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Our recent publication “Algorithmic Canonical Stratifications of Simplicial Complexes” [1] proposes
a new algorithm for data analysis that offers a topology-aware path towards explainable artificial intelli-
gence. Despite (or, perhaps, due to) being mathematically rigorous, the text of the original work [1] is
virtually impenetrable for readers not familiar with the concepts, tools, and notation of topology. In order
to convey our ideas to a wider audience, we present this supplemental introduction. Here, we summarize
and explain in plain English the motivation, reasoning, and methods of our new topological data analysis
algorithm that we term “canonical stratification”.

1. MOTIVATION

Machine learning has advanced significantly in recent years and has proven itself to be a powerful
and versatile tool in a variety of data-driven disciplines. Machine learning algorithms are now being used
to make decisions in numerous areas such as bank fraud detection, autonomous vehicles, and medical
diagnosis. However, the increasing adoption of AI as a decision maker raises challenging questions about
our ability to trust and justify the decisions that an AI reaches.

For many machine learning algorithms, it is often difficult to determine why a certain decision was
made by the algorithm. This “black-box” approach to machine learning often leads to situations where AI
makes a correct decision for the wrong reasons. For example, in a case study conducted by researchers in
Berlin, an AI algorithm tasked with learning to recognize an image of a horse instead learned to recognize
the copyright notice that was present in the majority of pictures with horses in them [2]. For applications
that require a high degree of trust, such as those in medical or military fields, this lack of transparency and
potential for an AI to “cheat” are unacceptable. To address this issue, there have been increasing efforts
to develop so-called Explainable AI (XAI) algorithms: machine learning algorithms that can justify their
decisions to human users.

One promising XAI research area, called Topological Data Analysis (TDA), approaches the problem
of inference on data with a concept that is natural to us: shapes. Characterizing an object by its shape is one
of the primary methods that we can use to describe an object. Similarly, TDA seeks to characterize data
through its “shape” using tools from the mathematical field of topology. To be more precise, the “shapes”
as typically understood in TDA, which are called manifolds, are a natural generalization of what we call
shapes in everyday life. Although these generalized shapes may be more difficult for us to grasp, working
with them allows us describe and characterize a wide variety of datasets; for example, this includes not
only image data (as might be expected), but also datasets that can be encoded as graphs, which often
arise when analyzing social networks. From the standpoint of XAI, describing data through its shape is
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highly desirable, because explanations like “decision A was made because the data had shape B” are more
intelligible to people than “decision A was made because the data was similar to vector B”.

On top of describing data by shapes, our work aims to add another XAI tool to the TDA toolkit:
dividing data by shapes. Currently, almost all TDA toolkits focus on describing a single, global shape
of a given dataset. However, some large datasets might be better described as a collection of smaller,
localized shapes. The stratification algorithm presented in our paper divides a given dataset into groups
where each group is a part of some shape. This can be used on its own as a clustering workload to find
groups in a dataset (e.g., friend groups in a social network), and can also be used in conjunction with other
TDA methods to describe data as a combination of multiple shapes. We hypothesize that our stratification
algorithm will facilitate the capabilities of TDA methods to be effectively applied to a wider range of
real-world problems.

2. MORE ON CANONICAL STRATIFICATION

In this section, we present an overview and some intuition for our canonical stratification (CaSt) al-
gorithm for readers with a data science background. We first briefly give a general overview of TDA and
discuss the advantages of working with topological spaces. We then discuss some limitations of current
TDA methods, and how our CaSt algorithm aims to remedy them.

2.1. SHAPES OF DATA

Comprehending the geometric shape of one’s data can be very useful in the analysis of that data. Take,
as a simple example, the vertices and edges plotted in 2D Euclidean space in Figure 1.

Figure 1

The vertices and the edges form a circle, and this information can help us make educated guesses about
the data. For example, we can reasonably infer that the collection of data points samples a circular object,
such as a wheel. Furthermore, if a new data point that lies on the circle is added, we can be fairly confident
that this new data point is part of the same group. Although this is a highly simplified example, it serves to
illustrate how shape comprehension can be a useful tool in extracting information from more complicated
datasets. The key idea is that the notion of shape can provide a more concise and descriptive summary of
one’s data than its “raw” representation as a collection of data points.

However, an analytics methodology that only involves visualizable shapes like a circle has several
deficiencies that serve to limit the possible datasets that it can work with. One problem is that our tra-
ditional conception of shape is limited to 3 dimensions: because we cannot visualize 4 dimensional or
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higher shapes, a statement like the data is a “triangle in 5 dimensions” does not have an obvious meaning
without involving more sophisticated mathematics. In data analytics, it is common to have datasets that
have dozens of fields, with each field corresponding to one dimension. To make inferences regarding these
high-dimensional datasets, we need to expand our notion of shape.

Another problem is that these shapes may undergo unwanted distortions upon scalings, rotations, or
perturbations of the underlying dataset that should not change the inferences one would make about the
data. For example, let’s plot the dataset from Figure 1 in a space {x′, y′} given by:

x′ = x, (1)
y′ = y/5 (2)

In other words, the y-axis has been scaled by a factor of one-fifths. The same dataset as Figure 1 plotted
in this space “appears” to be an ellipse.

Figure 2

Scaling such as above can occur by just changing units along one axis, so traditional shapes are unfit
for datasets with heterogeneous features. Furthermore, this was a simple case where the coordinates were
stretched in one dimension by a constant, but in other cases the deformation need not be by a constant
factor. Because it is possible to stretch or contract a space so that the dataset “appears” to be another shape,
like transforming a circle into an ellipse, a dataset having some traditional shape in one representation may
have a different shape in another representation.

TDA addresses these problems through tools derived from the mathematical field of topology. Topol-
ogy supplies a rigorous definition of shape that can have an arbitrary number of dimensions. In addition,
these shapes are invariant under continuous deformations (like stretching or contracting). Thus, in terms
of topology, Figure 1 and Figure 2 are the same shape (a 1-sphere).

Furthermore, the datasets and the “shapes” do not even have to be geometric in origin. For example,
it is possible to speak about the shape of a graph that does not have intrinsic coordinates, like a social
network graph. These properties allow TDA to be applied on a much wider range of datasets than a cruder
analysis only using traditional shapes.

2.2. SUBDIVIDING DATA

The primary mathematical tool used in TDA is homology, which can be used to extract the global
“shape” of one’s data in the sense of topology. Mathematically, homology is a linear-algebraic invariant
of a topological space that provides refined and computable information about the space; for example,
for spaces that have a well-defined dimension (like manifolds), homology detects the dimension of a
space. Intuitively, homology detects the presence of “holes” in a shape via a succession of “homology
groups”; the first homology groups measures the number of circles in the shape that cannot be filled in,
the second homology group measures the number of spheres in the shape that cannot be filled in, and
so forth. However, although the information obtained via computation of the homology groups is useful
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for obtaining a “big picture” of the data, it doesn’t always provide detailed information about the various
components of the dataset. For example, consider the dataset shown in figure 3:

Figure 3

An analysis of the homology groups will determine the global shape of this dataset to be two “circles”
intersecting at a vertex. Subsequently, a potential next step for analyzing a dataset like this might be to
split the dataset and independently analyze each of the two circles. However, by itself knowledge of the
homology groups does not provide information on how to split this data. Although homology recognizes
the global structure of the two circles, it does not provide information on which circle each vertex (and
edge) belong to.

For this particular example, it is possible to do a secondary pass to separate out the circles. However,
in practice doing a secondary analysis like this on an arbitrary dataset typically requires either a priori
knowledge of what the shapes look like, or otherwise manual intervention. This is not scalable for large,
high-dimensional datasets that contain shapes of various dimensions and types. We note that the problem
can be somewhat mitigated by first subdividing the data into small subsets or regions and then performing
each analysis independently. Nonetheless, this process often involves an arbitrary selection of how to do
the division, and may also lose relevant global information.

We conclude that a systematic process for subdividing data based on topological information will
be useful, either in augmenting existing global TDA toolkits, or even on its own. This is one of the
primary motivations behind the CaSt algorithm presented in our publication. The CaSt algorithm provides
a procedure for subdividing the dataset into groups that topologically appear to be part of the same shape;
we call the resulting division the canonical stratification of the data. More specifically, the algorithm
takes every object known as a simplex in the dataset (vertices, edges, faces, tetrahedra and their higher-
dimensional equivalents) and assigns them to a grouping called a stratum. The algorithm applied to the
dataset in Figure 3 will divide the dataset into 3 strata shown in red, green and blue in Figure 4. Here,

Figure 4

the two circles, as well as the point of intersection, form their respective strata. The CaSt algorithm
also provides additional structural information that describes the relations between the various strata. For
instance, the CaSt algorithm encodes the fact that the two circle strata (green and blue) in Figure 4 are
connected by the vertex strata (red).
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The mathematics behind the algorithm is described in our publication and will not be discussed in-
depth here. We will be content instead to explain the CaSt algorithm at a high-level. Roughly speaking,
the algorithm does the following to determine the canonical stratification of the dataset. First, the local
shape is determined through computation of the local homology groups. Each local homology group,
computed for each simplex, can be thought of as describing the shape around each simplex, as opposed
to the (global) homology groups that describe the global shape of the dataset. Next, using this local
shape information, neighboring simplices are grouped together in a process reminiscent of a connected
components analysis. More precisely, the algorithm iteratively groups neighboring simplices that have
local homology groups that are equal to that of a topological sphere of equal dimension. This constitutes
the topologically-based clustering procedure alluded to above.

3. CONCLUSION

From the viewpoint of XAI, stratification adds a new set of AI algorithms to make human-relatable
decisions. For example, it can produce results like “the dataset can be divided into group 1 with shape A
and group 2 with shape B”, and such a result can be used to make decisions with explanations like “the
new data point is part of group 1 because it lies on shape A”. In this way, AI algorithms using TDA with
stratification can have its decisions be justified in terms of shapes.

The justifiable decisions of XAI allow for a human to do spot-checks on the algorithm. This will help
avoid problematic situations like the copyright notice and the horse that we pointed out earlier. In essence,
XAI allows us to do QA on the work delegated to the AI, and as with any product, a good QA program
helps us put trust in the quality of the work. As more and more decisions come to be made by machines,
having this trust will prove to be crucial. By advancing XAI through stratification and TDA, we hope to
help build this trust in machine-made decisions.
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