI implementation to resolve the difficulty
with pinning and allocating resources to the boss process which we encoun-
tered in Section 4.7.2. To do this, we will dedicate one thread in process with
rank 0 to scheduling. All other threads will be dedicated to work processing.
That is, rank 0 will contain both the boss and the worker. Communication in
this rank will occur from two OpenMP threads because the boss will have to
schedule some of the work to the worker in rank 0.

Figure 4.40: Heterogeneous MPI application with dynamic load balancing in the boss-worker
model. One of the MPI processes, “boss” (in this case, rank 0 process), contains a thread
dedicated to distributing work-items to other processes (workers).

The implementation of the algorithm will have to change very little.
Specifically, the code that branches the execution in rank 0 (originally, List-
ing 4.89) will have to be modified by incorporating an OpenMP parallel
region with a group of omp section pragmas (see Listing 4.95).
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1 void ComputeOnAllNodes(
2 const int nOptions, // Number of option parameters to price
3 const OptionType* const option, // Array of option parameters
4 PayoffType* payoff, // Array of option parameters
5 const int mpiWorldSize, // Size of MPI world for load distribution
6 const int myRank // My ID
7 ) {
8 MPI_Status mpiStatus;
9

10 if(myRank == 0) { // Rank 0 has both a boss and a worker inside:
11 const int nThreads = omp_get_max_threads();
12 omp_set_nested(1);
13 #pragma omp parallel sections num_threads(2)
14 {
15 #pragma omp section
16 { DistributeWork(nOptions, option, mpiWorldSize); } // Boss
17 #pragma omp section
18 { omp_set_num_threads(nThreads-1); // Worker in rank 0:
19 ReceiveWork(option, payoff, myRank, optioncount);
20 }
21 } else { // Only workers in all other ranks:
22 ReceiveWork(option, payoff, myRank, optioncount);
23 }
24 MPI_Barrier(MPI_COMM_WORLD);
25 // ... MPI_Reduce to follow as before
26 }

Listing 4.95: Dynamic partitioning of the workload beween MPI processes.

Note that we had to enable nested parallelism in OpenMP because the
function ReceiveWork() calls ComputeOptionPayoffs(), which
contains an OpenMP parallel region inside. Additionally, in order to use 2
threads in the outer parallel region (which provides a separate thread for the
boss), but many more threads in the inner parallel region (for the worker),
we saved the number of threads prior to spawning and used it in the worker
section.

Another change in the code that will be required is the number of workers
in the boss function DistributeWork() (Listing 4.91). Instead of wait-
ing for (mpiWorldSize-1) termination requests, it must now wait for
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mpiWorldSize requests.
The new application may be executed with pinning enabled, and without

creating a separate rank for the boss (i.e., as in Listing 4.82, Listing 4.83 and
Listing 4.84).

The performance results that we achieved are: 2.8 · 109, 5.2 · 109 and
8.6 · 109 random values per second on the host, on coprocessors and on both,
respectively (see the fourth set of bars in Figure 4.41). A slight decrease in
performance observed in MIC-only calculation from accommodating a boss
thread is resolved in the heterogeneous run, which achieves a performance
equal to 96% of that of the statically balanced run. However, unlike the latter,
the implementation with dynamic load scheduling does not require tuning
(i.e., scanning for the optimal value of parameter α).
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Figure 4.41: Performance of the Monte Carlo code for Asian Options pricing with different
scheduling modes.
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4.7.4. Fabric Control

When MPI applications using Intel Xeon Phi coprocessors rely on offload
programming (Figure 3.7), MPI communication takes place only between
hosts. In this case, tuning and control of communication fabrics is no different
from that in CPU-only clusters.

However, when an application uses Intel Xeon Phi coprocessors in the
native model (Figure 3.6), and coprocessors operate as independent IP-
addressable manycore nodes in a computing cluster, communication between
coprocessors may take place across InfiniBand (Figure 1.12). In this case,
there is additional freedom for tuning and fabric control.

In this section we demonstrate the usage of Intel Xeon Phi coprocessors in
clusters connected with Gigabit Ethernet as well as InfiniBand interconnects,
and report the latencies and bandwidths of MPI messages with and without
InfiniBand support.

Interconnect Technologies

Three types on commonly used network interconnects may be used in
clusters with Intel Xeon Phi coprocessors:

Gigabit Ethernet is immediately available in most computing systems. It
can be used for MPI communication between hosts as well as for
peer-to-peer messaging between coprocessors. Intel Xeon Phi copro-
cessors do not have Ethernet ports, however, they can attach to the
host’s network adapter via the Linux functionality of bridging (see
Section 1.2.5).

InfiniBand is an RDMA-capable interconnect technology. It may be used
for host-to-host, host-to-coprocessor and coprocessor-to-coprocessor
communication. Coprocessors do not have on-board InfiniBand adapters,
but they can interact with the network of the hosts through CCL or
PSM (Section 1.2.5). Two brands of InfiniBand interconnects are
supported by coprocessors: Mellanox and Intel True Scale. The li-
braries and protocols used by these two brands are different and not
interchangeable.

10 Gigabit and 40 Gigabit Ethernet may be used in place of Gigabit Eth-
ernet, however, it will work only for communication between hosts.
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As of MPSS 3.4.1, Intel Xeon Phi coprocessors are unable to take
advantage of RDMA over 10 Gb and 40 Gb Ethernet.

Intel MPI Fabrics

Intel MPI is able to detect the interconnect technologies available in the
system and automatically use them. However, the programmer may control
and, if necessary, switch to different fabrics using the environment variable
I_MPI_FABRICS. The variable accepts one of the two syntaxes:

I_MPI_FABRICS=<fabric>

to specify one fabric for all communication paths and

I_MPI_FABRICS=<intra-node fabric>:<inter-node fabric>

to specify different fabrics for intra-node communication (i.e., messages
between processes running on the same CPU or on the same coprocessor) and
inter-node communication (i.e., messages between different CPUs, different
coprocessors or a CPU and a coprocessor).

The following fabrics make sense with Intel Xeon Phi coprocessors:

tcp makes MPI operate over the TCP/IP stack, which is the protocol for
Gigabit Ethernet (in inter-node communication) or TCP sockets (intra-
node communication).

dapl uses the Direct Access Programming Library (DAPL) for RDMA
communication over CCL using Mellanox InfiniBand interconnects
and also in the special case of virtual interface ib-scif (see below).

tmp uses the Tag Matching Interface (TMI) for RDMA communication over
PSM using Intel True Scale interconnects.

shm uses the shared-memory copy protocol (only available for intra-node
communication).

We mentioned above that there is one special case where the fabric dapl
is used. In a stand-alone machine (i.e., a system with no InfiniBand intercon-
nects), a virtualized InfiniBand network may be configured for communica-
tion between the host CPU and the coprocessors (see Section 1.2.5). This
creates a virtual interface ib-scif, which uses DAPL to communicate
between the host and coprocessor(s).
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Fabric Performance Benchmarks

To provide high-level guidance to on fabric selection in MPI applications
for systems with Intel Xeon Phi coprocessors, we ran performance tests using
the Intel MPI benchmark in the PingPong mode.

The PingPong mode of the Intel MPI benchmark sends an MPI message
from rank 0 to rank 1 using MPI_Send(). Once rank 1 receives the message
using MPI_Recv(), it replies with a message of the same size to rank
0. The time elapsed from the start of MPI_Send() to the completion
of MPI_Recv() on rank 0 is the latency of PingPong. The benchmark
application reports the latency and the bandwidth of communication. The
latter is derived by dividing the message size by the latency and multiplying
by 2 (to account for two messages: one sent and one received).

To execute the benchmark, the sequence of commands as shown in List-
ing 4.96 was used.

vega@lyra% # Enable MPI on coprocessors:
vega@lyra% export I_MPI_MIC=1
vega@lyra% # Intel MPI benchmark executables for CPU and MIC:
vega@lyra% export IMB_CPU=${I_MPI_ROOT}/bin64/IMB-MPI1
vega@lyra% export IMB_MIC=${I_MPI_ROOT}/mic/bin/IMB-MPI1
vega@lyra%
vega@lyra% # Set fabric to test:
vega@lyra% export I_MPI_FABRICS=tmi
vega@lyra%
vega@lyra% # Run communication benchmark between CPU and local MIC
vega@lyra% mpirun \
> -host lyra -np 1 ${IMB_CPU} PingPong -msglog 0:26 :\
> -host lyra-mic0 -np 1 ${IMB_MIC}

Listing 4.96: Using the Intel MPI benchmark.

To vary the pairs of MPI communication end-points, the hosts given to
mpirun may be changed (the name of the executable must change, too). To
vary the communication fabrics, the environment variable I_MPI_FABRICS
was set to values dapl, shm, tcp and tmi. The argument -msglog de-
termines the range of tested message sizes.
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First, we performed intra-device benchmarks. In these benchmarks, both
MPI communication end-points were placed on the same host or on the same
coprocessor. Note that with the fabric dapl, we had to specify another en-
vironment variable: I_MPI_DAPL_PROVIDER=ofa-v2-scif0. This
instructed the Intel MPI runtime to communicate across the virtual Infini-
Band interface ib-scif provided by CCL rather than across a physical
interconnect. That is because dapl is the fabric for Mellanox branded inter-
connects, while we had Intel True Scale interconnects installed in our system.
Results are shown in Listing 4.42.
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Figure 4.42: Intra-device MPI communication with I_MPI_FABRICS=dapl, shm and tmi.

Benchmarks in Figure 4.42 show that, depending on the message size, and
depending on whether one wants to optimize bandwidth or latency, different
fabrics must be chosen. While fabrics shm and tmi provide the best latency
of small messages, dapl may yield far greater bandwidth for large messages
(greater than 256 KiB).

In practice, when high bandwidth of intra-node communication is desired,
and the system is based on Intel True Scale interconnects, the programmer
may override the default choice of Intel MPI (tmi) and set the fabric dapl.
Similarly, if Mellanox interconnects are installed, the default choice is dapl;
if low latency is desired, it may be beneficial to override this setting and set
the fabric to shm.

Note that this conclusion is only for intra-device communication.
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The next set of benchmarks, shown in Listing 4.43, demonstrates inter-
device and inter-node communication with fabric tcp. This fabric uses the
Gigabit Ethernet network to communicate between systems. To communicate
within a system between the host and coprocessor(s), it uses virtual network
interfaces mic0, mic1, etc. provided by MPSS. Data sent to these interfaces
is physically carried across the PCIe bus of the host system.
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Figure 4.43: With I_MPI_FABRICS=tcp, data is transferred over a Gigabit Ethernet network.

Benchmarks of fabric tcp show that it is a very slow option for commu-
nication. The path “CPU – remote CPU” (messaging with a remote system
across the physical Gigabit Ethernet network) indeed achieves Gigabit/s
bandwidth and ≈ 30 µs latency for messages over 1 MiB. However, all paths
using the virtual fabric have latencies in the hundreds of microseconds and
bandwidth around 20 MB/s1.

This result illustrates that the physical throughput of interconnects is unim-
portant if virtualized TCP/IP network is used on coprocessors. Therefore,
TCP/IP networking with 10 Gigabit or 40 Gigabit interconnects is not useful
if native applications for Intel Xeon Phi coprocessors are used.

This bandwidth limitation is a property of the TCP/IP software stack for
the MIC architecture. It may be improved in future versions of MPSS. We
also expect that in second generation MIC architecture coprocessors (see
Section 1.4), with improved serial performance, the TCP/IP stack perfor-
mance will be naturally improved. Of course, the socket version of the 2nd
generation Intel Xeon Phi will, in all likelihood, have direct control of the
on-board Ethernet adapters and should not be bottlenecked by this effect.

1Measurementes apply to external bridge configuration. With internal bridge or packet
forwarding (see Section 1.2.5), bandwidth of large messages approaches 400 MB/s
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In Figure 4.44 we show benchmarks of fabric tmi, which uses the Intel
True Scale adapters to carry network traffic. We benchmark the same pairs
of devices as with tcp.
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Figure 4.44: Benchmarks with I_MPI_FABRICS=tmi. Data is transferred by Intel True Scale
interconnects and switches.

In terms of latency, the fastest path is communication between CPUs. It
achieves sub-microsecond latencies for small messages. Latency of paths
involving coprocessors is greater, but still under 10 µs for the smallest
messages, which is orders of magnitude better than with tcp.

Bandwidth of large messages plateaus around 1 MiB message size (except
CPU – local MIC and MIC – local MIC paths, which plateau at tens of MiB)
and achieves around 3 GB/s for communication between CPUs, 2 GB/s for
communication involving coprocessors, and over 4 GB/s for communication
between the CPU and a local coprocessor.

Both the latency and the bandwidth of MPI messages are better between
CPUs than between coprocessors. While this cannot be remedied by fabric
control, it indicates that in applications with high peer-to-peer MPI com-
munication traffic, it may be beneficial to use the MPI + offload approach
(Figure 3.7) rather than the native application mode (Figure 3.6). See, e.g.,
[42] for a case study confirming this.

With four Intel Xeon Phi coprocessors in the system, two of them are
sitting on PCIe slots controlled by CPU 1 and the other two on slots controlled
by CPU 2. The Intel True Scale cards are also placed so that one is on CPU 1
and the other on CPU 2. Therefore, for communication between systems, the
fabric library may choose the interconnect nearest (in terms of locality to the
PCIe root complex) to them.
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As of the version of Intel MPI available at the time of the writing of this
book, we were not able to achieve a similar behavior with two Mellanox-
branded interconnects. However, with a single Mellanox interconnect, we
observed slightly higher bandwidth of large messages (see [10]). Also,
Mellanox HCAs can use the fabric dapl, which makes for seamless inter-
operation with the virtual interface ib-scif.

To illustrate what happens when communication must take place across
the Quick Path Interconnect (QPI) (a switch connecting the two CPU sockets
in a two-way system), we performed an additional benchmark with fabric
dapl. In this benchmark, MPI communication end-points were all within
the same machine, and the virtual interface ib-scif was used. Results are
shown in Figure 4.45.
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Figure 4.45: Benchmarks with I_MPI_FABRICS=dapl and
I_MPI_DAPL_PROVIDER=ofa-v2-scif0. Data is transferred across the virtual
InfiniBand interconnect scif0, physically carried by the local PCIe bus.

The path “MIC – MIC (on the same socket)” refers to communication
between coprocessor 0 and coprocessor 1, which are both controlled by
CPU 1. In the path “MIC – MIC (to other socket)”, communication is
between coprocessor 0 and coprocessor 2, of which the latter is controlled
by CPU 2. As Figure 4.45 shows, the former path achieves 5 GB/s for large
messages and the latter – only a quarter of that, 1.3 GB/s.

The benchmark in Figure 4.45 also shows the “CPU – MIC” path within a
local system. It achieves more than 6 GB/s, which is close to the theoretical
PCIe bandwidth and to the offload bandwidth benchmark (see Section 4.6.1).
The programmer may take advantage of this fabric when the highest CPU to
MIC bandwidth is desirable.
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CHAPTER 5
Software Development Tools

5.1. Intel Math Kernel Library

Intel R© Math Kernel Library (Intel MKL), first introduced to the public in
2003, is a collection of general-purpose mathematical functions. Core func-
tionality of MKL includes Basic Linear Algebra Subprograms (BLAS), Lin-
ear Algebra Package (LAPACK), Scalable Linear Algebra Package (ScaLA-
PACK), sparse solvers, fast Fourier transform, and vector math. Implementa-
tions of Intel MKL functions are optimized for Intel Xeon processors, and a
number of functions are also optimized for Intel Xeon Phi coprocessors. The
scope of functions optimized for the MIC architecture is expected to grow
with every new release of the library. Figure 5.1 illustrates the structure and
applicability of Intel MKL.
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Figure 5.1: Intel MKL structure.

Earlier in our discussion we saw examples of workloads that use the Intel
MKL (see Sections 4.2.5, 4.4.5 and 4.7.1). In this section, we outline the
MKL usage models, provide general usage and optimization advice, and
report benchmarks of some of the MKL functions. Complete documentation
on the Intel MKL can be found in the Intel MKL Reference Manual [43].
We discuss the Intel MKL version 11.2 for Linux* OS.
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5.1.1. Functions Offered by MKL
Intel MKL includes the following groups of routines:

• Basic Linear Algebra Subprograms (BLAS):

– Level 1 routines: vector operations (dot-product, scalar-vector
product, rotation of points, etc.).

– Level 2 routines: matrix-vector operations (matrix-vector product
with general, band, Hermitian, symmetric matrices, etc.; solution
of a linear system of equations with a triangular matrix).

– Level 3 routines: matrix-matrix operations (matrix-matrix prod-
uct of general, symmetric and Hermitian matrices, rank-k, rank-
2k updates, etc.)

• Sparse BLAS Level 1, 2, and 3 (basic operations on sparse vectors and
matrices).

• LAPACK routines for solving systems of linear equations.

• LAPACK routines for solving least squares problems, eigenvalue and
singular value problems, and Sylvester’s equations.

• Auxiliary and utility LAPACK routines.

• ScaLAPACK computational, driver and auxiliary routines (only in
Intel MKL for Linux* and Windows* operating systems).

• PBLAS routines for distributed vector, matrix-vector, and matrix-
matrix operation.

• Sparse solver routines, direct and iterative. Includes

– Parallel Direct Sparse Solver (PARDISO) interface,

– PARDISO for clusters,

– Direct Sparse Solver (DSS),

– Iterative Sparse Solvers based on Reverse Communication Inter-
face (RCI ISS),
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– Preconditioners based on incomplete LU factorization technique,

– Sparse matrix checker routines.

• Extended eigensolver routines based on the FEAST Eigenvalue Solver
2.0 (SMP implementation only).

• Vector Mathematical Library (VML) functions for computing core
mathematical functions on vector arguments (with Fortran and C in-
terfaces). These functions offer functionality similar to that of SVML,
except that VML is not tied to Intel compilers and designed to work
better with large arrays. To use VML, the computation of vector func-
tions must be done on arrays of arguments, rather than in loops with
scalar semantics.

• Vector Statistical Library (VSL) functions for generating vectors of
pseudorandom numbers with different types of statistical distributions
and for performing convolution and correlation computations.

• General Fast Fourier Transform (FFT) Functions, providing fast com-
putation of Discrete Fourier Transform via the FFT algorithms and
having Fortran and C interfaces.

• Cluster FFT functions (only in Intel MKL for Linux* and Windows*
operating systems).

• Tools for solving partial differential equations: trigonometric transform
routines and Poisson solver.

• Optimization solver routines for solving nonlinear least squares prob-
lems through trust region algorithms and computing the Jacobi matrix
by central differences.

• Basic Linear Algebra Communication Subprograms (BLACS) that are
used to support a linear algebra oriented message passing interface.

• Data fitting functions for spline-based approximation of functions,
derivatives and integrals of functions, and search.
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5.1.2. Linking Applications with MKL. Link Line Advisor
MKL uses a layered model for linking, which gives it flexibility in access

to parallelism in different environments. The layers of MKL are:

Interface layer matches compiled code with threading/computational layer.
Used to control LP64/ILP64 interfaces (32-bit integer indices versus
64-bit indices), compatibility with compilers that return function values
differently, and mapping between single precision and double precision
names for applications using Cray*-style naming (SP2DP interface).

Threading layer provides a way to link threaded or sequential mode of the
library with supported compilers (Intel, GNU* and PGI*).

Computational layer accommodates multiple architectures by dispatching
the function calls to the appropriate binary code.

Due to the layered model, compilation in some situations may be difficult.
Generally, in order to compile applications using the Intel MKL with the
Intel C++ Compiler, the command line argument -mkl must be specified,
and MKL header files must be included in the source code in order to declare
the functions and data types used in the application. However, when the
application using Intel MKL is run in cluster environments, cross-compiled,
or compiled with a non-Intel compiler, it may be difficult to determine the
correct set of compiler arguments.

To assist users with this problem, the Intel MKL Link Line Advisor
can be used [44]. The Advisor is an interactive Web page, which requests
information about your system and on how you intend to use Intel MKL (link
dynamically or statically; use threaded or serial mode; use of OpenMP, MPI,
and other libraries). Using this information, the tool automatically generates
the appropriate set of compiler and linker arguments.

Figure 5.2 illustrates the interface of the Intel MKL Link Line Advisor.
The user provides the intended MKL usage mode via drop-down menus
and checkbox lists, and the Advisor provides link line and compiler options
which can be copied and pasted into the user’s build system.

Note: The version of MKL requested by the compiler is not obvious when
MKL is installed as a part of the Intel Parallel Studio XE suite. MKL version
can be found by viewing the file ${MKLROOT}/include/mkl.h.
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Figure 5.2: Web interface of the Intel MKL Link Line Advisor.
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5.1.3. MKL on Intel Xeon Phi Coprocessors
MKL supports computation on Intel Xeon Phi coprocessors in three modes

of operation:

1. Automatic Offload (AO)

1 cblas_dgemm(..., ...);

icpc -mkl Code.cc
MKL_MIC_ENABLE=1

No code change is required to of-
fload calculations to an Intel Xeon
Phi coprocessor. The library takes
care of data transfer and execution
management.

2. Compiler Assisted Offload (CAO)

1 #pragma offload target(mic)
2 cblas_dgemm(..., ...);

icpc -mkl Code.cc

Programmer maintains explicit
control of data transfer and remote
execution, using compiler offload
pragmas and directives. Can be
used together with Automatic Of-
fload.

3. Native Execution

1 cblas_dgemm(..., ...);

icpc -mkl -mmic Code.cc

Uses an Intel Xeon Phi coproces-
sor as an independent compute
node. Data is initialized and pro-
cessed on the coprocessor or com-
municated via MPI.

The operation modes discussed above enable heterogeneous computing,
which takes advantage of both the multi-core host system and manycore Intel
Xeon Phi coprocessors. For applications developed for CPUs and employing
the Intel MKL, AO and native mode allow to use Intel Xeon Phi coprocessors
without code modification. Using CAO in this case would require code
modification but give the programmer fine control over the compute devices.
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5.1.4. Automatic offload

For an application that already uses Intel MKL for calculations on the
host system, the easiest way to launch calculations on an Intel Xeon Phi
coprocessor is using the Automatic Offload (AO) mode. In order for AO
to work, the application must be linked against a recent MKL version with
support for the Intel Xeon Phi architecture. Nothing else needs to be done to
use the coprocessor. The library will automatically detect available coproces-
sors, decide when it is beneficial to offload calculations to the coprocessor,
transfer the data over the PCIe bus, and initiate offloaded computation on the
coprocessor.

Applicability

The AO mode is supported only for a select subset of MKL functions. As
of Intel MKL 11.2, the list of functions supporting automatic offload is:

1. ?GEMM (general matrix-matrix multiplication),
2. ?SYMM (matrix-matrix product, one input matrix is symmetric),
3. ?TRMM (matrix-matrix product, one input matrix is triangular),
4. ?TRSM (solution of a triangular matrix equation),
5. ?GETRF (LU factorization of a general m× n matrix),
6. ?POTRF (Cholesky factor.-n of a Hermitian positive-definite matrix),
7. ?GEQRF (QR factorization of a general m× n matrix),
8. ?SYRDB (reduction of a symmetric matrix to tridiagonal form), and
9. 1-dimensional FFT in batch mode.

For each of these, there is a size threshold at which offload may begin. Only
when the problem size is above the threshold does automatic offload occur.

Automatic offload may be used in user applications written in C, C++
and Fortran, and also when MKL is used as a back-end for higher-level
applications. For example, it is possible to use Intel Xeon Phi coprocessors
in some workloads from R and MATLAB using the automatic offload feature
of Intel MKL.

Enabling and Disabling AO

AO may be enabled either by setting an environment variable, or by
calling the respective support function, as shown in Listing 5.1.
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C/C++ function call Set an environment variable

1 mkl_mic_enable();
vega@lyra% export \
> MKL_MIC_ENABLE=1

Listing 5.1: Two ways to enable the Intel MKL Automatic Offload (AO).

To disable AO after it was previously enabled, use the corresponding
support function call or environment variable, as shown in Listing 5.2.

1 mkl_mic_disable();
vega@lyra% export \
> MKL_MIC_ENABLE=0

Listing 5.2: Two ways to disable the Intel MKL Automatic Offload (AO).

In all of the above controls, the function call method overrides the envi-
ronment variable setting.

Performance Tuning with AO

For offload tasks, MKL uses the same COI driver as user applications do.
Therefore, environment variables used in the explicit offload programming
model (see Section 2.2.8 and Section 2.2.9) also have effect in automatic
offload. For instance, in systems with more than one coprocessor, it is
possible to restrict MKL to using certain coprocessors using the environ-
ment variable OFFLOAD_DEVICES. Offload report can be obtained using
OFFLOAD_REPORT.

MKL uses OpenMP for threading and therefore OpenMP-specific tuning
controls may be used. For instance, variables OMP_NUM_THREADS (see
Section 3.2.2) and KMP_AFFINITY (Section 4.4.5) have effect on the host
and on the coprocessor. Reserved variables MIC_OMP_NUM_THREADS and
MIC_KMP_AFFINITY may be used for tuning the offloaded part.

Other controls for automatic offload are discussed in the User’s Guide
pages on this subject.
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Example

To demonstrate the capabilities of automatic offload in MKL, we will
benchmark the application developed in Section 4.4.5 (code for this example
is available as Lab 5.01 – see Section 6.2). This application calls the MKL
implementation of DGEMM on square matrices, this time of size 16000×
16000. There is no explicit offload in the code, i.e., it is unaware of Intel
Xeon Phi coprocessors. However, it is compiled with an Intel compiler and
linked against MKL.

First, we run and tune the application on the host CPU using the insight
for thread affinity tuning from Section 4.4.5 as shown in Listing 5.3.

vega@lyra% export OMP_NUM_THREADS=24
vega@lyra% export KMP_AFFINITY=compact,1
vega@lyra% ./app-CPU 16000
Benchmarking DGEMM.
Problem size: 16000x16000 (6.144 GiB)

Platform: CPU
Threads: 24

Affinity: compact,1

Trial Time, s Perf, GFLOP/s
1 1.736e+01 471.78 *
2 1.673e+01 489.79 *
3 1.669e+01 490.97
4 1.662e+01 492.85
5 1.668e+01 491.25
6 1.665e+01 491.99
7 1.664e+01 492.33
8 1.665e+01 492.16
9 1.670e+01 490.68
10 1.664e+01 492.45

-----------------------------------------------------
Average performance: 491.84 +- 0.72 GFLOP/s
-----------------------------------------------------

* - warm-up, not included in average

Listing 5.3: Running and tuning DGEMM on the host CPU (24-core two-way Intel Xeon
processor with enabled hyper-threading).
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For our reference, we also compiled this application for native exe-
cution on an Intel Xeon Phi coprocessor and ran it with N = 16000
and KMP_AFFINITY=compact. The result was a native performance
of 992.1± 0.1 GFLOP/s.

In the next step (Listing 5.4), we attempt automatic offload to just one
coprocessor. This attempt fails (we achieve lower performance than without
automatic offload) because we have not tuned affinity on the coprocessor.

vega@lyra% export OFFLOAD_DEVICES=0 # Allow to use one coprocessor
vega@lyra% export MKL_MIC_ENABLE=1 # Enable automatic offload
vega@lyra% ./app-CPU 16000
...
Average performance: 438.94 +- 3.98 GFLOP/s

Listing 5.4: Attempting to run DGEMM with automatic offload.

Once we tune affinity on the coprocessor, automatic offload begins to
show performance increase (Listing 5.5).

vega@lyra% export MIC_KMP_AFFINITY=compact # Tune affinity on copr.
vega@lyra% ./app-CPU 16000 # Using host and coprocessor number 0
...
Average performance: 1194.05 +- 5.78 GFLOP/s

Listing 5.5: Tuning DGEMM on the coprocessor in automatic offload.

The problem with N = 16000 is too small to fully exploit the parallelism
available in our system. To appreciate the performance accessible with
automatic offload we increase the problem size to the largest size that fits in
the memory of the host: N = 46000. Result is shown in Listing 5.6.

vega@lyra% ./app-CPU 46000 # Large enough for host+coprocessor
...
Average performance: 1321.95 +- 1.68 GFLOP/s

Listing 5.6: Using a larger problem size for automatic offload.
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At this point we can allow all coprocessors to take part in the calcula-
tion (Listing 5.7). Our benchmark system contains four coprocessor (see
Section 4.1.4) and in order to use them all, we can either explicitly set
OFFLOAD_DEVICES, or unset this variable (and export the unset value).

vega@lyra% export OFFLOAD_DEVICES=0,1,2,3 # Using host+4 coprocess.
vega@lyra% ./app-CPU 46000
...
Average performance: 3584.04 +- 9.26 GFLOP/s

Listing 5.7: Scaling DGEMM across four coprocessors.

Summary of these performance results is shown in Figure 5.3.
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Figure 5.3: Performance of DGEMM in Intel MKL on the host, on the coprocessor, and in
heterogeneous runs in the automatic offload mode.
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The the four coprocessors teamed with the CPU are yielding a perfor-
mance of 3586 GFLOP/s in double precision, which corresponds to effi-
ciency of 80% compared to the sum of single-node performance of the CPU
(492 GFLOP/s) and four coprocessors (992 GFLOP/s each). This efficiency
is achieved using one line of code calling DGEMM and by setting several
environment variables. The scaling is handled by the MKL library.

Finally, to see what is happening behind the scenes, we can use the offload
report as shown in Listing 5.8. Note that when offload report is generated
with MKL in the automatic offload mode, it includes information about work
sharing between the host and the coprocessors. Tuning work sharing using
MKL_HOST_WORKDIVISION may improve results, however, we leave it
to the reader to test.

vega@lyra% export OFFLOAD_REPORT=2
vega@lyra% ./app-CPU 46000
...
Trial Time, s Perf, GFLOP/s
[MKL] [MIC --] [AO Function] DGEMM
[MKL] [MIC --] [AO DGEMM Workdivision] 0.10 0.23 0.23 0.23 0.23
[MKL] [MIC 00] [AO DGEMM CPU Time] 59.277983 seconds
[MKL] [MIC 00] [AO DGEMM MIC Time] 48.787105 seconds
[MKL] [MIC 00] [AO DGEMM CPU->MIC Data] 20769920000 bytes
[MKL] [MIC 00] [AO DGEMM MIC->CPU Data] 69154560000 bytes
[MKL] [MIC 01] [AO DGEMM CPU Time] 59.277983 seconds
[MKL] [MIC 01] [AO DGEMM MIC Time] 50.568903 seconds
[MKL] [MIC 01] [AO DGEMM CPU->MIC Data] 20769920000 bytes
[MKL] [MIC 01] [AO DGEMM MIC->CPU Data] 69154560000 bytes
[MKL] [MIC 02] [AO DGEMM CPU Time] 59.277983 seconds
[MKL] [MIC 02] [AO DGEMM MIC Time] 48.797464 seconds
[MKL] [MIC 02] [AO DGEMM CPU->MIC Data] 20769920000 bytes
[MKL] [MIC 02] [AO DGEMM MIC->CPU Data] 69154560000 bytes
[MKL] [MIC 03] [AO DGEMM CPU Time] 59.277983 seconds
[MKL] [MIC 03] [AO DGEMM MIC Time] 48.829253 seconds
[MKL] [MIC 03] [AO DGEMM CPU->MIC Data] 20769920000 bytes
[MKL] [MIC 03] [AO DGEMM MIC->CPU Data] 69154560000 bytes

1 6.011e+01 3238.44 *
...

Listing 5.8: Obtaining report of automatic offload.
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5.1.5. Compiler-Assisted Offload
It is possible to offload Intel MKL functions to the coprocessor using

#pragma offload. This approach, known as Compiler Assisted Offload
(CAO), requires that the user takes care of data transfer to the coprocessor.

The benefit of CAO is a more fine-grained control over data traffic and
compute device usage than with AO. For instance, memory buffer retention,
data persistence and overlapping computation with communication are possi-
ble in CAO (like, for example, in Section 4.6.2). With this techniques, CAO
may produce better results than AO.

The disadvantage of CAO compared to AO is that automatic distribution
of the offloaded functions across multiple coprocessors is not possible.

Listing 5.9 demonstrates calling the DGEMM routine using CAO (see
Section 4.6.2 and Listing 4.80 for more information on this implementation).

1 #pragma offload target(mic:0) signal(A_buff_calc) \
2 in(A_buff_calc: length(0) alloc_if(0) free_if(0)) \
3 in(B_buff_calc: length(0) alloc_if(0) free_if(0)) \
4 in(C_buff_calc: length(0) alloc_if(0) free_if(0))
5 {
6 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
7 n, n, n, 1.0, A_buff_calc, n, B_buff_calc, n, 0.0, C_buff_calc, n);
8 }

Listing 5.9: Example of the Compiler Assisted Offload usage mode of Intel MKL.

5.1.6. Native Execution
As discussed in Section 2.1, applications for native execution on Intel

Xeon Phi coprocessors can be built with the compiler argument -mmic.
To use Intel MKL in a native application, an additional argument -mkl is
required. Native applications with Intel MKL functions operate just like
native applications with user-defined functions. In MPI applications where
MPI processes run on the host as well as on coprocessors, the code for the
coprocessor part is compiled as a native application.
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5.1.7. Benchmarks of Select MKL Functions
In this section we perform benchmarks of some of the Intel MKL functions

optimized both for the multi-core and for the manycore architecture. In these
benchmarks we measure the sustained performance of only performance-
critical functions (i.e., ignore initialization and warm-up time). For more
information about this methodology, see item 2 in Section 4.1.3.

Results are shown in Figure 5.4, and specifics of the benchmarks are
discussed below.
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Figure 5.4: Benchmarks of select Intel MKL functions. See Section 5.1.7 for details.

All benchmarks of Intel Xeon Phi coprocessors are executed on a single
coprocessor in the native mode. For all benchmarks, on the host, the affinity
setting was KMP_AFFINITY=compact,1,granularity=fine and
OMP_NUM_THREADS=24. On the coprocessor, we used the affinity setting
KMP_AFFINITY=compact.
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DGEMM

We benchmarked the multi-threaded implementation of DGEMM (a
BLAS level 3 function for general matrix-matrix multiplication) in MKL
using the application from Section 4.4.5. The benchmarked matrix size is
N = 16, 000 on the host and on the coprocessor in the native mode. The
core of the DGEMM benchmark code is shown in Listing 5.5.

1 const double tStart = omp_get_wtime();
2 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
3 n, n, n, 1.0, A, n, B, n, 0.0, C, n);
4 const double tEnd = omp_get_wtime();

Figure 5.5: Core of the DGEMM benchmark.

Calculation time was translated to performance in GFLOP/s by assuming
2N3 FLOPs in every multiplication.

DGETRF

The structure of our benchmark of DGETRF (a LAPACK function for LU
decomposition of general rectangular matrices) is similar to that of DGEMM,
except that we timed the function LAPACKE_dgetrf(). We benchmarked
matrix sizeN = 25376 on the host and on the coprocessor in the native mode.
This size is the greatest multiple of 244×8 (product of the number of threads
and the vector length) for which DGETRF may be run on a coprocessor with
16 GiB of memory. The core of the DGETRF benchmark code is shown in
Listing 5.6.

1 const double tStart = omp_get_wtime();
2 LAPACKE_dgetrf(LAPACK_ROW_MAJOR, n, n, A, n, &ipiv[0]);
3 const double tEnd = omp_get_wtime();

Figure 5.6: Core of the DGETRF benchmark.

Calculation time was translated to performance in GFLOP/s by assuming
(2/3)N3 FLOPs in every decomposition.
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1D FFT

We benchmarked 1-dimensional double precision complex-to-complex
fast Fourier transforms (FFTs) in the batch mode. The batch size was set to
n = 2× 105, and the size of each FFT in the batch to m = 2048. The core
of the FFT benchmark code is shown in Listing 5.7.

1 DftiCreateDescriptor(&dh, DFTI_DOUBLE, DFTI_COMPLEX, 1, m);//m=2048
2 DftiSetValue(dh, DFTI_NUMBER_OF_TRANSFORMS, n); // n=200000
3 DftiSetValue(dh, DFTI_INPUT_DISTANCE, m);
4 DftiCommitDescriptor(dh);
5 const double tStart = omp_get_wtime();
6 DftiComputeForward(dh, A);
7 const double tEnd = omp_get_wtime();

Figure 5.7: Core of the FFT benchmark.

Calculation time was translated to performance in GFLOP/s by assuming
2m log2m FLOPs in every transform.

Random Number Generator

MKL has multiple random bit stream generators, including multiplica-
tive congruential, generalized feedback shift, combined multiple recursive,
Mersenne Twister, Gray code-based, abstract and non-deterministic gen-
erators. We benchmark only the Mersenne Twister generator due to its
popularity and high performance.

On top of the freedom of choice of the bit stream generator, there are
various distribution generators, which can produce floating-point numbers
with uniform, Gaussian, exponential, Laplace, and other distributions, or
discrete numbers with uniform, Bernoulli, geometric, Poisson and many
other distributions. We eliminate that latter degree of freedom (and the
associated computation overhead) by generating simply a uniform bit stream.

The rate at which MKL can produce the bit stream is greater than the
memory bandwidth of our system. Therefore, in order to exclude the band-
width factor from our measurements, we tuned the random array size per
core so that (i) it is large enough to reap the benefits of vectorization, but (ii)
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small enough to avoid spilling into the main memory. In practice, we had to
set the benchmark to produce 2.4× 105 words per thread on the host system
and 104 words per thread on the coprocessor. Word in this context is 4 bytes.

The core of the Random Number Generator (RNG) benchmark code is
shown in Listing 5.8.

1 const long nT = omp_get_max_threads();
2 unsigned int* A[nT];
3 VSLStreamStatePtr rng[nT];
4

5 #pragma omp parallel
6 { // Initialize RNGs in every thread
7 const long thread = omp_get_thread_num();
8 vslNewStream(&rng[thread], VSL_BRNG_MT2203 + thread, 0);
9 A[thread]=(unsigned int*)_mm_malloc(n*sizeof(unsigned int),64);

10 A[thread][0:n] = 0; // First touch, important on host
11 }
12

13 const double tStart = omp_get_wtime();
14 #pragma omp parallel
15 { // Generate a random bit stream
16 const long thread = omp_get_thread_num();
17 viRngUniformBits(VSL_RNG_METHOD_UNIFORMBITS_STD, rng[thread],
18 n, A[thread]);
19 }
20 const double tEnd = omp_get_wtime();

Figure 5.8: Core of the RNG benchmark.

Calculation time was translated to performance in units of bandwidth
(GB/s) by dividing the size of the generated bit stream by the elapsed calcu-
lation time.
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5.2. Intel VTune Amplifier XE

Intel VTune Amplifier XE (or VTune for short) is a software tool for
performance analysis of serial and multi-threaded applications for Intel
processors and coprocessors. Performance is analyzed by means of collecting
hardware event counts from the processor’s PMU in Intel-manufactured
CPUs and coprocessors.

The functionality offered by VTune includes:

1. Diagnosing overall performance metrics in an application, such as the
cycles per instruction (CPI) ratio, thread concurrency, rate of cache
misses, achieved memory bandwidth, occurrence of data page walks,
amount of NUMA remote memory accesses, and other.

2. Detecting the hotspots, i.e., parts of the application that take the most
time. The granularity of hotspot detection may be done at the level of
individual functions or, if the amount of statistical data allows, at the
level of individual lines of code or assembly instructions.

Because VTune relies on hardware-based event statistics, it can detect bot-
tlenecks without significantly slowing down the execution of the application,
which also results in realistic behavior of the analyzed application in terms
of concurrency and memory traffic.

A convenient byproduct of the low-granularity hotspot detection is that
VTune can display the assembly corresponding to a particular line or block
of code. This is important for vector loops when the compiler implements
multiple code paths. By just studying the assembly listing of the code, it
is impossible to know which code path is taken most frequently at runtime.
However, in VTune, it can be done easily because the actual execution time
of all code components is measured.

The suite Intel Parallel Studio XE in Professional and Cluster editions
includes Intel VTune Amplifier XE. At the same time, Intel VTune Amplifier
XE may be obtained as a separate product.

In this section, we will walk through the workflow for application perfor-
mance analysis in the GUI of Intel VTune Amplifier XE. Complete documen-
tation for Intel VTune Amplifier XEis available in the Intel VTune Amplifier
XE User’s Guide.
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5.2.1. System Administration

During the installation of VTune, the installer may perform all the system
configuration steps necessary to use VTune. This includes compiling and
running the driver and modifying MPSS and Linux account configuration.

If one of the subsequent system configuration steps (e.g., installation or
upgrade of MPSS or Linux kernel) breaks the installation of VTune, the
administrator may uninstall and re-install the product to restore functionality.
Although VTune comes with scripts which allow less invasive recovery pro-
cedures (see, e.g., the section Installing Drivers in the Intel VTune Amplifier
User’s Guide [45]), re-installation is the easiest practical method, which
typically only takes a few minutes.

To verify VTune functionality, we can ensure that the kernel module sep
is loaded. To analyze coprocessor applications, a similar module must be
running in the OS of the coprocessor, and the product must be installed at
/amplxe in the coprocessor filesystem. Listing 5.10 illustrates checking
for proper VTune installation.

vega@lyra% # User must belong to group vtune
vega@lyra% groups vega
vega : vega vtune
vega@lyra%
vega@lyra% # Checking kernel module on host
vega@lyra% lsmod | grep sep
sep3_15 526926 0
vega@lyra%
vega@lyra% # Checking kernel module on coprocessor
vega@lyra% ssh mic0 lsmod | grep sep
sep3_15 45337 2
vega@lyra%
vega@lyra% # Checking product installation on coprocessor
vega@lyra% ssh mic0 ls /amplxe
vtune_amplifier_xe_2015.1.1.380310

Listing 5.10: Verifying proper installation of VTune on the host and on the coprocessor.

The system administrator should also know that in order to use VTune,
the user of a Linux system must belong to a Linux group assigned to the
sampling driver (by default, called vtune). This group is created during the
installation.

c© Colfax International, 2013–2015

https://software.intel.com/en-us/node/529861
https://software.intel.com/en-us/node/529797
https://software.intel.com/en-us/node/529797
http://www.colfax-intl.com/


446 CHAPTER 5. SOFTWARE DEVELOPMENT TOOLS

5.2.2. Running VTune

Prior to running VTune, the environment variables required for it must
be set. This can be done either by sourcing the dedicated script as shown in
Listing 5.11, or by sourcing the corresponding script for the whole Parallel
Studio XE suite. The administrator may implement this automatically upon
login using standard methods for the operating system at hand.

vega@lyra% source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh
Copyright (C) 2009-2014 Intel Corporation. All rights reserved.
Intel(R) VTune(TM) Amplifier XE 2015 (build 380310)

Listing 5.11: Setting environment variables for VTune.

Let’s begin our tour of VTune by launching the GUI version of the tool
from a terminal using the command amplxe-gui. The window shown in
Figure 5.9 is the home screen of VTune. At any time we can return to this
screen by clicking the toolbar button .

Figure 5.9: Welcome screen of Intel VTune Amplifier XE.

The GUI may be used to analyze applications on a local machine and to
view the results. Besides the graphical interface, VTune supports a command
line interface invoked by command amplxe-gui. The command line
tool tool may be used to collect analysis results on a remote machine (or a
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machine without graphical shell installed). These results may then be copied
to the developer’s workstation and viewed in the GUI tool.

It is possible to use the GUI of VTune remotely using X11 forwarding
(i.e., logging in with ssh -X) or via a remote desktop application. This
works as long as the target system has the graphical desktop installed, and
the bandwidth of connection is sufficient for this to work.

5.2.3. Project Management

We will use code available in Lab 5.02 (see Section 6.2) for our tor of
VTune. Let’s create a new project by clicking the button in the toolbar
and call it “VTune-Lab”. The window in Figure 5.10 shows the dialogue for
project creation and placement.

Figure 5.10: Creating a project.

VTune stores configurations and products of analysis as entities called
projects. Projects are stored in home directories of VTune users at the path
~/intel/amplxe. List of projects is shown in the sidebar in the left-hand
side of the VTune window. Inside of every project, there may be multiple
results, which are different instances of application analysis. Results show in
the sidebar as entries under projects.

It is possible to create or remove projects using the context menu in the
sidebar (right mouse click in that area brings up the context menu). New
results inside of projects are produced by clicking the button in the toolbar.
Results may be managed (deleted, renamed) by right-clicking their names in
the sidebar menu.
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5.2.4. Analysis on the Host CPU

The window following project creation is shown in Figure 5.11.

Figure 5.11: Project properties for a host application.
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Here we specify the application to run and parameters, if any. We can
return to this window at a later time by clicking the toolbar button .

The first line “Target system” has a drop-down menu, which is set to
“local”. This will run performance analysis on the host. We could change it to
other values to analyze performance on the coprocessor (see Section 5.2.5).

For the application to study we will take the workload from Section 4.4.3.
This application solves multiple systems of linear algebraic equations with
the iterative Jacobi method. We will take the first implementation, which has
load imbalance across threads.

In Figure 5.11, we specify in the line “Application:” a script that executes
our application. We find it more convenient to specify a wrapper script rather
than directly specifying the executable. The wrapper script can perform
additional tasks, such as setting environment variables, staging input data
and managing output data. The script that we used to launch our application
on the host is shown in Listing 5.12.

#!/bin/bash

source /opt/intel/parallel_studio_xe_2015/psxevars.sh
export OMP_SCHEDULE=static

./app-CPU

Listing 5.12: Script run-on-cpu.sh launching the analyzed application from VTune.

It is important that the executable of the analyzed application (in our
case, app-CPU) should be compiled with arguments -g and -O3. The
former includes debugging symbols in the executable, which allows one to
see function names VTune. The latter optimizes the application in a way
that the presence of debugging symbols does not significantly slow down the
application.

Other arguments that we could specify during project creation (Fig-
ure 5.11) include application parameters, working directory and environment
variables (our script already takes care of that), the time slice to be analyzed
(to exclude initialization and tear-down) and application duration (determines
the amount of saved performance data).

After configuring the project, we are taken to a window titled “New
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Analysis” (Figure 5.12). This window allows us to choose the type of analysis
and click the button “start” to launch application and begin data collection.
We find that a good place to start analysis is “General Exploration”.

Figure 5.12: Starting a General Exploration analysis.

Note the button in the bottom right corner. Clicking this
button brings up a window that contains a command line that we could use
to run the same kind of analysis using the command line tool amplxe-cl.
This would be useful if we were running analysis on a remote computer
without graphical packages such as a compute node in a cluster.

We click the button , and the General Exploration analysis starts.
While analysis is running, the window in VTune looks like in Figure 5.13.

At this point, we can switch back to the terminal from which VTune was
launched, and there we will see the running output of our application or error
messages, if any (see Figure 5.14).
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Figure 5.13: Waiting for analysis results.

Figure 5.14: Output of application is visible in the terminal from which VTune was launched.
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Finally, analysis is finished, and in a minute we see the window shown in
Figure 5.15. This is the Summary pane of the General Exploration analysis.

Figure 5.15: Summary screen of the General Exploration analysis.

The summary pane shows general application analysis metrics. Metrics
that look sub-optimal VTune automatically highlights. We can mouse over
any of the metrics and read more information about it in a pop-up window.

One of the most important metrics here is the CPI rate. The lower the CPI,
the less is the latency impact in the calculation. On Intel Xeon processors,
arithmetically intensive applications may achieve a CPI as low as 0.5.

The impact of latency is further broken down in the group “Unfilled
Pipeline Slots”. The group preceding it, “Filled Pipeline Slots” lists informa-
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tion about microcode that was executed in “useful” CPU cycles.
We can re-visit the Summary pane at a later time by clicking the button

in the menu.
Another pane, brought up by clicking , shows the same metrics

as the Summary pane, but this time listed by functions/call stacks. We click
this button and see “Bottom-up” pane shown in Figure 5.16.

Figure 5.16: Bottom-up pane in General Exploration viewpoint.

The functions are now sorted by Clockticks. The order of sorting may be
changed by clicking the column headers. The top consumer of Clockticks is
the function IterativeSolver, which belongs to our application. It is
important that we compiled our application with -g; otherwise, the name of
this function would not be visible. The bottom-up view is a good place to
start code analysis, especially for large codes as it immediately identifies the
parts of the code promising good return on investment in optimization.
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A similar pane, brought up by the button (we do not have a
screenshot for it) provides similar information, but also detailing the hierar-
chy of function calls.

At the bottom of the bottom-up window, the green and black stripes show
the timelines of different events collected by VTune. We will re-visit this
timeline later in Figure 5.22, where it will contain information more useful
for this particular application.

Now let’s double click with the mouse the name of our top hotspot,
function IterativeSolver. What appears is the code listing for this
function (Figure 5.17). In front of every line, there is a table detailing
the number of various performance metrics (clockticks, retired instructions,
etc.) collected for this line. This demonstrates low-granularity performance
analysis in VTune made possible by dedicated PMUs in hardware.

Figure 5.17: Viewing the source code of a function.
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Occasionally, the collected events are off by one line. This is because
statistical sampling does not provide absolutely accurate data. Events are
collected in sampling intervals, and all events in the entire sampling interval
(thousands to millions of events) are attributed to a given code context. This
may yield inaccurate results.

Nevertheless, the Source Code pane may is a very useful tool in itself,
allowing to drill down into hotspots and sub-optimal hardware event culprits
at the granularity of a single line of code.

There is an additional functionality available in the Source Code pane,
which is especially helpful for the analysis of vectorization. This functionality
is the Assembly pane. We click the button to see it (Figure 5.18).
The assembly lines corresponding to the source code line in the Source Code
pane are highlighted.

Figure 5.18: Matching source code to assembly.
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We can mouse over most of the symbols in the Assembly pane, and a help
window with a description of this symbol will pop up. Analysis of assembly
in VTune has an advantage over studying assembly listings produced by the
compiler. In VTune, it is immediately evident from the measured events
which code path was taken most often at runtime.

So far, we have been exploring information in VTune using the General
Exploration viewpoint. It shows multiple performance metrics for all compo-
nents, which may make it difficult to infer the most important information for
identifying simply what takes time in an application. To focus the reported
metrics on consumed time, we can switch to the Hotspots viewpoint using
the control under the toolbar.
Figure 5.19 shows the Summary pane in the Hotspots viewpoint.

Figure 5.19: Summary screen in the Hotspots viewpoint.
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Scrolling down in that pane, we can find the concurrency histogram
(Figure 5.20), which shows the amounts of time spent by the application at
different parallel efficiencies. The smeared histogram in Figure 5.20 is an
example of a poorly parallelized application (in this case, the culprit is load
imbalance between threads).

Figure 5.20: Concurrency histogram (non-optimized code).

Information such as in the above histogram is a clue for the programmer to
investigate multi-threading issue. On the other hand, concurrency histogram
as in Figure 5.21 concentrated in the “Ideal” range is a sign that parallelism
in the application is adequate.

Figure 5.21: Concurrency histogram (optimized code).

In the Hotspots viewpoint, the color scheme used in the concurrency
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histogram translates to the Bottom-up pane and also to the Source Code pane.
For instance, in the Bottom-up pane (Figure 5.22), column “Effective time
by utilization” shows that the majority of time the application was in the
“Poor” and a smaller fraction of time in the “OK” mode of operation..

Figure 5.22: Bottom-up pane in the Hotspots viewpoint.

The timeline in Figure 5.22 is useful for detecting load imbalance. Orange-
colored regions indicate spinning and idling threads, and brown regions are
threads using CPU time. The abundance of orange gaps at the end of each
of the 10 application cycles indicates that some threads were working while
other were idling. This points the programmer to optimizing load balance.

Finally, let’s double-click the top hotspot (function IterativeSolver)
to open the Source Code pane (Figure 5.23). As you can see, color-coded
concurrency markers are present in front of every line, allowing not only to
gauge how much CPU time each line took, but also what fraction of that time
the application was running in parallel or was serialized.
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Figure 5.23: Drilling down to the source code (Hotspots viewpoint).

By detecting hotspots and general performance issue, the developer may
focus on the low-hanging fruits for optimization first, and modify the appli-
cation accordingly.

To see the effect of any optimization, we can click to produce another
result under the same project. The new result may be compared to older
results. This may be done either “by hand” or using the built-in comparison
tool available at the button .

5.2.5. Analysis on an Intel Xeon Phi Coprocessor
In Section 5.2.4 we discussed how to analyze in VTune the performance

of an application running on the host processor. Now we will create a new
project, in which we will study the performance of applications on Intel
Xeon Phi coprocessors.
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Native Applications

To analyze an application designed to run natively on a coprocessor, we
begin by creating a script that launches this application on the coprocessor
(i.e., it will be a script executed in the coprocessor OS). VTune will access
the coprocessor via SSH under the user’s account and launch the script. The
script may contain initialization of environment variables, staging of data
and executables, passing of command line arguments and any other related
tasks. The script that we used is shown in Listing 5.13.

#!/bin/bash

# Set up general environment variables
source /opt/intel/parallel_studio_xe_2015/psxevars.sh
# Where to look for MIC architecture runtime libraries:
export LD_LIBRARY_PATH=$MIC_LD_LIBRARY_PATH

# Application-specific variables
export OMP_SCHEDULE=static

# Launch application
PATH_TO_EXECUTABLE=""
cd ~/${PATH_TO_EXECUTABLE}
./app-MIC

Listing 5.13: Script run-on-mic.sh launching the analyzed application on the coprocessor.

The executable app-MIC in this script is compiled with flags -mmic (to
produce a native application) and -g -O3 (to facilitate symbol recognition).

To analyze this application in VTune, we should create a new project
(Figure 5.24). In the line “Target system”, we chose “Intel Xeon Phi co-
processor(native)”, which changes the layout of the prompt. Specifically,
the option to indicate environment variables via the GUI is no longer there,
which is where the usage of a wrapper script proves helpful.

With the new project configured, the workflow for analysis is similar
to that for a host application, however, available analysis types must be
chosen from the group “Knights Corner Platform” (see the sidebar menu in
Figure 5.12).
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Figure 5.24: Setting up a VTune project for native application performance analysis on an Intel
Xeon Phi coprocessor.
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Offload Applications

For applications using an Intel Xeon Phi coprocessorin the offload mode,
project setup is slightly different. The script that launches the application
in this case (Figure 5.14) is executed in the host OS. If any environment
variables need to be set, they should be passed to the offloaded code using
the environment forwarding rules discussed in Section 2.2.9.

#!/bin/bash

# Parallel Studio environment variables:
source /opt/intel/parallel_studio_xe_2015/psxevars.sh

# Application-specific variables for offload
export MIC_ENV_PREFIX=PHI
export PHI_OMP_SCHEDULE=static

./app-OFF

Listing 5.14: Script run-offload.sh launching the analyzed offload application.

Finally, in VTune, the project is configured with “Target system” set to
“Intel Xeon Phi coprocessor (host launch)”. This means that the application
specified in the line “Application:” is launched on the host, however, results
are collected on the coprocessor.

Like with native applications, the workflow of performance analysis is
similar to that for host applications, however, analysis types must be chosen
from the group “Knights Corner Platform”.

This concludes our brief tour of Intel VTune Amplifier XE. For more
information and examples, refer to the User’s Guide and Tuning Guides and
Performance Analysis Papers.
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Figure 5.25: Setting up a VTune project for offload application performance analysis on an Intel
Xeon Phicoprocessor.
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CHAPTER 6
Summary and Resources

Thank you for learning about Intel Xeon Phi coprocessor programming
with “Parallel Programming and Optimization with Intel R© Xeon PhiTM Co-
processors” by Colfax International! We hope that, whatever scope of infor-
mation you were looking for, you were able to find answers or pointers in
this book. In this last brief chapter, we will summarize the key findings of
our experience with Intel Xeon Phi coprocessor programming, and provide
references for future learning.

6.1. Parallel Programming and Intel Xeon Phi Co-
processors

Parallel computing will be extremely important in the future on all levels
of high performance computing, from workstation to exascale. The launch of
the Intel Xeon Phi coprocessors changed the landscape of high performance
computing by offering developers accelerated computing that works with
familiar programming models and standard frameworks such as OpenMP
and MPI.

In the programming and optimization examples presented throughout this
book, we strived to convey two important messages:

1) Optimization methods that benefit applications for Intel Xeon Phi copro-
cessors usually also apply to Intel Xeon processors, and vice-versa.

2) High performance can be achieved without “ninja programming” [46];
instead, automatic vectorization and traditional parallel frameworks such
as OpenMP and MPI can be used for optimization.

Consequently, an attractive feature of Intel Xeon Phi coprocessors is that
the developer may develop and optimize the computational kernel code only
once. That single source code can be used on today’s Intel Xeon processors,
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Intel Xeon Phi coprocessors, future MIC architecture processors, and other
platforms based on x86-like architecture. In this sense, applications designed
for the MIC architecture using common programming methods are “future-
proof”.

Even though it is easy to make an application run on an Intel Xeon Phi
coprocessor, it is important to realize that it is not trivial to achieve high
performance. At the same time, neither it is trivial to efficiently program
multi-core general-purpose processors such as Intel Xeon CPUs. However,
because of the continuity of programming and optimization methods, opti-
mization for the CPU results in better performance on the MIC architecture,
and vice-versa. That said, we concur with Intel’s James Reinders, who
expresses the “double advantage” in this way [5]:

The single most important lesson from working with Intel Xeon Phi
coprocessors is this: the best way to prepare for Intel Xeon Phi co-
processors is to fully exploit the performance that an application can
get on Intel Xeon processors first. Trying to use an Intel Xeon Phi
coprocessor, without having maximized the use of parallelism on Intel
Xeon processor, will almost certainly be a disappointment.
. . .
The experiences of users of Intel Xeon Phi coprocessors . . . point out
one challenge: the temptation to stop tuning before the best perfor-
mance is reached. . . . There ain’t no such thing as a free lunch! The
hidden bonus is the “transforming-and-tuning” double advantage of
programming investments for Intel Xeon Phi coprocessors that gener-
ally applies directly to any general-purpose processor as well. This
greatly enhances the preservation of any investment to tune working
code by applying to other processors and offering more forward scaling
to future systems.

We hope that your experience with the Intel Xeon Phi coprocessors is as
intellectually stimulating and enjoyable as it has been for us.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition



6.2. SUPPLEMENTARY CODE FOR PRACTICAL EXERCISES (“LABS”) 467

6.2. Supplementary Code for Practical Exercises
(“Labs”)

This book is accompanied by a set of practical exercises, also referred to
as “labs”. These exercises

• are the basis of some of the chapters in this book,
• may be used for self-study practice, and
• are used in the training course CDT 102 (see Section 6.3).

Downloading the Labs
You can download the latest version of the labs distributed under the MIT

license from https://github.com/ColfaxResearch/HOW-Series-Labs

Terms of Use
Terms of use of the book and practical exercises are listed on page ii

(between the title page and the page “About the Authors”).

System Requirements
The labs are designed for use in systems running a Linux* OS and based

on an Intel Xeon processor.
Most labs are focused on using Intel Xeon Phi coprocessors, so having

one or several coprocessors in the system enhances user experience.
All labs rely on Intel software development tools. At the very least, the

Intel C++ compiler must be installed. Some of the labs also rely on Intel
MKL, Intel MPI and Intel VTune Amplifier. See Section 1.2.7 for more
information about these tools.

c© Colfax International, 2013–2015
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Orientation
The electronic archive containing the list of labs may be uncompressed

into a directory tree shown in Figure 6.1.

labs
2

2.01-native-basic
2.02-native-MPI
2.03-offload-basic
2.04-offload-asynchronous
2.05-shared-virtual-memory-basic
2.06-shared-virtual-memory-complex-objects
2.07-benchmark-offload

3
3.01-vectorization
3.02-OpenMP-basics
3.03-OpenMP-reduction
3.04-OpenMP-tasks
3.05-Cilk-Plus-basics
3.06-Cilk-Plus-reducers
3.07-Cilk-Plus-recursion
3.08-MPI-basics
3.09-MPI-reduce
3.10-overview-matrix-matrix

4
4.01-overview-nbody
4.02-vectorization-data-structures-coulomb
4.03-vectorization-tuning-lu-decomposition
4.04-threading-misc-histogram
4.05-threading-insufficient-parallelism-sweep
4.06-threading-scheduling-jacobi
4.07-threading-affinity
4.08-memory-tiling-matrix_x_vector
4.09-memory-loop-fusion-statistics
4.10-offload-double-buffering-dgemm
4.11-MPI-load-balancing-asian-options

5
5.01-mkl
5.02-vtune

Figure 6.1: Directory tree of labs.
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Each lab contains a tree structure similar to that in Figure 6.2.

labs
4

4.05-threading-insufficient-parallelism-sweep
instructions.txt
main.cc
Makefile
worker.cc
solutions

instruction-01
main.cc
Makefile
worker.cc

instruction-02
main.cc
Makefile
worker.cc

instruction-03
main.cc
Makefile
worker.cc

Figure 6.2: Typical directory and file tree of a lab.

Start working on each lab by viewing the file instructions.txt at
the root of that tree. It guides the reader through the educational tasks that
must be performed in this exercise. If you would like to see our solution,
refer to the directory solutions/ in the lab folder. It typically contains di-
rectories such as instruction-01, instruction-02 with solutions
to the corresponding assignments in instructions.txt.

Note that in some labs, the code must be compiled manually for the
purpose of learning how to do it. In other labs, we provide a makefile, which
is also capable of running the lab. To compile for the CPU architecture
and execute, run the command make run-cpu. To compile for the MIC
architecture and run, use make run-mic.
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6.3. Colfax Developer Training

Colfax International offers multiple opportunities for getting trained to use
Intel Xeon Phi coprocessors and Intel software development tools. Colfax
Developer Training (CDT) is available in the following formats:

Course Duration Format Description
CDT 101 1 day Seminar Intensive lecture-only course: an overview of par-

allel programming frameworks and optimization
guidelines for multi-core CPUs (Intel Xeon) and
many-core coprocessors (Intel Xeon Phi).

CDT 102 1 day Labs Instructor-led hands-on practical exercises: pro-
gramming models, expressing parallelism, se-
lected optimization topics.

CDT 401 4 day Workshop Immersive training with strong focus on perfor-
mance optimization: lectures and hands-on exer-
cises on systems with Intel Xeon Phi coprocessors.

CDT S01 Variable Self-study Remote access to systems equipped with Intel
Xeon Phi coprocessors and Intel software devel-
opment tools and access to this book and labs for
self-guided training∗.

CDT V01 Variable Video course Lectures of CDT 101 available on demand as a
video course. ∗

∗ – coming soon (status as of April 2015).

Table 6.1: Colfax Developer Training

For information on booking the training, please visit http://www.colfax-
intl.com/nd/xeonphi/training.aspx
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6.4. Additional Resources

Books
We can recommend the following books for additional information on

parallel programming and the Intel MIC architecture.

1) Another textbook on programming for the MIC architecture from Intel’s
senior engineers Jim Jeffers and James Reinders can be found in “Intel
Xeon Phi Coprocessor High Performance Programming” [3]. The book
has a Web site at http://lotsofcores.com/ [47]

2) A collection of case studies written by 28 high performance computing
experts and edited by Reinders and Jeffers is “High Performance Par-
allelism Pearls” [48]. Source code for each case study is available at
http://lotsofcores.com/.

3) A book focused on the architecture of the first generation of Intel Xeon Phi
coprocessors is "Intel Xeon Phi Coprocessor Architecture and Tools: The
Guide for Application Developers (Expert’s Voice in Microprocessors)"
by Rezaur Rahman [49].

4) For a solid foundation of traditional parallel programming methods with
OpenMP and MPI, refer to “Parallel Programming in C with MPI and
OpenMP” by Michael J. Quinn [20].

5) A new look at parallel algorithms and novel parallel frameworks are
presented in “Structured Parallel Programming: Patterns for Efficient
Computation” by Michael McCool, Arch D. Robinson and James Rein-
ders [19]. The Web site of the book is http://parallelbook.com/ [50].

6) To gain a better understanding of computer architecture in general, and
specifically the architecture of Intel Xeon Phi coprocessors, refer to
“Compute Architecture: Quantitative Approach" by John L. Hennessy and
David A. Patterson [4] and “Intel Xeon Phi Coprocessor System Software
Developer’s Guide”, a publication by Intel [51].
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Reference Guides
The following list is a collection of URLs for software development tool

and programming framework reference guides.

1. Intel C++ Compiler User and Reference Guide [15]:
https://software.intel.com/en-us/compiler_15.0_ug_c

2. Intel VTune Amplifier XE User’s Guide [45]:
https://software.intel.com/en-us/node/529797

3. Intel MPI Library Reference Manual [13]:
https://software.intel.com/en-us/mpi-refman-lin-5.0.3-html

4. MPI routines on the ANL Web site [52]:
http://www.mpich.org/static/docs/latest/

5. OpenMP specifications [53]:
http://openmp.org/wp/openmp-specifications/

Online Resources
1) Colfax Research publications on Intel MIC architecture programming are

available at http://colfaxresearch.com/

2) Intel Developer Zone has a portal on the MIC architecture with white
papers, links to products, forums and case studies, and other essential
information: https://software.intel.com/mic-developer

3) This online resource “Programming and Compiling for Intel Many In-
tegrated Core Architecture” [30] contains condensed information about
optimization of applications for the Intel Xeon Phi architecture:
http://software.intel.com/en-us/articles/programming-and-compiling-for-
intel-many-integrated-core-architecture

4) Colfax International is preparing a video course based on the CDT 101
training course (see Section 6.3). When completed, the video course will
be available at http://xeonphi.com/training/video.
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Community Support
1) The forum “Intel Many Integrated Core Architecture” in the Intel Devel-

oper Zone is a great place to ask questions and exchange ideas:
https://software.intel.com/en-us/forums/intel-many-integrated-core
This forum gets contributions from developers working with Intel Xeon
Phi coprocessors, and it is also monitored by Intel’s engineers involved in
the development of the MIC architecture.

2) Another forum in the Intel Developer Zone, “Threading on Intel Parallel
Architectures”
http://software.intel.com/en-us/forums/threading-on-intel-parallel-architectures
is a good place to communicate with peers about parallel programming,
not necessarily in the context of the MIC architecture.

3) Find connections and stay updated on the latest news related to the MIC
technology by joining the LinkedIn group “Parallel Computing with Intel
Xeon Phi Coprocessors”:
http://www.linkedin.com/groups/Parallel-Computing-Intel-Xeon-Phi-4722265/about

Contact Us
If you have questions, ideas, suggestions, corrections, or need information

about purchasing or test-driving computing systems with Intel Xeon Phi
coprocessors, please refer to:

a) the Colfax International Web site http://www.colfax-intl.com/

b) page for Intel Xeon Phi: http://www.colfax-intl.com/nd/xeonphi/

c) or contact us at the following email address: phi@colfax-intl.com.
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