OPTIMIZATION OF REAL-TIME OBJECT DETECTION
ON INTEL® XEON® SCALABLE PROCESSORS

Sangamesh Ragate and Ryo Asai

Colfax International

December 14, 2017

Abstract

This publication demonstrates the process of opti-
mizing an object detection inference workload on an
Intel® Xeon® Scalable processor using TensorFlow.
This project pursues two objectives:

1. Achieve object detection with real-time through-
put (frame rate) and low latency
2. Minimize the required computational resources

In this case study, a model described in the “You
Only Look Once” (YOLO) project is used for object
detection. The model consists of two components:
a convolutional neural network and a post-processing
pipeline. In this work, the original Darknet model is
converted to a TensorFlow model. First, the convolu-
tional neural network is optimized for inference. Then
array programming with NumPy and TensorFlow is im-
plemented for the post-processing pipeline. Finally, en-
vironment variables and other configuration parameters
are tuned to maximize the computational performance.
With these optimizations, real-time object detection is
achieved while using a fraction of the available process-
ing power of an Intel Xeon Scalable processor-based
system.

Table of Contents

Real-time Object Detection

TensorFlowand MKL
Optimization of CNN
31 YOLO
32 Fusinglayers
Optimization of Post-processing
4.1 Naive for-loops
4.2 NumPy Vectorization.
43 TensorFlow

Tuning Parallelism

5.1 SelectingCores
5.2 OpenMP Thread Count
5.3 Thread Affinity
54 OpenMP Block Time
5.5 Session Configurations
Benchmarks
6.1 System configuration
6.2 BatchSize
6.3 Optimization Results
6.4 Single-Frame Inference
6.5 Mini-Batch Inference
Conclusion

= KBk
W Dic oo o ol NN BN s B W R R N

WHO WE ARE

Colfax Research is a department of Colfax
International, a Silicon Valley-based provider of novel
computing systems. Our research team works to help
you leverage new hardware and software tools to
harness the full power of computational innovations.

I PUBLICATIONS I

colfaxresearch.com/research

WHAT WE DO

We work independently as well as collaborate with other researchers in science and
industry to produce case studies, white papers, and educational materials with the
goal of developing a wide knowledge base of the applications of current and future
computational technologies. In addition, we run educational programs, provide
consulting services, and offer specialized hosting for technology adoption programs.

TRAINING

colfaxresearch.com/training

© Colfax International, 2017 — https://colfaxresearch.com/

I SERVICES

colfaxresearch.com/services

https://colfaxresearch.com/

1. REAL-TIME OBJECT DETECTION

1. REAL-TIME OBJECT DETECTION

The advancement of convolutional neural net-
works (CNNs) and deep learning (DL) in the past
decade brought about significant improvements in
computer vision. One of the beneficiaries of these
advances is the task of object detection, where the
objective is to detect and locate real-world objects
inside images or videos. This differs from basic
image classification in that the machine learning
model has to detect multiple objects in a single
frame, and also determine where these objects are
located. Figure 1 shows an example of object de-
tection. Recent research efforts, such as Faster R-
CNN [1], Fastest DPM [2] and YOLO [3], have
greatly improved both accuracy and speed of ob-
ject detection. The advances in techniques, com-
bined with the improved computer hardware, put
real-time object detection well within the capabil-
ities of modern processors.

Figure 1: Example of Object detction. Image is a frame out
of the Caltech Pedestrian Dataset video[4]

Performing object detection in real time has a
wide range of applications, from security surveil-
lance to assistive technology, marketing, manu-
facturing and autonomous driving. For many of
these applications, deployment would require high
frame rate (number of frames processed per sec-
ond), as well as low latency between image cap-

ture and object detection. Furthermore, they often
benefit from minimizing the amount of resources
used for running real-time analysis. For exam-
ple, in Internet of Things (IoT) applications, which
may be processing multiple inputs at once or work-
ing on other tasks concurrently with object detec-
tion, minimizing the amount of computational re-
sources for object detection allows more resources
to be allocated for other tasks. Therefore, this pa-
per approach object detection with two goals:

1. Achieve real-time frame rate and latency.
2. Minimize required computational resources.

There is no universal definition of real-time
frame rate. Instead, the definition of ‘“real-time” is
the “same rate as the input”, so the required frame
rate will depend on the application. There are three
reference point values used in this paper: 15 fps
(common frame rate of CCTV cameras), 24 fps
(typical frame rate of movies) and 30 fps (frame
rate used for Caltech Pedestrian Dataset [4]). The
unit “fps” stands for “frames per second”.

Frame rate is a good metric for applications
where the processing throughput is more important
than the latency of processing a single frame. Of-
fline processing of video streams is an example of
such an application. In contrast, there exist appli-
cations that require object detection in a frame as
fast as possible. For example, self-driving vehicles
need to respond to the road conditions fast, and ob-
ject detection speed in this application is best mea-
sured by latency.

Depending on whether an application needs a
high frame rate or low latency, object detection can
be approached differently. For latency minimiza-
tion, one may choose to use all the available re-
sources to process a single frame at a time, even
if it leads to sub-optimal utilization of a power-
ful computing system. For throughput maximiza-
tion, the mini-batch approach (processing several
frames at once) may be better as it takes better ad-
vantage of a parallel computing system. Finally,
if the latency is important, but mini-batch results

© Colfax International, 2017 — https://colfaxresearch.com/ 2

https://colfaxresearch.com/

2. TENSORFLOW AND MKL

in an acceptable latency, then this approach can
minimize the utilization and free up the process-
ing power for other tasks.

The aim of this work is to meet the re-
quired frame rate or latency while using the min-
imum amount of computing resources, and both
the single-frame inference and the mini-batch ap-
proaches are studied.

This project is using the algorithm proposed in
the YOLO project, which is described in Section 3.
Original work on YOLO used the Darknet neural
network framework [5], but for this work the net-
work is implemented using TensorFlow.

The target platform for this paper is an Intel
Xeon Scalable processor (formerly Skylake) from
the Platinum group. These are highly parallel
socket-mountable server processors with a large
number of physical cores and support for AVX-
512 vector instructions [6]. The test system used
in benchmarks contains 24 cores per socket, with
total of 48 cores in a dual-socket system.

2. TENSORFLOW AND MKL

Most machine learning workloads spend the
vast majority of the execution time on floating-
point arithmetic operations. So, in order to discuss
floating-point performance, it is important to take
note of the underlying mathematics engine. High-
level machine learning frameworks often use ex-
ternal linear algebra libraries, such as OpenBLAS,
to drive their math engines. TensorFlow natively
uses the Eigen library for its operations, but re-
cently there has been a joint effort made by the
TensorFlow team and Intel Corporation to add sup-
port for Intel Math Kernel Library (MKL). Intel
MKL is a highly optimized mathematics library
with support for operations in linear algebra, such
as matrix product, and neural network operations,
such as convolution. The use of MKL can signif-
icantly increase the speed of TensorFlow on Intel
architectures. Therefore, this project uses Tensor-
Flow with the Intel MKL back-end.

Some of the tuning methods discussed in Sec-
tion 5 are specific to MKL and therefore can be
applied to other deep learning frameworks that are
capable of using this library, such as Caffe, Neon,
Theano or Torch.

3. OPTIMIZATION OF CNN

This work focuses on deep learning inference
using a pre-trained model, so additional speedup
can be achieved by removing or combining lay-
ers that are not necessary for inference. This sec-
tion first describes the YOLO network, and then
describes the changes that were made on the net-
work in order to increase its speed.

3.1. YOLO

“You Only Look Once” (YOLO) [3] is a con-
volutional neural network designed for fast ob-
ject detection. Compared to other similar models,
YOLO'’s strength is that it frames object detection
as a regression problem for bounding boxes with a
single-pass pipeline. Others models typically have
two passes through one or more pipelines: region
proposal and then classification. This single pass
is one of the attributes that makes it extremely fast.

In the original git repository there are multi-
ple YOLO models with a range of depths. The
deeper networks typically give a better detection
precision but take longer. The implementation pre-
sented in this paper uses the shallower 9-layer net-
work, “Tiny YOLO” (see Table 1). Each of the
9 layers in “Tiny YOLO” are convolution layers;
there are no fully-connected layers. All but the last
convolution is followed by a Leaky ReLU activa-
tion and batch normalization.

The original model has been trained on the Pas-
cal VOC dataset with 20 object categories, and it
achieves 52.6 Mean Average Precision (mAP)[3].
To run the TensorFlow implementation of the
CNN, the original Darknet model was converted
the TensorFlow format.

© Colfax International, 2017 — https://colfaxresearch.com/ 3

https://colfaxresearch.com/

4. OPTIMIZATION OF POST-PROCESSING

Input (416x416x3)
Conv3-16 s-1
MaxPool2 s-2
Conv3-32 s-1
MaxPool2 s-2
Conv3-64 s-1
MaxPool2 s-2
Conv3-128 s-1
MaxPool2 s-2
Conv3-256 s-1
MaxPool2 s-2
Conv3-512 s-1
MaxPool2 s-1

Conv3-1024 s-1
Conv3-1024 s-1
Conv1-125 s-1
Output (13x13x125)

Table 1: Tiny YOLO CNN layers

3.2. FUSING LAYERS

For inference workloads, it is possible to fuse
the batch normalization and convolution layers,
which may improve the frame rate and latency [7].
After fusing, the new weights and biases for each
layer can be obtained from Equations (1) and (2).

W,

Wy = L2 1ol (1)
o

boew = L (b‘ﬂda_ mean) 5 (o)

Here, W is the weight and b is the bias. 3, y, o and
mean are parameters of batch normalization. Each
of the first 8 convolution layers of Tiny YOLO has
batch normalization. In this work, the matching
batch normalization and convolution layer param-
eters are fused into new weight and bias parame-
ters for the convolution layer.

4. OPTIMIZATION OF
POST-PROCESSING

The output array of the CNN pipeline is di-
rected into the next step of the YOLO algorithm,

the processing pipeline. There, the CNN output is
processed and converted into a form that can be fed
to the non-max suppression (NMS) kernel. This
section demonstrates how to implement the pro-
cessing pipeline in a pure vectorized format, in-
stead of relying on for-loops. Note that all refer-
ence to vectorization in this paper is in the context
of array programming, not SIMD parallelism.

4.1. NAIVE FOR-LOOPS

“Naive for-loops” implementation uses a mix
of Python for-loops and NumPy operations. The
CNN part of YOLO (see Table 1) outputs a 13x13
feature map with depth of 125 (13x13x125), the
corresponding to 5 bounding boxes, and class pre-
dictions for each location on the map (13x13x5
predictions). Each bounding box prediction con-
sists of 25 values: the first 4 values are {x,y,w,h} of
the box, the 5th value is the confidence that the box
contains an object, and the last 20 values are the 20
class probabilities. The detection score for each
box is the product of the confidence value and the
maximum class probability. This score is checked
against a user-defined threshold value to filter out
low-confidence results.

The final outputs of this section are three ar-
rays: boxes that pass the threshold, scores of these
boxes, and classes associated with these boxes.
The output arrays will be processed through NMS,
which eliminates the overlapping boxes by sup-
pressing the boxes that have inferior scores.

The difficulty of implementing this code sec-
tion is the fact that the array is heterogeneous in
that the 25 consecutive values for a box contain
different types of data that require different pro-
cessing. Listing 1 shows the naive for-loop imple-
mentation. The main body of this function consists
of the 3 nested for-loops going through each pixel
and bounding boxes. For-loops add a significant
overhead to this particular implementation, drasti-
cally reducing the speed.

© Colfax International, 2017 — https://colfaxresearch.com/ 4

https://colfaxresearch.com/

4. OPTIMIZATION OF POST-PROCESSING

anchors= # array of anchor boxes
boxes=[]
scores=|

]

classes=[]

over all the pixels and boxes
for cy in xrange(13):

for cx in xrange(13):

for b in xrange (5):

off=bx25

#get confidence value
tc=preds[cy] [cx] [off + 4]
conf=sigmoid (tc)

pos=o0ff+5

#get class prediction and max

class probability
class_p=preds|[cy] [cx] [pos:pos+20]
class_p=softmax (class_p)
max_idx=np.argmax (class_p)
max_score=classes[class_idx]+conf

#confidence threshold

if (max_score > 0.20):
scores +=[max_score]
classes+=[max_idx]

#extract box location

tx=preds|cy] [cx] [off + O]
ty=preds[cy] [cx] [off + 1]
tw=preds|[cy] [cx] [off + 2]
th=preds[cy] [cx] [off + 3]
x=(float (cx) + sigmoid(tx))=*32.0
y=(float (cy) + sigmoid(ty))=*32.0
w=anchors[2+xb J]*np.exp (tw)=*16.0
h=anchors[2+b+1]*np.exp (th)*16.0
x1l=x-w

X2=X+wW

yl=y-h

y2=y+h

boxes+=[[x1,y1l,x2,vy2]]

Listing 1: Naive for-loop implementation

4.2. NUMPY VECTORIZATION

The NumPy library contains many useful array
operations that allow a pure vectorized implemen-
tation as shown in Listing 2.

boxes=1[]
scores=[]
classes=1[]

preds=preds.reshape(13,13,5,25)

slice confidence and predictions
conf=sigmoid(preds([:,:, :,4])
class_p=softmax (preds|:, »9823])
max_idx=np.argmax (class_p,axis=3)
max_score=np.amax (class_p,axis=3) xconf

check against threshold
ind=np.where (max_score>0.20)
scores =max_score[ind]
classes=max_idx[ind]

#slice selected box cordinates

=(preds[:,:,:,0]) [ind]

y (preds|: 11) [ind]

= (preds|: 2]1) [ind]

= (preds|: 31) [ind]
xX= (1nd[] + 51gm01d(t x))*32.0
y=(ind[0] + sigmoid(ty))*32.0
w=anchors[2xind[2]]*np.exp(tw)*16.0
h=anchors[2+ind[2]+1]*np.exp(th)*«16.0
x1=x-w
X2=X+tW
yl=y-h
y2=y+h

boxes=np.array([x1l,yl,x2,y2]) .T.copy ()

Listing 2: NumPy vectorization

The original input 13x13x125 array can be re-
shaped to 13x13x5x25 to isolate individual bound-
ing box predictions. This new shape allows for
easier NumPy array slicing to separate the coor-
dinates, confidence scores, and the class probabil-
ities. Using NumPy array operations and broad-
casting, the confidence scores and the maximum
class probabilities can be computed and multi-
plied, resulting in an array form of max_score.

The naive implementation has an if-statement
at this point, comparing each max_score to the
threshold. In order to apply a conditional to an
array, the NumPy implementation uses the log-
ical operator and the numpy.where () func-

© Colfax International, 2017 — https://colfaxresearch.com/ 5

https://colfaxresearch.com/

5. TUNING PARALLELISM

tion. The > operator applied to a NumPy ar-
ray is broadcast, and it returns a boolean array.
The numpy.where () function, given a single
boolean array input, will return the indices of the
True elements. These indices can then be used to
get the corresponding box coordinates, confidence
values and class predictions.

4.3. TENSORFLOW

Finally, we convert the NumPy implementa-
tion to TensorFlow API as shown Listing 3.

preds=tf.reshape (preds, [13,13,5,25])
slice confidence and predictions

confs=tf.sigmoid(preds[:,:,:,4])
class_p=tf.nn.softmax (
preds(:, ,5:2571)

max_score=tf.reduce_max (
class_p,axis=3) xconfs
max_idx=tf.argmax (class_p,axis=3)

check against threshold
ind=tf.where (max_score>0.20)

scores =tf.gather_ nd(max_score, ind)
classes=tf.gather_nd(max_idx, ind)

#slice selected box cordinates

tx=tf.gather_nd(preds[:,:,:,0],1ind)
ty=tf.gather_nd(preds[:,:,:,1],1ind)
tw=tf.gather_nd(preds[:,:, P],1n)

[31 d)

th=tf.gather_nd (preds
ind=tf.transpose (ind)

=(tf.cast (ind[1],tf.float32) +
tf.sigmoid (tx))*32.0

y=(tf.cast (ind[0],tf.float32) +
tf.sigmoid (ty))*32.0

w=tf.gather (anchors, 2+xind[2]) *

tf.exp(tw)*x16.0

h=tf.gather (anchors, 2xind[2]+1) *
tf.exp(th)*x16.0

~r -7 4

x1=x-w
X2=X+W
yl=y-h
y2=y+h
boxes=tf.stack ([x1l,yl,x2,y2],axis=1)

Listing 3: TensorFlow implementation

While both the NumPy and TensorFlow im-
plementations are vectorized, the latter has an
advantage. The output of the data processing
section is fed into NMS. Because we have com-
mitted to using TensorFlow, it makes sense to
call a built-in TensorFlow method for NMS,
tf.image.non.max_suppression ().
Therefore, there are two transitions between
frameworks: from TensorFlow to NumPy after
CNN and from NumPy to TensorFlow for NMS.
The transitions between frameworks combined
with the extra session.run () for NMS add
a significant overhead for some versions of Ten-
sorFlow. To avoid this overhead, the final imple-
mentation uses TensorFlow array programming.

Fortunately, the TensorFlow API for slic-
ing is nearly identical to the NumPy API,
and it has equivalents to NumPy meth-
ods like tf.where(), tf.gather () and
tf.gather_nd (), which are necessary for our
application.

5. TUNING PARALLELISM

After the code optimization steps described
above, the inference engine calls TensorFlow
methods for most of the calculations. Even though
TensorFlow with the Intel MKL back-end uses
highly-optimized code base for calculations, some
arguments of the parallel algorithms can be tuned
to extract more power from the Intel CPU-based
computing platform. There are three points of ac-
cess to these tuning parameters: system environ-
ment variables, tf.Session () configuration
arguments, and Linux commands, as described in
this section. The recommended settings of these
parameters come from the CPU optimization page
of the TensorFlow website [8].

In this context, we will talk about OpenMP,
which is a parallel programming API supported in
most modern C, C++ and Fortran compilers. The
Intel implementation of OpenMP is used for multi-
threading inside the MKL back-end.

© Colfax International, 2017 — https://colfaxresearch.com/ 6

https://colfaxresearch.com/

5. TUNING PARALLELISM

5.1. SELECTING CORES

The goal of this work is to use as little re-
sources as possible to achieve the desired frame
rate, so that the rest of the system can be used
by other tasks. To partition the resources (proces-
sor cores) between object detection and other pro-
cesses, our implementation uses taskset. This
Linux utility allows users to restrict a process to a
list of logical processors.

The strategy for choosing the list of logical
processors for object detection is dictated by three
factors: the desired number of physical cores,
hyper-threading, and NUMA locality. The ap-
proach of this work is this:

1. The number of physical cores for object de-
tection is determined by the user. The tests
of the frame rate discussed in Section 6 vary
this number from 1 to 48 because the target
system contains 48 physical cores.

2. With the core count fixed, we select two log-
ical processors on each core. This is done to
take advantage of the Intel Hyper-Threading
technology, which allows each core of Intel
Xeon Scalable processors to operate as two
logical CPUs. Using both hyper-threads im-
proves the calculation speed in applications
with complex memory traffic.

3. If the number of physical cores is less than
the number of cores per socket (in our case,
24), then all selected cores should be on the
same NUMA node. This improves the cal-
culation speed by ensuring that data traffic
never has to go across the interconnect be-
tween the CPU sockets. On the target sys-
tem, a NUMA node consists of all cores
within the same CPU socket (this is appli-
cable to Intel Xeon Scalable processors with
cluster-on-die functionality disabled).

The arguments of t askset must refer to log-
ical processors by their OS procs (numerical iden-
tifiers). The mapping of OS procs to cores can be

found in /proc/cpuinfo. The list of OS procs
belonging to a NUMA node, as well as the list of
NUMA nodes can be found by running the com-
mand numactl -H.

user@host% # Using 16 0OS procs, but only 8 cores
user@host% taskset -c 0-7,48-55 ./inference.py

Here OS procs O through 7 are all on different
cores, but on the same socket. OS proc 48 shares
the physical core with 0, 49 shares with 1, 50
shares with 2, etc.

Section 5.3 discusses the environment vari-
able KMP_AFFINITY used for pinning software
threads to OS procs. This configuration pa-
rameter is complementary to taskset because
taskset controls the affinity of all threading
frameworks, while KMP_AFFINITY only controls
the Intel OpenMP library.

5.2. OPENMP THREAD COUNT

Restricting the resources with taskset does
not, in itself, tell the application how many soft-
ware threads to use. However, many architecture-
aware libraries will use as many threads as the
number of logical processes made available by
taskset. This means, for our configuration, two
software threads per physical core. While it makes
sense for the stages of the calculation that ben-
efit from hyper-threading, it does not work well
for MKL functions, where memory traffic is well-
controlled in code. For example, the MKL im-
plementation of SGEMM used in CNN inference
prefers 1 thread per core. For this reason, the
recommended optimization for TensorFlow is to
set the environment variable OMP_NUM_THREADS
equal to the number of physical cores.

For example, to use 8 physical cores in the
scope of this work, with 8 threads used in MKL,
but 16 logical processors available to other paral-
lel parts of the calculation, we use the following:

© Colfax International, 2017 — https://colfaxresearch.com/ 7

https://colfaxresearch.com/

5. TUNING PARALLELISM

user@host% # Tell OpenMP to use 8 threads
user@host% export OMP_NUM_THREADS=8

user@host% # Using 16 OS procs, but only 8 cores
user@host% taskset -c 0-7,48-55 ./inference.py

5.3. THREAD AFFINITY

The KMP_AFFINITY variable controls the
core affinity of the OpenMP runtime, allow-
ing users to control the pinning of OpenMP
threads to the physical cores. For example,
KMP AFFINITY=compact can be used to put
neighboring threads on neighboring cores, al-
lowing for better cache sharing. Conversely,
KMP_AFFINITY=scatter can be used to map
the OpenMP threads physically far apart from
each other. The recommended setting for
KMP_AFFINITY on TensorFlow is:

export KMP_AFFII granularity=fine, compact, 1,0

The first part, granularity=£fine, forbids
thread migration. By default, the Linux operat-
ing system is allowed to transfer a software thread
from one physical core to another. This often
causes heavy cache misses because the new core
has a different L2 or L1 cache from the original.
Preventing the migration will prevent these unnec-
essary cache misses.

The second part, compact, 1, 0, controls the
mapping of the threads to cores. The compact
argument places OpenMP threads physically as
close to each other as possible. However, this
can have drawbacks in systems with enabled In-
tel Hyper-Threading technology, where multiple
thread contexts can reside on the same core.
With hyper-threading and compact, consecutive
threads will be assigned to the same physical core.
With hyper-threading and compact, 1, consecu-
tive threads will be assigned to different physical
cores on the same CPU socket. The , 0 part of the
variable is the offset, which determines the starting
number for the core mapping. An offset of zero is

default, and a greater offset is useful for running
multiple processes in such a way that they don’t
contend for cores.

5.4. OPENMP BLOCK TIME

The KMP _BLOCKTIME variable controls the
wait time in milliseconds after the end of a parallel
region that an OpenMP thread should wait before
going to sleep. A large value of KMP_BLOCKT IME
would mean that the OpenMP threads are kept
“hot” for a long time, and when a new parallel re-
gion starts, its setup will require a smaller over-
head compared to if it was sleeping. By default,
KMP _BLOCKTIME is set to 200 milliseconds. Al-
though a large KMP_BLOCKTIME is favorable for
pure OpenMP applications, it can be detrimental if
the application has other parallel frameworks be-
cause a large block time of can starve these other
frameworks of the necessary compute resources.

KMP_BLOCKTIME for TensorFlow is a tuning
parameter, and the optimal value depends on the
model and dataset that is being used. The recom-
mended range for TensorFlow is between 0 to 30
milliseconds. In the case of YOLO, the optimal
value is empirically found to be 1 millisecond.

5.5. SESSION CONFIGURATIONS

TensorFlow Session object has multiple
configuration parameters that can affect the behav-
ior of its execution. The two parameters that are
used for parallelism tuning are:

* inter_op_parallelism_threads
e intra op._parallelism threads

Both parameters control threading behavior of op-
erations. These parameters can be set as follows:

config=tf.ConfigProto (
inter_op_parallelism_threads=1,
intra_op_parallelism_threads=8);

tf.Session(config=config)

© Colfax International, 2017 — https://colfaxresearch.com/ 8

https://colfaxresearch.com/

6. BENCHMARKS

The inter_op_parallelism_threads
parameter controls how many independent opera-
tions can run simultaneously. For example, during
back-propagation of neural networks, the gradi-
ents for the weights of a layer can be computed
independently of the gradients for the bias. If
inter_op-parallelism_threads is greater
than 1, TensorFlow may execute these two oper-
ations simultaneously. However, operations with
dependencies cannot run simultaneously: layer 2
of a network can not run simultaneously with layer
1. The recommendation for TensorFlow is to set
inter op_parallelism threads equal to
the number of NUMA nodes available. For In-
tel architecture processors, this is usually equal
to the number of the CPU sockets (or a multiple
thereof if the sub-NUMA clustering or cluster-on-
die functionality is enabled). The total number of
NUMA nodes can be found with numactl -H

For the YOLO inference workload, the optimal
setting of inter op parallelism threads
is 1. This agrees with the recommended value: al-
though the system has 2 NUMA nodes, taskset
is used to restrict execution to the cores inside the
same NUMA node.

The intra op parallelism threads
parameter controls the number of threads that a
single operation can use. This has the same func-
tionality as OMP_NUM_THREADS, but affects op-
erations that do not rely on OpenMP for thread-
ing. The recommendation for TensorFlow is to set
intra op_parallelism threads equal to
OMP_NUM_THREADS.

6. BENCHMARKS

6.1. SYSTEM CONFIGURATION

The frame rate measurements presented in this
section are conducted on a Colfax CX1260i-T-
X7 server based on a dual-socket Intel® Xeon®
Platinum 8160T processor with 192 GB of DDR4
memory at 2400 MHz. The processor has 24 cores

per socket with 2-way hypert-hreading, so this sys-
tem has 48 physical cores presenting themselves as
96 logical processors. The operating system used
is CentOS 7.4. Python 2.7 from the Intel Distribu-
tion for Python 2018 [9] is used with TensorFlow
version 1.4.0 and OpenCV version 3.3.1-dev.

The computation rate is reported as throughput
in units of frames per second (fps).

6.2. BATCH SIZE

For single-frame inference, the effective frame
rate is related to the processing time (latency) ac-
cording to Equation 3.

1

latency = ———
y frame rate

3)

For mini-batch inference (object detection in
several frames concurrently), the frame rate is
computed from the time (latency) it takes to pro-
cess the mini-batch as shown in Equation 4.

mini-batch size
frame rate = 4)
latency

Single-frame inference is the usage scenario
when object detection in a given frame must be
performed as fast as possible — for example, in
a self-driving vehicle. Mini-batch inference may
allow the user to process more frames per sec-
ond than single-frame inference, but the applica-
tion must wait for the entire batch to finish process-
ing before any result can be used. This approach
will generally have worse latency, but better frame
rate than single-frame processing. The mini-batch
approach is useful in offline data processing, when
the latency less important than throughput. It can
also help to achieve a target latency with fewer
cores. Mini-batch size of 1 is equivalent to single-
frame processing.

© Colfax International, 2017 — https://colfaxresearch.com/ 9

http://www.colfax-intl.com/nd/Servers/CX1260i-T-X7.aspx
http://www.colfax-intl.com/nd/Servers/CX1260i-T-X7.aspx
https://colfaxresearch.com/

6. BENCHMARKS

6.3. OPTIMIZATION RESULTS

Figure 2 shows the frame rate gains due to the
optimizations presented in this paper for single-
frame processing (i.e., a mini-batch size of 1).

70

“©
B33 Total fps =
60 1
D W/O IO fps Lo
D)
S
50 b
2 A
& oY
2 40t s
g
o
§ 30} [N
= ¥ 9
5 A
20f v o o o 9
5 5 ~ 0~ ~ 0~ P
S o y W 5 H = o~
of 7 S WANNE
% 9 w o)
o
Lezmm BRI B RS
Original CNN Numpy TensorFlow Optimized

Optimization Vectorization Vectorization Environment

Figure 2: Impact of code optimization

Each measurement is done over processing of
500 frames, with time for each frame measured in-
dependently. The times for the first 100 frames
(= 3 seconds) are ignored in order to avoid fluc-
tuation from issues like initialization and leaving
CPU power saving states. The average times and
the standard deviation is reported from the latter
400 frame times. For these benchmarks, the num-
ber of threads is kept constant at 8 threads, or one-
sixth of the total computational capacity.

Two values for frame rate are reported: total
frame rate and frame rate without I/0O. Total frame
rate includes the time taken to load the frames and
display them in OpenCV, so this number is depen-
dent on the some external factors like the proper-
ties of the video capturing device. For the bench-
mark setup, the I/O took up to 20% of the total
wall-time. The frame rate without I/O is reported
to give the best-case speed of the application.

In Figure 2, Original represents a naive
model consisting of CNN with batch normaliza-
tion and postprocessing from Listing 1. CNN
optimization is the network optimization pre-
sented in Section 3. Optimizations for the
NumPy Vectorization and TensorFlow

Vectorization cases are discussed in Sec-
tion 4. Finally, Optimized Environment is
discussed in Section 5. All optimizations com-
bined deliver 10x improvement for the total frame
rate and around 13x for frame rate without I/O.

6.4. SINGLE-FRAME INFERENCE

The optimizations discussed above were also
applied to YOLO-V2 CNN. Figures 3 and 4 below
show the total frame rate with respect to number
of cores for “stressed” and “idle” systems for both
Tiny-YOLO and YOLO-V2 CNN models.

60 [T 1 1 T
Stressed system
. SO e 1de system |
& 4wt 0o © 0 o -
3 ° 1
g 30 e =
E =
S 20 e = n
=
10 [2 .
0 | | | | | | |
1 2 4 8 16 32 64

Cores

Figure 3: Tiny-YOLO: Single-frame inference timing, in-
cluding I/0.

357 1 T
Stressed system
® [dle system

Frame rate (fps)

re
t

Yy

S}
A~
)
—_
=N
w
&)

64
Cores
Figure 4: YOLO-V2: Single-frame inference timing, in-
cluding I/O.

The same data is shown in tabulated format in
Table 2 and 3.

© Colfax International, 2017 — https://colfaxresearch.com/ 10

https://colfaxresearch.com/

6. BENCHMARKS

Cores Stressed Idle

Total W/out 10 Total W/out 10
1 7.440.1 7.94+0.1 | 11.7£1.6 12.7+1.8
2 12.4+0.3 13.940.4 | 20.0+£0.6 22.6+0.7
4 19.5+0.4 23.240.6 | 30.7£0.6 37.6+0.7
6 25.3+0.5 31.440.7 | 36.1£0.5 46.0+0.8
8 28.9+0.7 36.8%+1.1 | 36.9£2.2 47.6+3.5
12 33.7+£1.3 45.14£2.3 | 39.5£1.9 52.743.1
24 40.64+3.0 57.7+£5.8 | 404+1.7 56.1£2.5
48 39.0+2.3 53.34+4.2

Table 2: Tiny-YOLO: Single-frame inference timing. The
values are in frames per second (fps).

Cores Stressed Idle

Total W/out 10 Total W/out 10
1 2.1+0.04 2.1£0.04 3.440.2 3.54+0.2
2 3.84+0.03 3.940.03 6.24+0.5 6.41+0.5
4 6.61+0.05 6.9+0.05 | 10.3+0.2 10.84+0.3
6 8.840.12 9.2+0.13 | 12.8+04 13.6+04
8 10.5+0.15 11.1+0.16 | 14.7£0.5 15.7+0.5
12 13.3£0.31 14.2+0.32 | 16.7+0.5 18.0+£0.6
24 17.9+£0.44 19.5+0.48 | 18.3+0.4 19.940.5
48 17.6+0.5 19.6+0.4

Table 3: YOLO-V2: Summary of frame rate measurements
in fps.The values are in frames per second (fps).

In the “idle” run, the object detection appli-
cation is the only computationally heavy appli-
cation running on the system. In the “stressed”
run, the object detection application is run on a
subset of the cores, and the rest of the cores are
used for a large matrix product calculation (Intel
MKL SGEMM). This test simulates multi-tenancy,
where a server is running many applications con-
currently. There is a large difference between
the two scenarios for low core count benchmarks,
largely due to the Intel Turbo Boost feature of the
processor. When the CPU utilization is low, as in
the case of low core count “idle” runs, the proces-
sor is allowed to increase its frequency up to the
maximum Turbo frequency as long as the power
consumption on the CPU is below the threshold
value (TDP). For the CPU used in this bench-
mark, the frequency can scale from the maximum
Turbo frequency of 3.0 GHz to the base frequency

of 2.1 GHz. For more on Turbo Boost in Intel
Xeon Scalable processors, see [10]. In contrast,
for the “stressed” runs, the CPU is fully occu-
pied even when few cores are used for object de-
tection, so it does not benefit as much from the
Turbo Boost. The difference between the “idle”
and the “stressed” speed reduces as the core count
is increased, and it goes away when one CPU is
fully utilized (24 cores). Note that the Turbo fre-
quency is set based on the core occupancy of a
socket, so the difference goes away at 24, rather
than 48, cores because it does not matter if the sec-
ond socket is utilized or not.

For Tiny-YOLO model, each core constitutes
2.1% of the total computational resource of the
test system. For the idle system, the low CCTV
frame rate of 15 fps can be achieved with just 2
cores, and both the typical movie frame rate of 24
fps and the Caltech Pedestrian Dataset frame rate
of 30 fps at 4 cores. For the fully stressed sys-
tem, the required resources are 2 cores to achieve
CCTV frame rate, 6 cores for a typical movie
frame rate, and 8 to 12 cores for the Caltech Pedes-
trian Dataset frame rate. These serve as maximum
and minimum cases for the system utilization out-
side the detection workload. So in real-case sce-
narios, where the object detection is running con-
currently with other workloads, the required core
count will fall somewhere in between the values.
The speed without I/O that we quote can poten-
tially be achieved, for example, if the I/O is done
on a separate thread. In this case, the 30 fps mark
is achieved with 4-6 threads.

YOLO-V2 model has 23 convolution layers
compared to 9 convolution layers in Tiny-YOLO.
It has an increased object detection precision at the
cost of speed, which is quite evident in the frame
rate plots. The YOLO-V2 model requires at least
12 cores to reach the CCTV frame rate of 15 fps.

Finally, there are two important notes about
this result.

1. MKL integration into TensorFlow is in its
early stages, an Intel MKL is continually

© Colfax International, 2017 — https://colfaxresearch.com/ 11

https://colfaxresearch.com/

6. BENCHMARKS

upgraded. Although this is already an im-
pressive showing, the floating-point opera-
tion rate of the “Tiny YOLO” model for
single-frame inference is still short of the
theoretical peak floating-point operation rate
of the test system. According to the authors
of YOLO [7], “Tiny YOLO” inferencing re-
quires 6.97 - 10° floating-point operations.
Using our measured frame rate, this number
can be translated to floating-point operation
rate in GFLOP/s (billions of floating-point
operations per second). The single preci-
sion theoretical peak of the test system in
the “idle” scenario is 1.54 TFLOP/s with 8
cores and 3.07 GFLOP/s with 24 cores. The
timing of of “Tiny YOLO” translates to 331
GFLOP/s with 8 cores or 391 GFLOP/s with
24 cores. This amounts to an efficiency of
22% and 13%, respectively. As Intel MKL
and TensorFlow improve, the required com-
putational resource may decrease even fur-
ther.

2. The low efficiency and poor frame rate scal-
ing with core count is due to the self-
imposed limitation of single-frame reference
(i.e., batch size of 1) in these tests. Mod-
ern processors are highly parallel, and there
aren’t enough independent parallelizable el-
ements in the workload with a batch size of
1. At larger batch sizes, the object detec-
tion frame rate scales better with the number
of cores. Mini-batch inference timing is de-
scribed in Section 6.5.

6.5. MINI-BATCH INFERENCE

In this section, the timing results for mini-
batch inference are presented. In all test cases, 24
cores (i.e., one complete socket) of the processor
are used.

Figures 5 and 6 show the frame rate and la-
tency plots for mini-batch inference for both Tiny-
YOLO and YOLO-V2. The horizontal markings

in the latency plots are of special importance be-
cause they show the required minimum latencies
of Caltech pedestrian dataset, Movies and CCTV
for mini-batch size of 1.

103 F I I
F Tiny-YOLO
. ® YOLO-V2
é
8 PS - - -
=102 F ° E
Q . - 4
E [.]
<
2 ° ° e e °
°
°
10! | | | | | | |
1 2 4 8 16 32 64

Mini-batch size

Figure 5: Frame rate for mini-batch object detection with 24
cores, without I/0.

I I
Tiny-YOLO e

10°F ® YOLO-V2 ° E
¥ ° -
=) Y
F10° £ ° R 3

10! | | | | | | |

1 2 4 8 16 32 64

Mini-batch size

Figure 6: Latency for mini-batch object detection with 24
cores, without I/0.

The data used for these plots is summarized in
Tables 4 and 5.

© Colfax International, 2017 — https://colfaxresearch.com/ 12

https://colfaxresearch.com/

7. CONCLUSION

Batch Frame rate (fps)

size Tiny-YOLO YOLO-V2
1 48.840.1 19.8+0.0
2 69.0+0.1 26.5+0.0
4 92.740.1 32.9+0.1
8 117.6+0.1 36.7+0.1
16 133.6+04 37.7+0.2
32 134.840.7 38.5+0.3
64 136.0+£1.6 38.5+0.6

Table 4: Batch inference frame rate with 24 cores.

Batch Latency (ms)

size Tiny-YOLO YOLO-V2
1 20.4+1.0 50.44+1.3
2 28.9+1.3 75.441.3
4 43.1+£1.0 121.34+1.7
8 68.0+1.2 217.74£3.0
16 119.74+2.8 423.5+54
32 237.245.7 831.6£7.9
64 470.5+11.6 1661.7+16.0

Table 5: Batch inference latency with 24 cores.

Processing several frames at once in a mini-
batch utilizes the resources more efficiently. For
instance, with 24 cores, Tiny-YOLO with a batch
size of 8 delivers 836 GFLOP/s (27% efficiency)
and with a batch size of 64 it operates at 949
GFLOP/s (31% efficiency). The heavier model
YOLO-V2 with a batch size of 64 delivers 1350
GFLOP/s, which is 44% efficiency.

As a consequence, mini-batch inference with a
large batch size should be the default strategy for
offline image processing, when the latency is not
important.

At the same time, if the latency is important,
mini-batch processing may still be useful due to its
improved efficiency. For example, using 24 cores
and the Tiny-YOLO model, single-frame process-
ing yields 40.6 fps, which is barely enough to
concurrently support three CCTV cameras (15 fps

each). With the same number of cores and the
same model, mini-batch processing with a batch
size of 8 has an effective frame rate of 118 fps,
which is nearly enough to support eight CCTV
cameras, still in real time (because the mini-batch
is processed in 1/15th of a second),

7. CONCLUSION

This publication presents the optimization path
for real-time object detection inference (based on
the YOLO model) with TensorFlow. Observations
of this work are characteristic of modern applica-
tions for highly-parallel processors. That is, the
speed of the application and the efficiency of re-
source utilization depend critically on the design
of the code and on the parallel strategy.

First, the paper demonstrated common tech-
niques that improve computational efficiency in
deep learning and data processing applications.
They included:

1. Algorithm optimizations that improve the
data locality (in this paper, it was layer fu-
sion in a CNN);

2. Code transformation toward high-level APIs
with architecture-aware back-end libraries
(in this case, NumPy and TensorFlow with
Intel MKL back-end);

3. Resource partitioning and parallel algo-
rithm control with environment variables
and Linux tools.

The techniques mentioned above do not
change the nature of the calculation, but, rather,
make the application execute closer to the underly-
ing hardware. Cumulatively, the difference in the
calculation speed between a correct but inefficient
code and the final optimized version was observed
to be 13x.

Secondly, the measurements presented here
show that the tradeoff between the computation

© Colfax International, 2017 — https://colfaxresearch.com/ 13

https://colfaxresearch.com/

REFERENCES

speed and detection precision can be a tuning pa- 2. In a scenario where multiple video feeds are
rameter of an artificial intelligence system. Sub- processed (e.g., surveillance footage from
stituting the Tiny-YOLO model for YOLO-V2 in- multiple cameras), the user can choose to
creases the frame rate by 2-3x at the cost of less process object detection on a mini-batch
accurate object detection. of frames coming from the different feeds,
Thirdly, the paper demonstrated that the choice rather on than a single frame. This would
of the parallel strategy on Intel architecture is a sig- increase the amount of data the system can
nificant factor in the bottom-line efficiency: handle. In setup, the single-frame strat-
egy allows each 24-core socket to process
1. In a scenario where a single video feed is 3 (three) CCTV feeds, while the mini-batch
pro;essed in real-time (e.g., a .self—driving strategy increases the capacity to 8 (eight)
vehicle), the user can choose just enough CCTV feeds, still maintaining real-time la-
CPU cores to handle object detection at the tency of 1/15th of a second.
required frame rate. For instance, our bench-
mark system needs to dedicate 8-12 cores The methods discussed in the paper are appli-
to detect objects in a 30 frames per second cable to a broad range of data analysis and machine
video feed, while the rest of the cores can be learning tasks targeting modern Intel architecture
assigned to other tasks. processors.
REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Shaoging Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object detection with
region proposal networks. CoRR, abs/1506.01497, 2015.
http://arxiv.org/abs/1506.01497, arXiv:1506.01497.

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. Object detection with discriminatively
trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell., 32(9):1627-1645, September 2010.
http://dx.doi.org/10.1109/TPAMI.2009.167, doi:10.1109/TPAMI.2009.167.

Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. CoRR, abs/1612.08242, 2016.
http://arxiv.org/abs/1612.08242, arXiv:1612.08242.

Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: An evaluation of the state of the
art. PAMI, 34, 2012.

Darknet: Open Source Neural Networks in C.
https://pjreddie.com/darknet/.

Alaa Eltablawy and Andrey Vladimirov. Capabilities of Intel® AVX-512 in Intel® Xeon® Scalable Processors (Skylake),
2017.
http://colfaxresearch.com/skl-avx512.

Matthijs Hollemans. Real-time object detection with YOLO.
http://machinethink.net/blog/object-detection-with-yolo/.

TensorFlow performance guide.
https://www.tensorflow.org/performance/performance_guide#optimizing_for_cpu.

Intel Distribution for Python.
https://software.intel.com/en-us/distribution-for-python.

Andrey Vladimirov. A Survey and Benchmarks of Intel® Xeon® Gold and Platinum Processors, 2017.
http://colfaxresearch.com/xeon-2017.

© Colfax International, 2017 — https://colfaxresearch.com/ 14

http://arxiv.org/abs/1506.01497
http://dx.doi.org/10.1109/TPAMI.2009.167
http://arxiv.org/abs/1612.08242
https://pjreddie.com/darknet/
http://colfaxresearch.com/skl-avx512
http://machinethink.net/blog/object-detection-with-yolo/
https://www.tensorflow.org/performance/performance_guide#optimizing_for_cpu
https://software.intel.com/en-us/distribution-for-python
http://colfaxresearch.com/xeon-2017
https://colfaxresearch.com/

	Real-time Object Detection
	TensorFlow and MKL
	Optimization of CNN
	YOLO
	Fusing layers

	Optimization of Post-processing
	Naive for-loops
	NumPy Vectorization
	TensorFlow

	Tuning Parallelism
	Selecting Cores
	OpenMP Thread Count
	Thread Affinity
	OpenMP Block Time
	Session Configurations

	Benchmarks
	System configuration
	Batch Size
	Optimization Results
	Single-Frame Inference
	Mini-Batch Inference

	Conclusion

