
A PERFORMANCE-BASED COMPARISON
OF C/C++ COMPILERS

Vishal Kasliwal, and Andrey Vladimirov

Colfax International

November 19, 2017

Abstract

This paper reports a performance-based compari-
son of six state-of-the-art C/C++ compilers: AOCC,
Clang, G++, Intel C++ compiler, PGC++, and Zapcc.
We measure two aspects of the compilers’ performance:

1. The speed of compiled C/C++ code parallelized
with OpenMP 4.x directives for multi-threading
and vectorization.

2. The compilation time for large projects with
heavy C++ templating.

In addition to measuring the performance, we inter-
pret the results by examining the assembly instructions
produced by each compiler.

The tests are performed on an Intel Xeon Platinum
processor featuring the Skylake architecture with AVX-
512 vector instructions.

Table of Contents

1 The Importance of a Good Compiler 2

2 Testing Methodology 3
2.1 Meet the Compilers 3
2.2 Target Architecture 4
2.3 Computational Kernels 4
2.4 Compilation Time 4
2.5 Test Details 5
2.6 Test Platform 5
2.7 Code Analysis 5

3 Results . 6
3.1 Performance of Compiled Code 6
3.2 Compilation Speed 8

4 Summary 8

Appendix A LU Decomposition 11

Appendix B Jacobi Solver 19

Appendix C Structure Function 29

Appendix D Compilation Speed 42

PUBLICATIONS
colfaxresearch.com/research

TRAINING
colfaxresearch.com/training

SERVICES
colfaxresearch.com/services

Colfax Research is a department of Colfax
International, a Silicon Valley-based provider of novel
computing systems. Our research team works to help
you leverage new hardware and software tools to
harness the full power of computational innovations.

We work independently as well as collaborate with other researchers in science and
industry to produce case studies, white papers, and educational materials with the
goal of developing a wide knowledge base of the applications of current and future
computational technologies. In addition, we run educational programs, provide
consulting services, and offer specialized hosting for technology adoption programs.

Who We Are What We Do

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 1

https://colfaxresearch.com/

1 THE IMPORTANCE OF A GOOD COMPILER

1. THE IMPORTANCE OF A GOOD
COMPILER

Modern x86-64 CPUs are highly complex
CISC architecture machines. Modern vector ex-
tensions to the x86-64 architecture, such as AVX2
and AVX-512, have instructions developed to han-
dle common computational kernels. For example,
the fused multiply-add instruction is used to in-
crease the performance and accuracy in dense lin-
ear algebra, collision detection instruction is suit-
able for the binning operation of binning in sta-
tistical calculations, and bit-masked instructions
are designed for handling branches in vector cal-
culations [3]. However, workloads with complex
memory access patterns and non-standard kernels
require considerable work from both the program-
mer and the compiler in order to achieve the high-
est performance.

At the same time, modern language standards
work hard to abstract away the details of the un-
derlying hardware and data structures and gener-
ate generic code that aligns more with logic and
mathematics than instructions and memory loca-
tions. Newer language standards place greater em-
phasis on constructs that allow programmers the
ability to express their intent. Modern standards of
the C++ language are moving in the direction of
greater expressivity and abstraction. The Python
programming language is popular because of its
readability and expressiveness, even at the cost of
reduced runtime speed. Human-readable, expres-
sive languages enable bug-free, maintainable code
and are here to stay.

The consequence of increasing expressivity is
an increased burden on the compiler to produce
good assembly code from the complex high-level
constructs written by the programmers. Compilers
have to be smarter and work harder to wring the
most performance out of code. Not all compilers
are created equal and some are better than others
at taking the same piece of code and producing ef-
ficient assembly.

In addition to producing fast executables, mod-
ern compilers must be fast themselves. Large soft-
ware projects in C/C++ can span hundreds to thou-
sands of individual translation units, each of which
can be hundreds of lines in length. C++ code
can also make heavy use of techniques such as
template programming that require multiple passes
from the compiler to produce object files. The
compile time for large C++ projects can run into
hours. Developers use practices like precompiled
header files to reduce the compilation time. Large
projects usually feature teams of developers with
multiple interdependent changes being commit-
ted simultaneously. Each commit may require
upstream developers to recompile significant por-
tions of the codebase. Faster compilers are crucial
to achieving high productivity from large teams.

Finally, there’s language extensions. Lever-
aging a modern computing system with multiple
cores, vector processing capabilities, and acceler-
ators goes beyond the natural capabilities of com-
mon programming languages. So frameworks spe-
cific to high-performance computing (HPC), such
as OpenMP [4] and OpenACC [5], step in to fill
this gap. These frameworks offer APIs with which
programmers can express parallelism in the code.
The compiler, along with the corresponding run-
time libraries, must map this parallel code onto the
processor architecture. Numerous HPC projects
rely on the OpenMP and OpenACC standards,
and the standards are being expanded by the de-
velopers and hardware manufacturers. Therefore,
compilers must constantly play catch up with the
evolving standards for language extensions.

What is a good compiler? A good compiler
should let us focus on the process of writing pro-
grams rather than struggling with the inadequacies
of the compiler. It should compile the most re-
cent language standards without complaint. We
should feel confident in its ability to produce well-
optimized code from even the most abstract code-
base. Lastly, it should compile source code as
quickly as possible.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 2

https://colfaxresearch.com/

2 TESTING METHODOLOGY

2. TESTING METHODOLOGY

2.1. MEET THE COMPILERS

We aim to test the most commonly available
C/C++ compilers. To be considered as a candidate
for our test, the compiler must

1. be listed on the Wikipedia list of C/C++
compilers [6],

2. compile for the x86-64 architecture,

3. be available for Linux platforms,

4. be under active development.

The following six compilers pass our criteria:

1. Intel R⃝ C++ Compiler 18.0.0 (Intel C++
compiler)

2. GNU Compiler Collection 7.2.0 (G++)

3. PGI R⃝ C++ Compiler 17.4 (PGC++)

4. Clang 5.0.0 (Clang)

5. Zapcc Compiler 1.0.1 (Zapcc)

6. AMD Optimizing C/C++ Compiler 1.0
(AOCC)

The Intel C++ compiler compiler is made by
the Intel Corporation and is highly tuned for In-
tel processors. Intel C++ compiler features sup-
port for the latest C++ and OpenMP standards,
as well as support for the latest Intel architec-
tures. Intel C++ compiler is available free of
charge for student and open source developers. For
OpenMP support, by default it links against the In-
tel libiomp5.so library.

The G++ compiler is an open-source compiler
made by the Free Software Foundation Inc. G++
was originally written to be the compiler for the
GNU operating system. It is capable of gener-
ating code for a large number of target architec-
tures and is widely available on Unix-like plat-
forms. For OpenMP support, we link against the
GNU libgomp.so library.

The following three compilers are based on the
LLVM infrastructure for code generation.

The Clang compiler is developed by the LLVM
project. The project aims to produce a fully GNU
Compiler Collection-compliant compiler suite that
can replace the GNU Compiler Collection. We use
LLVM 5.0.0, the most recent release of the LLVM
infrastructure. For better performance, we instruct
Clang to use the Polly loop optimizer [7] and the
native lld linker [8]. We link against the LLVM
provided OpenMP library libomp.so [9].

Zapcc made by Ceemple Software Ltd. is a
replacement for Clang that aims to compile code
much faster than Clang. Zapcc uses the LLVM
5.0.0 backend for optimization, code generation,
and also for libraries such as libomp.so.

AOCC is an AMD-tweaked version of the
Clang 4.0.0 compiler optimized for the AMD
Family 17h processors (‘Zen’ core). AMD en-
hancements include improved vectorization, high-
level optimizer, whole program optimization, and
code generation. The AMD compiler ships with
its own versions of the LLVM libraries. For
OpenMP support we link against the AMD pro-
vided libomp.so.

PGC++ is made by the Portland Group and fea-
tures extensive support for the latest OpenACC 2.5
standard. PGC++ is available both as a free Com-
munity Edition (PGC++ 17.4) as well as a paid
Professional Edition (PGC++ 17.9). At the time
of writing, an LLVM-based beta edition with sup-
port for enables OpenMP 4.5 extensions is avail-
able for testing. The Portland Group is working
to incorporate AVX-512 code generation abilities
into PGC++. We show results obtained with the
free Community Edition (PGC++ 17.4). PGC++
comes with its own set of libraries. For OpenMP
support, we link against the PGI OpenMP library
libpgmp.so

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 3

https://colfaxresearch.com/

2.2 Target Architecture 2 TESTING METHODOLOGY

2.2. TARGET ARCHITECTURE

The Intel R⃝ Xeon R⃝ Scalable processor family
released in 2017 is based on the Skylake (SKL)
microarchitecture, which succeeds the Broadwell
(BDW) microarchitecture. The SKL microar-
chitecture introduces AVX-512 instructions [3],
which feature twice the vector width and number
of available vector registers as compared to AVX2
instructions available in the BDW microarchitec-
ture. Properly written algorithms are capable of
yielding 2× the performance on a SKL machine as
compared to a BDW machine with a similar clock
speed and core count [3].

All the tested compilers issue AVX-512 in-
structions except PGC++. AVX-512 support is un-
der development for PGC++. Due to the lack of
AVX-512 support, PGC++ performs substantially
worse in some of the benchmarks than the other
compilers.

2.3. COMPUTATIONAL KERNELS

To test the performance of compiled HPC
code, we offer to the compilers three computa-
tional microkernels:

1. A straightforward implementation of the
pivotless LU decomposition with simple
data structures and memory access pattern,
and without any hand-tuning. Although
this kernel can be optimized to the point
at which it is compute bound, we test the
un-optimized version of the kernel in or-
der to determine how each compiler handles
“naive” source code with complex vector-
ization and threading patterns hidden within.

2. A highly abstracted object-oriented imple-
mentation of a Jacobi solver for the Pois-
son problem on a square domain. This ker-
nel tests how well the compilers can per-
form complex, cross-procedural code anal-
ysis to detect common parallel patterns (in
this case, a 5-point stencil). This is a

bandwidth-bound kernel, meaning that its
performance is limited by the RAM band-
width rather than by the floating-point arith-
metic capabilities of the cores.

3. A heavily-tuned implementation of structure
function computation. We fully optimize
this kernel to the point where it is compute-
bound, i.e., limited by the arithmetic perfor-
mance capabilities of the CPU. The purpose
of this test is to see how efficient the result-
ing binary is when the source code is acutely
aware of the underlying architecture.

We use OpenMP compiler extensions for vec-
torizing and parallelizing our computational ker-
nels. OpenMP 3.1 extensions are supported by
all 6 compilers. OpenMP 4.x introduces con-
structs for SIMD programming, including reduc-
tion and alignment clauses. OpenMP 4.x is sup-
ported by all the compilers with varying degrees
of compliance with the exception of PGC++. Full
OpenMP 4.5 support is forthcoming in a future
LLVM-based version of PGC++. To level the
playing field in anticipation of OpenMP 4.5 sup-
port by PGC++, we use the PGI-specific directive
#pragma loop ivdep to inform PGC++ that
loop iterations are independent for the following
loop and can be safely executed simultaneously.
This allows PGC++ to issue vector instructions for
the following loop and has the same effect as the
OpenMP 4.x directive #pragma omp simd for
the other compilers.

2.4. COMPILATION TIME

Our compile problem consists of compiling
the TMV linear algebra library written by Dr.
Mike Jarvis of the University of Pennsylvania [10].
TMV stands for ‘templated matrix vector’. As the
name suggests, this library contains templated lin-
ear algebra routines for use with various special
matrix types. This makes TMV representative of
scenarios where compilation speed is a significant
factor in developer productivity.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 4

https://colfaxresearch.com/

2.5 Test Details 2 TESTING METHODOLOGY

2.5. TEST DETAILS

We provide the code used in this compar-
ison in a GitHub repository [2]. Each com-
putational kernel is implemented in C++. The
performance-critical function is located in the file
‘critical.cpp’. The main function manages
memory and calls the critical function to execute
the computational kernel. We solve each problem
NUM PROBLEMS number of times to obtain the
performance figure for a single ‘trial’. Each trial
is repeated NUM TRIALS number of times and
the results of the first 3 trials discarded. The re-
maining trials are averaged to get the final perfor-
mance figure for the run. Finally, we run each test
NUM RUNS number of times and select the most
favorable result. This process ensures that we get
consistent, reproducible results.

For multi-threaded performance, we empiri-
cally determine the optimal number of threads
for each combination of the compiler, kernel, and
problem size. I.e., we do not assume that the same
thread count is optimal for code generated by all
the compilers.

2.6. TEST PLATFORM

Our test platform is a 2-socket Intel R⃝Xeon
Platinum 8168 machine (Skylake microarchitec-
ture) with 48 physical cores at 2.7 GHz and 192
GB of RAM.

The theoretical peak performance of a system
can be computed using

P = f × ncores × v × icyc × Finstruc, (1)

where P is the performance in GFLOP/s, f is the
clock frequency in GHz, ncores is the number of
available cores, v is the vector width, icyc is the
number of instructions that can be executed per
clock cycle, and Finstruc is the number of floating
point operations performed per instruction.

As per the Intel R⃝ Xeon R⃝ Scalable family spec-
ifications [11], the maximum clock frequency of
Platinum 8168 CPU is 2.5 GHz when executing

AVX-512 instructions on 24 cores per socket. For
double precision FMA, v = 8 and Finstruc = 2.
Each Platinum 8168 CPU socket has 24 cores for
a total of 48 cores on a 2-socket system. Each core
has two FMA units, making icyc = 2. Therefore,
the theoretical peak performance of our system for
purely FMA double precision computations is

PFMA
×48 = 2.5× 48× 8× 2× 2 = 3840 GFLOP/s.

Non-FMA computational instructions such as
vaddpd, vmulpd, and vsubpd also execute on
the Skylake FMA units. However, each instruc-
tion only performs a single computation making
Finstruc = 1. Therefore, the theoretical peak perfor-
mance of our system for purely non-FMA double
precision computations is

P×48 = 2.5× 48× 8× 2× 1 = 1920 GFLOP/s.

When executing AVX-512 instructions with
a single core, the maximum clock frequency
of the Platinum 8168 CPU is 3.5 GHz. The
corresponding theoretical peak performance is
PFMA
×1 = 112 GFLOP/s for purely FMA double

precision computations and P×1 = 56 GFLOP/s
for purely non-FMA double precision computa-
tions.

2.7. CODE ANALYSIS

We find that the best way to determine
the reasons for performance differences be-
tween codes produced by the different com-
pilers is by looking at the assembly instruc-
tions generated by each compiler. We gen-
erate assembly from the compiled object file
for each compiler using objdump. Our
command line for generating the assembly is

objdump -d -S -l -M intel
critical.o &> critical.asm

This combination of flags outputs assembly using
the Intel syntax [12]. We edit the output assem-
bly to remove extraneous information and com-
piler comments.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 5

https://colfaxresearch.com/

3 RESULTS

3. RESULTS

3.1. PERFORMANCE OF COMPILED CODE

In this section, we present and comment on the
timing results. For an explanation of these values,
please refer to the Appendices. There, we conduct

a detailed analysis of the behavior of each com-
putational kernel when compiled by the different
compilers as well as a general overview of the ker-
nels themselves. Compilation arguments and rel-
evant snippets of code and assembly can also be
found in the Appendices.

Table 1 summarizes our findings.

Compiler LU
Serial

LU
Parall

Threads Jacobi
Serial

Jacobi
Parall

Threads SF
Serial

SF
Parall

Threads TMV
Compile

PGC++ 11.0 103 24 4.28 30.7 13 12.8 n/a n/a 2750
Clang 8.22 75.3 15 4.39 42.3 20 23.3 837 96 902
AOCC 9.57 96.4 15 4.72 58.2 44 57.2 1990 96 1230
Zapcc 8.21 74.7 15 4.40 41.4 21 23.4 841 96 510
G++ 14.3 90.9 12 12.8 74.4 9 36.4 1380 96 848
Intel C++ 14.6 118 15 15.0 103 14 57.4 2050 48 1420

Table 1: Results of compiler comparison. Values in columns LUDecomp, JacobiSolve and SFComp are in GFLOP/s (more is
better), and in column TMV the value is in seconds (less is better)

Figure 1 plots the relative performance of the
computational kernels when compiled by the dif-
ferent compilers and run with a single thread. The

performance values are normalizes so that the per-
formance of G++ is equal to 1.0. The normaliza-
tion constant is different for different kernels.

LU Decomposition Jacobi Solver SF Computation
0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e
Pe

rf
or

m
an

ce
(G

++
=

1)

0.77

0.58
0.67

0.57

1.00 1.02

0.33 0.34 0.37 0.34

1.00

1.18

0.35

0.64

1.57

0.64

1.00

1.58

PGC++ Clang AOCC Zapcc G++ Intel C++

Figure 1: Relative performance of each kernel as compiled by the different compilers. (single-threaded, higher is better).

Noticably, the LLVM 5.0.0 based Clang and
Zapcc provide almost identical performance across

the board. This is to be expected because the two
compilers are very similar with the only difference

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 6

https://colfaxresearch.com/

3.1 Performance of Compiled Code 3 RESULTS

being that Zapcc has been tweaked to improve the
compile speed of Clang.

The PGI compiler provides higher perfor-
mance than LLVM-based compilers in the first
text, where the code has vectorization patterns,
but is not optimized. While both G++ and Intel
C++ compiler provide even higher performance,
the behavior should be seen in light of the fact that
PGC++ is incapable of issuing AVX-512 for the
time being and is therefore using only half the vec-
tor width of the other compilers in this test.

The GNU and Intel compilers stand out in the
second, bandwidth-bound test, where the data par-
allelism of a stencil operator is obscured by the ab-
straction techniques of the C++ language. These
two are the only compilers that manage to suc-
cessfully vectorize the computational kernel used
in this test. The other compilers issue scalar in-

structions and therefore provide low performance.
The AMD and Intel compilers stand out in

the third, compute-bound test, where the code is
highly tuned for the SKL architecture. Both com-
pilers manage to minimize reading and writing to
memory. The other compilers use larger numbers
of memory reads and writes, leading to lower per-
formance. The PGI compiler, due to its current
limitations, is issuing AVX2 instructions with half
the vector width of the AVX-512 instructions is-
sued by the other compilers.

Figure 2 shows the performance results with
multi-threading. The plotted quantity is a rela-
tive performance measured with the optimal thread
count for each compiler and kernel. Again, perfor-
mance normalization is chosen so that the perfor-
mance of G++ is equal to 1, and the normalization
constant is specific to each kernel.

LU Decomposition Jacobi Solver SF Computation
0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e
Pe

rf
or

m
an

ce
(G

++
=

1)

1.13

0.83

1.06

0.82

1.00

1.30

0.41

0.57

0.78

0.56

1.00

1.38

0.61

1.45

0.61

1.00

1.49

PGC++ Clang AOCC Zapcc G++ Intel C++

Figure 2: Relative performance of each kernel as compiled by the different compilers. (multi-threaded, higher is better).

The relative performance of the compilers does
not change much when running the structure func-
tion workloads with multiple threads. However,
in the case of the Jacobi solver and LU decom-
position kernels, the AMD compiler shows larger
improvements relative to the other compilers. We
believe that this is due to the AMD optimized
OpenMP implementation used by AOCC.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 7

https://colfaxresearch.com/

3.2 Compilation Speed 4 SUMMARY

3.2. COMPILATION SPEED

Figure 3 shows the relative compilation time of
the TMV library when compiled by the different
compilers. The plotted values are the reciprocals
of the compilation time, normalized so that G++
performance is equal to 1.

tmv Compile
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

R
el

at
iv

e
C

om
pi

le
Sp

ee
d

(G
++

=
1)

0.31

0.94

0.69

1.66

1.00

0.60

PGC++
Clang

AOCC
Zapcc

G++
Intel C++

Figure 3: Compilation speed measured by compiling the
TMV library. (multi-threaded, higher is better).

The Zapcc compiler is the fastest compiler in
this test, handily beating the nearest competitor by
a factor of more than 1.6×. The PGI compiler is
the slowest compiler in the test. According to the
Portland Group website, they are working on an
LLVM-based update to the PGI compiler, which
may with the compile time.

4. SUMMARY

Different compilers produce executables with
differing levels of performance even when given
the same OpenMP standard-based source code to
compile. The compile speed can also vary from
compiler to compiler. We see a difference of

1. 1.8× in performance between the best
(Intel R⃝ compiler) and worst compiler (Za-

pcc compiler) on our LU decomposition ker-
nel (non-optimized, complex vectorization
pattern).

2. 3.5× in performance between the best
(Intel R⃝ compiler) and worst compiler (PGI
compiler) on our Jacobi solver kernel
(bandwidth-limited stencil obscured by ab-
straction techniques).

3. 2.5× in performance between the best
(Intel R⃝ compiler) and worst compiler
(LLVM clang compiler) on our Structure
Function kernel (highly-tuned code for
SKL).

4. 5.4× in compile time between the best (Za-
pcc compiler) and worst compiler (PGI com-
piler) on our TMV compilation test (large
templated library).

In the case of the computational kernels, the per-
formance difference can be attributed to how each
compiler implements the same sequence of arith-
metic instructions. Different implementations re-
quire differing numbers of registers, memory oper-
ations, etc. that make some implementations faster
and others slower. We discuss these details in the
Appendices.

Modern CPUs are highly pipelined, super-
scalar machines that execute instructions out-of-
order, use speculative execution, prefetching, and
other performance-enhancing techniques. This
makes it difficult to predict exactly how well a se-
quence of instructions will execute on any given
microarchitecture. Hardware engineers use highly
sophisticated simulations to overcome these prob-
lems when designing new CPUs [13]. Compil-
ers have to use heuristics to decide how to target
specific CPU microarchitectures and thus have to
be tuned to produce good code. Furthermore, the
tuning is workload-specific, i.e., a generally sub-
par compiler may produce the best code for cer-
tain workloads, even though it generally produces
poorer code on average.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 8

https://colfaxresearch.com/

REFERENCES REFERENCES

The tests in this work and our own experi-
ence suggest that the Intel R⃝ compiler generally
produces good code for a wide range of prob-
lems. Our computational kernels suggest that the
Intel C++ compiler is generally able to provide the
best performance because it has a better picture of
the target machine architecture, i.e., it knows how
to exploit all available registers, minimize mem-
ory operations, etc. Intel C++ compiler also has
good support for the newer C++ and OpenMP stan-
dards [14]. In our tests, Intel C++ compiler com-
piles complex code approximately 40% slower
than G++. The Intel R⃝ compiler has detailed doc-
umentation, code samples, and is able to output
helpful optimization reports (see, e.g., [3]) that can
be used to determine how to further improve ap-
plication performance. Lastly, the Intel R⃝ compiler
is a part of a suite of libraries and tools, such as
Intel R⃝ MKL, Intel R⃝ Advisor, Intel R⃝ VTune Per-
formance Analyzer, etc., which are very helpful for
high-performance application development.

The GNU compiler also does very well in our
tests. G++ produces the second fastest code in
three out of six cases and is amongst the fastest
compilers in terms of compile time. From a
standards compliance standpoint, G++ has almost
complete support for the new C++17 standard [14].
GNU documentation is generally good, although
it can be somewhat difficult to find details about
obscure features. GNU optimization reports are
exceedingly verbose making it very tedious to de-
termine simple issues, such as if a given loop vec-
torized. Lastly, G++ has the added advantage of
being open-source and freely available.

The LLVM-based Clang and Zapcc compilers
produce executables with average performance but
feature amongst the fastest compilers in the suite.
The Zapcc is the fastest compiler in our compile
test. LLVM and Clang have relatively good doc-
umentation, although it can be somewhat unclear
as to which version of the product the documenta-
tion refers to. The Zapcc compiler relies entirely
on the standard LLVM documentation. As LLVM

matures, we expect the performance from all the
LLVM-based compilers to keep increasing.

AMD’s AOCC compiler manages to tie with
the Intel R⃝ compiler in the compute-bound test
and puts in a good showing in the Jacobi solver
test. This is impressive given that AOCC is rel-
atively new and targets an entirely different mi-
croarchitecture. At the moment, this compiler does
not have much documentation, instead relying on
LLVM documentation. We hope that AMD contin-
ues to improve AOCC and add high performance
libraries for scientific computing as AOCC ma-
tures.

While all the LLVM-based compilers gener-
ate optimization reports, the reports do not contain
enough helpful information about why the com-
piler chose to make certain decisions. This makes
it unduly difficult to determine the best course of
action to take to improve performance.

The PGI compiler’s strongest suit is its sup-
port for latest OpenACC 2.5 standard, which pri-
marily applies to GPGPU programming. At the
same time, PGC++ is capable of generating good
x86 code as seen in the LU decomposition test.
It lags behind its peers when it comes to support
for new ISA extensions (AVX-512) and the latest
OpenMP standards. Support for these features is
in the works. The PGI compiler has good docu-
mentation and emits helpful and clear optimization
reports. Like the Intel R⃝ compiler, PGC++ comes
with a suite of performance monitoring and opti-
mization tools that add value for the developer.

REFERENCES

[1] Vishal Kasliwal and Andrey Vladimirov. A
Performance-Based Comparison of C/C++ Compilers,
2017 (landing page for this paper).
http://colfaxresearch.com/compiler-comparison.

[2] Colfax Compiler Comparison – benchmark code.
https://github.com/ColfaxResearch/
CompilerComparisonCode.

[3] Alaa Eltablawy and Andrey Vladimirov. Capabilities
of Intel R⃝ AVX-512 in Intel R⃝ Xeon R⃝ Scalable Proces-

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 9

http://colfaxresearch.com/compiler-comparison
https://github.com/ColfaxResearch/CompilerComparisonCode
https://github.com/ColfaxResearch/CompilerComparisonCode
https://colfaxresearch.com/

REFERENCES REFERENCES

sors (Skylake), 2017.
http://colfaxresearch.com/skl-avx512.

[4] OpenMP Specifications.
http://openmp.org/.

[5] OpenACC Specifications.
http://openacc.org/.

[6] Wikipedia, the free encyclopedia. List of compilers.
https://en.wikipedia.org/wiki/List of compilers#C.2B.
2B compilers.

[7] llvm.org. Polly: LLVM Framework for High-Level
Loop and Data-Locality Optimizations.
https://polly.llvm.org/.

[8] llvm.org. LLD - The LLVM Linker.
https://lld.llvm.org/.

[9] llvm.org. libomp - The LLVM OpenMP Library.
https://openmp.llvm.org/.

[10] Mike Jarvis. tmv - A fast, intuitive linear algebra li-
brary for C++.
https://github.com/rmjarvis/tmv.

[11] Intel R⃝ Xeon R⃝ Scalable Processors Product Specifica-
tions, 2017.
https://ark.intel.com/products/series/125191/Intel-
Xeon-Scalable-Processors.

[12] Syddansk Universitet. Intel and AT&T Syntax.
http://www.imada.sdu.dk/Courses/DM18/Litteratur/
IntelnATT.htm.

[13] John Paul Shen and Mikko H. Lipasti. Modern
Processor Design: Fundamentals of Superscalar
Processors. Waveland Press, Inc., 1st edition, July
2013.

[14] www.cppreference.com. C++ compiler support.
http://en.cppreference.com/w/cpp/compiler support.

[15] William H. Press, Saul A. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. Numerical Recipes 3rd
Edition: The Art of Scientific Computing. Cambridge
University Press, 3rd edition, September 2007.

[16] Gilbert Strang. Computational Science and Engineering.
Wellesley-Cambridge Press, 1st edition, November
2007.

[17] Yousef Saad. Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, 2nd
edition, April 2003.

[18] Andrey Vladimirov. Fine-Tuning Vectorization and
Memory Traffic on Intel Xeon Phi Coprocessors: LU
Decomposition of Small Matrices.
https://colfaxresearch.com/?p=12.

[19] Intel 64 and IA-32 Architectures Optimization Refer-
ence Manual.
https://www.intel.com/content/www/us/en/
architecture-and-technology/64-ia-32-architectures-
optimization-manual.html.

[20] Peter J. Brockwell and Richard A. Davis.
Introduction to Time Series and Forecasting. Springer,
3rd edition, August 2016.

[21] V. P. Kasliwal M. S. Vogeley and G. T. Richards.
Are the variability properties of the Kepler AGN
light curves consistent with a damped random walk?
Monthly Notices of the Ryal Astronomical Society,
451:4328–4345, 2015.
https://academic.oup.com/mnras/article-abstract/451/
4/4328/1116552/Are-the-variability-properties-of-
the-Kepler-AGN?redirectedFrom=fulltext.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 10

http://colfaxresearch.com/skl-avx512
http://openmp.org/
http://openacc.org/
https://en.wikipedia.org/wiki/List_of_compilers#C.2B.2B_compilers
https://en.wikipedia.org/wiki/List_of_compilers#C.2B.2B_compilers
https://polly.llvm.org/
https://lld.llvm.org/
https://openmp.llvm.org/
https://github.com/rmjarvis/tmv
https://ark.intel.com/products/series/125191/Intel-Xeon-Scalable-Processors
https://ark.intel.com/products/series/125191/Intel-Xeon-Scalable-Processors
http://www.imada.sdu.dk/Courses/DM18/Litteratur/IntelnATT.htm
http://www.imada.sdu.dk/Courses/DM18/Litteratur/IntelnATT.htm
http://en.cppreference.com/w/cpp/compiler_support
https://colfaxresearch.com/?p=12
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://academic.oup.com/mnras/article-abstract/451/4/4328/1116552/Are-the-variability-properties-of-the-Kepler-AGN?redirectedFrom=fulltext
https://academic.oup.com/mnras/article-abstract/451/4/4328/1116552/Are-the-variability-properties-of-the-Kepler-AGN?redirectedFrom=fulltext
https://academic.oup.com/mnras/article-abstract/451/4/4328/1116552/Are-the-variability-properties-of-the-Kepler-AGN?redirectedFrom=fulltext
https://colfaxresearch.com/

A LU DECOMPOSITION

Appendices
A. LU DECOMPOSITION

A.1. WHAT IS PIVOTLESS LU DECOMPOSITION AND HOW DOES IT WORK?

LU decomposition is a fundamental matrix decomposition method that finds application in a wide
range of numerical problems when solving linear systems of equations [15, 16]. The goal of LU decom-
position is to represent an arbitrary square, non-degenerate matrix A as the product of a lower triangular
matrix L with an upper triangular matrix U. The usual LU decomposition algorithms feature pivoting to
avoid numerical instabilities. Pivotless LU decomposition is used when the matrix is known to be diago-
nally dominant and for solving partial differential equations (PDEs) ? for example, for the computation of
preconditioners, where numerical accuracy is a secondary requirement to speed.

We use the pivotless Dolittle algorithm to implement LU decomposition. The pivotless Dolittle algo-
rithm chooses to make L unit-triangular. For an input n×n matrix A, the Dolittle method performs n− 1
iterations to compute L and U. We use the notation A(b) to denote the matrix A after the bth iteration.
On iteration b, the bth-row of A(b−1) is multiplied by a factor and added to all the rows below it. The
multiplication factor is chosen to make all the elements in column b starting from row b+ 1 equal to zero
in A(b). The multiplication factor is recorded as the i, jth entry of L while A slowly transforms into U.

Start with
A(0) = A, (2)

For step b ranging from 0 to n− 1, compute

L(b) =

1 i = j

−li,b i > j and j = b

0 otherwise
(3)

with

−li,b = −
A

(b)
i,b

A
(b)
b,b

. (4)

Use L(b) to compute A(b+1) using
A(b+1) = L(b)A(b). (5)

After n− 1 steps, U = A(n−1) and L = L(n−1).
The Dolittle algorithm can be implemented in-place because L is unit-triangular, i.e., all of its diagonal

elements are equal to 1. As a consequence, there is no need to store the diagonal entries of L. Rather,
A is overwritten as the iterations proceed, leaving the non-diagonal portions of L in the lower triangular
section of A and U on the upper triangle.

Listing 1 shows our implementation of the pivotless Dolittle algorithm for LU decomposition.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 11

https://colfaxresearch.com/

A.2 Intel C++ compiler A LU DECOMPOSITION

1 void LU_decomp_kij_opt(const int n, const int lda, double * A,
2 double * scratch) {
3

4 for (int k = 0; k < n; ++k) {
5 const double recAkk = 1.0/A[k*lda + k];
6 #pragma omp parallel for
7 for (int i = k + 1; i < n; ++i) {
8 A[i*lda + k] = A[i*lda + k]*recAkk;
9 #ifdef __PGI

10 #pragma loop ivdep
11 #else
12 #pragma omp simd
13 #endif
14 for (int j = k + 1; j < n; ++j)
15 A[i*lda + j] -= A[i*lda + k]*A[k*lda + j];
16 }
17 }
18 }

Listing 1: LU Decomposition implementation.

This implementation of the Dolittle ordering is known as the KIJ-ordering due to the sequence in
which the three for-loops are nested [17]. The memory access pattern of the KIJ-ordering is optimal as
compared to other possible orderings. The KIJ-ordering can be readily vectorized and parallelized across
the J and I loops, respectively.

It is possible to further optimize the KIJ ordering by regularizing the vectorization pattern and tiling
the loops to increase data reuse [18]. We do not implement these optimizations in order to see how the
compilers behave with unoptimized code.

LU decomposition requires (2/3)n3 operations where n is the size of the matrix. We test with matrices
of size n = 256 when testing for single threaded performance. For multithreaded performance, we increase
the problem size to n = 1024.

We discuss the assembly code generated by each compiler to gain further insight.

A.2. INTEL C++ COMPILER

We compile the code using the compile line in Listing 2

icpc -o critical.o -c critical.cpp
-D__ALGORITHM__=KIJ_OPT -D__AUTO__
-O3 -std=c++14
-qopenmp -qopenmp-simd
-qopt-report=5
-qopt-assume-safe-padding
-xCORE-AVX512
-qopt-zmm-usage=high

Listing 2: Compile line for compiling the LU Decomposition critical.cpp source file with Intel C++ compiler.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 12

https://colfaxresearch.com/

A.3 G++ A LU DECOMPOSITION

Listing 3 shows the assembly instructions generated by Intel C++ compiler for the inner J-loop using
the Intel syntax. All the computation in the inner loop is performed by a single AVX-512F FMA instruc-
tion. The other instructions are AVX-512 memory access instructions along with a handful of scalar x86
instructions for managing the loop. 4 out of 32 zmm registers are used in the loop.

2f0: vmovups zmm3,[rdi+rsi*8+0x8]
2fb: vbroadcastsd zmm4,[rcx+r8*8]
302: vfnmadd213pd zmm4,zmm3,[r11+rsi*8+0x8]
30d: vmovupd [r11+rsi*8+0x8],zmm4
318: vmovups zmm5,[rdi+rsi*8+0x48]
323: vbroadcastsd zmm6,[rcx+r8*8]
32a: vfnmadd213pd zmm6,zmm5,[r11+rsi*8+0x48]
335: vmovupd [r11+rsi*8+0x48],zmm6
340: add rsi,0x10
344: cmp rsi,r13
347: jb 2f0

Listing 3: Assembly of critical J-loop produced by the Intel compiler.

On our test system (see Section 2.6), this sequence of instructions yields 14.62 GFLOP/s in single
threaded mode and 118.06 GFLOP/s when running with 15 threads for a 8.1× speedup (0.54×/thread).

Intel C++ compiler unrolls the J-loop by a factor of 2×. Each instruction performs a memory access,
including the two FMA instructions on lines 302 and 32a.

A possible inefficiency is the duplicated broadcast instruction on lines 2fb and 323. The registers
used in the broadcast are also the destination registers in the following FMA operations making it impos-
sible to simply drop one usage.

Interchanging the registers used in each FMA and subsequent store operation, i.e., swapping zmm3
with zmm4 in lines 302 and 30d and swapping zmm5 with zmm6 in lines 323 and 32a makes it possible
to eliminate the use of either zmm4 or zmm6. It is also possible to hoist the remaining broadcast operation
outside the loop. We speculate that these transformations can yield further performance improvements.

A.3. G++

We compile the code using the compile line in Listing 4

g++ -o critical.o -c critical.cpp
-D__ALGORITHM__=KIJ_OPT -D__AUTO__
-O3 -std=c++14 -m64 -ffast-math
-fassociative-math -ftree-vectorize
-ftree-vectorizer-verbose=0
-fopenmp -fopenmp-simd
-fopt-info-all=luDecomp.o.gnurpt
-march=skylake-avx512

Listing 4: Compile line for compiling the LU Decomposition critical.cpp source file with G++.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 13

https://colfaxresearch.com/

A.4 PGC++ A LU DECOMPOSITION

Listing 5 shows the assembly instructions generated by G++ for the time consuming inner col-loop
using the Intel syntax. 2 out of the 32 available zmm registers are used in the loop.

2f0: vmovupd zmm1,[r10+rax*1]
2f7: vfnmadd213pd zmm1,zmm2,[rsi+rax*1]
2fe: add edx,0x1
301: vmovapd [rsi+rax*1],zmm1
308: add rax,0x40
30c: cmp edx,r11d
30f: jb 2f0

Listing 5: Assembly of critical j-loop produced by the GNU compiler.

On our test system, this sequence of instructions yields 14.29 GFLOP/s in single threaded mode and
90.94 GFLOP/s when running with 12 threads for a 6.4× speedup (0.53×/thread).

Unlike Intel C++ compiler, G++ does not unroll the loop. Each loop iteration performs a single pass
of the loop-update operation. Even though the GNU compiler compiled code performs one less memory
operation per loop-update, it runs slightly slower than the code generated by the Intel compiler. We
speculate that this may be attributable to the overuse of scalar variables used to control the loop and index
memory accesses.

A.4. PGC++

We compile the code using the compile line in Listing 6

pgc++ -o critical.o -c critical.cpp
-D__ALGORITHM__=KIJ_OPT -D__AUTO__
-O3 -tp=haswell -fast -O4 -fma
-Msmart -Mfma -Mcache_align
-Mipa=all -Mmovnt -mp -Mquad
-Msafeptr=all -Minfo=all
-Mnoprefetch

Listing 6: Compile line for compiling the LU Decomposition critical.cpp source file with PGC++.

The PGI compiler generates three versions of the J-loop that use slight variations to optimally execute
the loop body. All three variations unroll the loop by a factor of 2×. The first variation uses just 3 memory
instructions per evaluation of the loop-body, retaining the value of A[i*lda + k] in the zmm0 register
instead of broadcasting it on every loop iteration the way the Intel C++ compiler generated code does. The
zmm0 register is re-used in the second unrolled loop iteration, minimizing the number of memory accesses
made in the loop body. The second variation eliminates one register, preferring instead to perform the
required memory read operation as a part of the FMA instruction. The third variation is very similar to the
first variation but uses streaming stores to reduce pressure on the caches.

Listing 7 shows the assembly instructions generated by PGC++ for the three variations of the time
consuming inner col-loop using the Intel syntax. 2 out of the 16 available ymm registers are used.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 14

https://colfaxresearch.com/

A.4 PGC++ A LU DECOMPOSITION

1a8: vmovupd ymm1,[rsi+rcx*1]
1ad: vmovupd ymm2,[rdx+rcx*1]
1b2: sub eax,0x8
1b5: vfnmadd231pd ymm2,ymm1,ymm0
1ba: vmovupd [rdx+rcx*1],ymm2
1bf: vmovupd ymm2,[rcx+rdx*1+0x20]
1c5: vmovupd ymm1,[rcx+rsi*1+0x20]
1cb: vfnmadd231pd ymm2,ymm1,ymm0
1d0: vmovupd [rcx+rdx*1+0x20],ymm2
1d6: add rcx,0x40
1da: test eax,eax
1dc: jg 1a8

2e0: vmovupd ymm1,[rsi+rdx*1]
2e5: add ecx,0x8
2e8: sub eax,0x8
2eb: vfnmadd231pd ymm1,ymm0,[r8+rdx*1]
2f1: vmovupd [rsi+rdx*1],ymm1
2f6: vmovupd ymm2,[rdx+rsi*1+0x20]
2fc: vfnmadd231pd ymm2,ymm0,[rdx+r8*1+0x20]
303: vmovupd [rdx+rsi*1+0x20],ymm2
309: add rdx,0x40
30d: test eax,eax
30f: jg 2e0

400: vmovupd ymm1,[r8+rdx*1]
406: vmovupd ymm2,[rsi+rdx*1]
40b: add ecx,0x8
40e: vfnmadd231pd ymm2,ymm1,ymm0
413: sub eax,0x8
416: vmovntpd [rsi+rdx*1],ymm2
41b: vmovupd ymm2,[rdx+rsi*1+0x20]
421: vmovupd ymm1,[rdx+r8*1+0x20]
428: vfnmadd231pd ymm2,ymm1,ymm0
42d: vmovntpd [rdx+rsi*1+0x20],ymm2
433: add rdx,0x40
437: test eax,eax
439: jg 400

Listing 7: Assembly of critical j-loop produced by the PGI compiler.

On our test system, this sequence of instructions yields 11.01 GFLOP/s in single threaded mode and
102.53 GFLOP/s when running with 24 threads for a 9.3× speedup (0.39×/thread).

PGC++ issues AVX2 instructions that have half the vector width of the AVX-512 instructions issued
by the other compilers. Nevertheless, it manages to outperform several of the other compilers in this test.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 15

https://colfaxresearch.com/

A.5 AOCC A LU DECOMPOSITION

A.5. AOCC

We compile the code using the compile line in Listing 8

clang++ -o critical.o -c critical.cpp
-D__ALGORITHM__=KIJ_OPT -D__AUTO__
-O3 -std=c++14 -m64
-ffast-math -fassociative-math -mfma -ffp-contract=fast
-fopenmp=libomp
-Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-Rpass-analysis=loop-vectorize
-fsave-optimization-record
-gline-tables-only
-gcolumn-info
-march=skylake-avx512

Listing 8: Compile line for compiling the LU Decomposition critical.cpp source file with AOCC.

Listing 9 shows the assembly generated by AOCC for the inner loop using the Intel syntax. 5 out of
the 32 available zmm registers are used.

370: vbroadcastsd zmm0,[r9]
376: vmovupd zmm1,[rdi-0xc0]
37d: vmovupd zmm2,[rdi-0x80]
384: vmovupd zmm3,[rdi-0x40]
38b: vmovupd zmm4,[rdi]
391: vfnmadd213pd zmm1,zmm0,[rbx-0xc0]
398: vfnmadd213pd zmm2,zmm0,[rbx-0x80]
39f: vfnmadd213pd zmm3,zmm0,[rbx-0x40]
3a6: vfnmadd213pd zmm4,zmm0,[rbx]
3ac: vmovupd [rbx-0xc0],zmm1
3b3: vmovupd [rbx-0x80],zmm2
3ba: vmovupd [rbx-0x40],zmm3
3c1: vmovupd [rbx],zmm4
3c7: add rbx,0x100
3ce: add rdi,0x100
3d5: add rax,0xffffffffffffffe0
3d9: jne 370

Listing 9: Assembly of critical j-loop produced by the AOCC compiler.

On our test system, this sequence of instructions yields 9.54 GFLOP/s in single threaded mode and
96.40 GFLOP/s when running with 15 threads for a 10.1× speedup (0.67×/thread).

AOCC unrolls the J-loop by a 4×, producing a pattern of instructions very similar to those produced
by PGC++. A notable difference is the broadcast instruction at the top of the loop that loads the value of
A[i*lda +k] into the zmm0 register.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 16

https://colfaxresearch.com/

A.6 Clang A LU DECOMPOSITION

A.6. CLANG

We compile the code using the compile line in Listing 10

clang++ -o critical.o -c critical.cpp
-D__ALGORITHM__=KIJ_OPT -D__AUTO__
-O3 -std=c++14 -m64 -ffast-math -fassociative-math -mfma -ffp-contract=fast
-fopenmp=libomp
-Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-Rpass-analysis=loop-vectorize
-fsave-optimization-record
-gline-tables-only
-gcolumn-info
-mllvm -polly
-mllvm -polly-vectorizer=stripmine
-march=skylake-avx512

Listing 10: Compile line for compiling the LU Decomposition critical.cpp source file with Clang.

Listing 11 shows the assembly instructions generated by Clang for the time consuming inner col-loop
using the Intel syntax. Only 5 out of the 32 available zmm registers are used.

3c0: vmovupd zmm1,[rdi-0xc0]
3c7: vmovupd zmm2,[rdi-0x80]
3ce: vmovupd zmm3,[rdi-0x40]
3d5: vmovupd zmm4,[rdi]
3db: vfnmadd213pd zmm1,zmm0,[rbp-0xc0]
3e2: vfnmadd213pd zmm2,zmm0,[rbp-0x80]
3e9: vfnmadd213pd zmm3,zmm0,[rbp-0x40]
3f0: vfnmadd213pd zmm4,zmm0,[rbp+0x0]
3f7: vmovupd [rbp-0xc0],zmm1
3fe: vmovupd [rbp-0x80],zmm2
405: vmovupd [rbp-0x40],zmm3
40c: vmovupd [rbp+0x0],zmm4
413: add rbp,0x100
41a: add rdi,0x100
421: add rbx,0xffffffffffffffe0
425: jne 3c0

Listing 11: Assembly of critical j-loop produced by the LLVM compiler.

On our test system, this sequence of instructions yields 8.23 GFLOP/s in single threaded mode and
75.27 GFLOP/s when running with 15 threads for a 9.1× speedup (0.61×/thread).

The Clang produced instructions are very similar to those generated by AOCC. The only notable
difference is that the Clang hoists the broadcast instruction outside the J-loop as compared to the AOCC-
produced code. This change seems to impact the performance by a small amount.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 17

https://colfaxresearch.com/

A.7 Zapcc A LU DECOMPOSITION

A.7. ZAPCC

We compile the code using the compile line in Listing 12

zapcc++ -o critical.o -c critical.cpp
-D__ALGORITHM__=KIJ_OPT -D__AUTO__
-O3 -std=c++14 -m64 -ffast-math
-fassociative-math -mfma
-ffp-contract=fast -fopenmp=libomp
-Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-Rpass-analysis=loop-vectorize
-fsave-optimization-record
-gline-tables-only
-gcolumn-info
-march=skylake-avx512

Listing 12: Compile line for compiling the LU Decomposition critical.cpp source file with Zapcc.

Zapcc produces the same instructions as Clang. Listing 13 shows the assembly instructions generated
by Zapcc for the J-loop using the Intel syntax. 5 out of the 32 available zmm registers are used.

3c0: vmovupd zmm1,[rdi-0xc0]
3c7: vmovupd zmm2,[rdi-0x80]
3ce: vmovupd zmm3,[rdi-0x40]
3d5: vmovupd zmm4,[rdi]
3db: vfnmadd213pd zmm1,zmm0,[rax-0xc0]
3e2: vfnmadd213pd zmm2,zmm0,[rax-0x80]
3e9: vfnmadd213pd zmm3,zmm0,[rax-0x40]
3f0: vfnmadd213pd zmm4,zmm0,[rax]
3f6: vmovupd [rax-0xc0],zmm1
3fd: vmovupd [rax-0x80],zmm2
404: vmovupd [rax-0x40],zmm3
40b: vmovupd [rax],zmm4
411: add rax,0x100
417: add rdi,0x100
41e: add rbx,0xffffffffffffffe0
422: jne 3c0

Listing 13: Assembly of critical j-loop produced by the ZAPCC compiler.

On our test system, this sequence of instructions yields 8.21 GFLOP/s in single threaded mode and
74.71 GFLOP/s when running with 15 threads for a 9.1× speedup (0.61×/thread).

A.8. TAKEAWAY

Our first computational kernel has a very simple innermost loop. Each loop iteration can be performed
in a single floating point FMA instruction. Even with such a simple loop structure, we see notable differ-
ences between the instructions generated by each compiler. The performance achieved by code compiled
with the different compilers varies by a factor of 1.8× (Intel C++ compiler v/s Clang/Zapcc).

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 18

https://colfaxresearch.com/

B JACOBI SOLVER

B. JACOBI SOLVER

B.1. WHAT DOES A JACOBI SOLVER SOLVE?

Jacobi solvers are one of the classical methods used to solve boundary value problems (BVP) in the
field of numerical partial differential equations (PDE). The Jacobi method for solving BVPs entails split-
ting the sparse matrix that arises from approximating the PDE using finite differences and iterating until
the solution converges. Although the Jacobi method has been superseded by faster modern methods for
solving PDEs, it is still important for understanding modern methods [15].

We use the Jacobi method to solve Poisson’s equation for electrostatics

△ϕ = −ρ

ϵ
, (6)

where △ is the Laplacian, ϕ is the electric potential, ρ is the electric charge density, and ϵ is the perme-
ability. The solution can then be computed by iteratively updating the value of ϕi,j using

ϕ
(n+1)
i,j =

δ2y(ϕ
(n)
i+1,j + ϕ

(n)
i−1,j) + δ2x(ϕ

(n)
i,j+1 + ϕ

(n)
i,j−1)− δ2yδ

2
xρi,j

2(δ2y + δ2x)
, (7)

where ϕ
(n)
i,j is the value of ϕ at the i, j-th grid point on the nth iteration and δ is the grid spacing assuming

equal spacing in the x- and y-directions.
We structure our code using methods available in C++ (object oriented programming and template

programming) to test the ability of the compilers to handle more complicated code than that shown in our
structure function example in the previous section. Our code uses two objects to help us write the Jacobi
solver in a readable manner.

Grid objects hold a 2-dimensional grid of values using row-major storage. Each row is padded at the
end so that the start of the succeeding row lies on a 64-byte boundary. These implementation details are
abstracted for users of the Grid class by supplying an accessor method that makes Grid objects functors.
The accessor method takes the i,j-indices of a desired memory location, maps the indices to the correct
linear storage index, and provides read-write access to the value stored at that location. This object is
defined as a template object where the template parameter controls the underlying datatype of the grid.
We explicitly instantiate this template for double precision grid values.

Jacobi objects hold three Grid objects that are used to model the source term, solution domain,
and a scratch copy of the solution domain. Jacobi objects are also template objects with the template
type controlling the datatype of the individual Grid objects stored by the Jacobi object. We explicitly
instantiate the Jacobi template for double precision grid values.

Jacobi objects supply a solve method that iteratively solves Equation (7) until the solution stops
changing above a supplied threshold value. Listing 14 shows our implementation of the solve method
of the Jacobi class –

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 19

https://colfaxresearch.com/

B.1 What does a Jacobi Solver solve? B JACOBI SOLVER

1 template <typename GridT>
2 int Jacobi<GridT>::solve_opt(GridT tol) {
3 GridT newVal, maxChange;
4 int iter = 0;
5 while (maxChange > tol) {
6 maxChange = static_cast<GridT>(0.0);
7 iter += 1;
8 // Perform one iteration
9 int row, col;

10 #pragma omp parallel for private(newVal, col) reduction(max:maxChange)
11 for (row = 1; row <= Ny; ++row) {
12 #ifndef __PGI
13 #pragma omp simd private(newVal) reduction(max:maxChange) linear(col:1)
14 #else
15 #pragma loop ivdep
16 #endif
17 for (col = 1; col <= Nx; ++col) {
18 newVal = (DySq*((*SD)(row + 1, col)
19 + (*SD)(row - 1, col))
20 + DxSq*((*SD)(row, col + 1)
21 + (*SD)(row, col - 1))
22 - DySqDxSq*(*S)(row, col))*OneOverTwoDySqPlusDxSq;
23 maxChange = (std::fabs(newVal - (*D)(row, col)) > maxChange)
24 ? std::fabs(newVal - (*D)(row, col)) : maxChange;
25 (*D)(row, col) = newVal;
26 }
27 }
28 // Swap the ScratchDomain storage with the storage of the Domain.
29 (*D).swapStorage((*SD));
30 } // end while
31 // Swap the ScratchDomain storage with the storage of the Domain.
32 (*D).swapStorage((*SD));
33 return iter;
34 }

Listing 14: Jacobi Solver implementation.

The workload in this function consists of a while-loop that performs iterations of Equation (7) along
with two nested for-loops that compute the domain update.

The domain update is performed in three steps. At the beginning of the update, we set the variable
maxChange to 0. For each location in the domain, we compute the new value of the location in the
variable newVal using the values in the scratch domain. We update maxChange with the difference of
newVal and the existing value of the domain location if said difference is greater than maxChange, i.e.,
we use maxChange to track the largest update to the domain. Finally, we replace the existing value of
the domain location with newVal and move to the next location. At the end of the domain update, we
switch the domain with the scratch domain, i.e., we perform the updates out-of-place. Our exit condition
for the while-loop tests if the largest change in the solution domain maxChange has dropped below the
user input tolerance. The function returns the number of while-loop iterations performed.

Three factors are crucial for achieving good performance in this test. We call the accessor method

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 20

https://colfaxresearch.com/

B.2 Intel C++ compiler B JACOBI SOLVER

of the Grid objects multiple times from inside the innermost col-loop. Therefore, we must creates
a version of the accessor method that can process multiple arguments using SIMD instructions from
a single invocation from a SIMD loop. We do this by declaring the method with the OpenMP direc-
tive #pragma omp declare simd. This directive is not available in versions of OpenMP before
OpenMP 4.0.

We wish to vectorize the col-loop to achieve good performance. When running concurrently, each
iteration of this loop must retain a private copy of newVal. We also require a reduction over the value
of maxChange. We can achieve both behaviors using the private and reduction clauses to the
#pragma omp simd directive. Both clauses become available along with the #pragma omp simd
directive in OpenMP 4.0.

Parallelizing the calculation over the row-loop requires similar reduction and private clauses
to be applied to a #pragma omp parallel for directive that acts on the row-loop. Both clauses
and the directive itself are available in OpenMP versions older than 4.0.

We expect the non-OpenMP 4.0 compliant PGC++ 17.4 Community Edition compiler to produce
parallelized but un-vectorized code in the absence of PGI-specific directives. OpenMP 4.0 SIMD support
was introduced in the PGI compiler starting with version 17.7. We perform our tests with the Community
Edition that lacks OpenMP 4.0 SIMD support.

Each iteration of the while-loop performs a total of 9n2 floating point operations where n is the num-
ber of rows or columns in the solution domain. The number of while-loop iterations Niter performed to
reach convergence is returned by the solve method. Hence the total number of floating point operations
performed is 9n2Niter.

We discuss the assembly code generated by each compiler to gain further insight.

B.2. INTEL C++ COMPILER

We compile the code using the compile line in Listing 15

icpc -o critical.o -c critical.cpp
-D__ALGORITHM__=SOLVE_OPT -D__AUTO__
-O3 -Wall -std=c++14 -ipo
-qopenmp -qopenmp-simd
-qopt-report=5
-qopt-assume-safe-padding
-xCORE-AVX512 -qopt-zmm-usage=high

icpc -o jacobiSolve grid.o critical.o jacobi.o jacobiSolve.o
-ipo -liomp5 -lm

Listing 15: Compile and link lines for compiling the Jacobi solver critical.cpp source file with Intel C++ compiler.

Listing 16 shows the assembly instructions generated by Intel C++ compiler for the time consuming
inner col-loop using the Intel syntax. The assembly generated for the inner loop consists of a mix of
primarily AVX-512F instructions along with some vector AX2 instructions for computing a mask, and a
handful of scalar x86 instructions for managing the loop. 14 out of 32 zmm registers and 2 out of 16 ymm
registers are used in the loop.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 21

https://colfaxresearch.com/

B.3 G++ B JACOBI SOLVER

402cd5: vpcmpgtd k1,ymm11,ymm12
402cdb: vpaddd ymm12,ymm12,ymm1
402cdf: vmovupd zmm16{k1}{z},[rdx+rcx*8+0x10]
402cea: vmovupd zmm17{k1}{z},[rdx+rcx*8]
402cf1: vmovupd zmm14{k1}{z},[r15+rcx*8+0x8]
402cfc: vmovupd zmm15{k1}{z},[r10+rcx*8+0x8]
402d07: vmovupd zmm20{k1}{z},[r14+rcx*8+0x8]
402d12: vmovupd zmm22{k1}{z},[rdi+rcx*8+0x8]
402d1d: vaddpd zmm18,zmm16,zmm17
402d23: vaddpd zmm19,zmm14,zmm15
402d29: vmulpd zmm21,zmm8,zmm18
402d2f: vfmadd231pd zmm21,zmm19,zmm9
402d35: vfnmadd231pd zmm21,zmm20,zmm7
402d3b: vmulpd zmm24,zmm10,zmm21
402d41: vfmsub231pd zmm22,zmm21,zmm10
402d47: vmovupd [rdi+rcx*8+0x8]{k1},zmm24
402d52: add rcx,0x8
402d56: vpandq zmm23,zmm6,zmm22
402d5c: vmaxpd zmm13{k1},zmm23,zmm13
402d62: cmp rcx,rax
402d65: jb 402cd5

Listing 16: Assembly of critical col-loop produced by the Intel compiler.

On our test system, this sequence of instructions yields 15.04 GFLOP/s in single threaded mode and
102.55 GFLOP/s when running with 14 threads for a 6.8× speedup (0.48×/thread).

An analysis of the assembly shows that Intel C++ compiler manages to successfully vectorize the
innermost col-loop by using masked memory access operations. Intel C++ compiler loads the values of
ϕ
(n)
i,j−1, ϕ

(n)
i,j+1, etc. using a mask computed to load only selected memory locations into zmm registers.

The computation of newVal is then built up step-by-step with the final update being computed by line
402d3b in the zmm24 register. The next few instructions compute the difference between the current grid
value and the updated grid value, compare the difference to the running maximum difference and write
the updated value into the grid. This sequence of instructions uses 6 memory reads and 1 memory write to
update each grid point.

B.3. G++

We compile the code using the compile line in Listing 17

g++ -o critical.o -c critical.cpp -D__ALGORITHM__=SOLVE_OPT -D__AUTO__
-O3 -Wall -std=c++14 -m64 -fipa-pta -flto -ffast-math -fassociative-math
-ftree-vectorize -ftree-vectorizer-verbose=0 -fopenmp -fopenmp-simd
-fopt-info-all=jacobiSolve.gnurpt -march=skylake-avx512

g++ -o jacobiSolve -flto -O3 -fipa-pta -ffast-math -fassociative-math
-ftree-vectorize grid.o critical.o jacobi.o jacobiSolve.o -lgomp -lm

Listing 17: Compile and link lines for compiling the Jacobi solver critical.cpp source file with G++.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 22

https://colfaxresearch.com/

B.3 G++ B JACOBI SOLVER

Listing 18 shows the assembly instructions generated by G++ for the inner loop using the Intel syntax.
G++ also successfully vectorizes the loop, using 6 out of 32 zmm registers to perform the computation.

402ab0: vmovupd zmm3,[r8+rax*1]
402ab7: vaddpd zmm3,zmm3,[r9+rax*1]
402abe: add edx,0x1
402ac1: vbroadcastsd zmm0,[r14+0x58]
402ac8: vmovupd zmm1,[r11+rax*1]
402acf: vaddpd zmm1,zmm1,[r10+rax*1]
402ad6: vbroadcastsd zmm2,[r14+0x60]
402add: vmulpd zmm3,zmm3,zmm0
402ae3: vbroadcastsd zmm0,[r14+0x50]
402aea: vfmadd132pd zmm0,zmm3,zmm1
402af0: vfnmadd132pd zmm2,zmm0,[rsi+rax*1]
402af7: vbroadcastsd zmm0,[r14+0x68]
402afe: vmulpd zmm0,zmm2,zmm0
402b04: vsubpd zmm1,zmm0,[rcx+rax*1]
402b0b: vandpd zmm1,zmm1,zmm6
402b11: vmovupd [rcx+rax*1],zmm0
402b18: vmaxpd zmm8,zmm8,zmm1
402b1e: add rax,0x40
402b22: cmp [rbp-0x74],edx
402b25: ja 402ab0

Listing 18: Assembly of critical col-loop produced by the GNU compiler.

On our test system, this sequence of instructions yields 12.80 GFLOP/s in single threaded mode and
74.44 GFLOP/s when running with 9 threads with a 5.8× speedup (0.64×/thread).

G++ also manages to successfully vectorize the inner col-loop but uses a very different strategy to
compute the grid update as compared to Intel C++ compiler. G++ is very parsimonious when using zmm
registers as compared to Intel C++ compiler, using only 6 out of a total of 32 available zmm registers.
To compensate for the low register usage, G++ issues more memory operations, using 10 memory reads
and 1 memory write in this loop. A key difference is that 4 out of the 10 memory read operations are
vbroadcastsd instructions that can only be executed on 1 port (port 5) on the Skylake microarchi-
tecture [19]. In contrast, the vmovupd memory read instructions issued by Intel C++ compiler can be
executed on any of 4 different ports (ports 0, 1, 5, or 6) [19]. The throughput of the vmovupd is much
higher because of the greater number of execution units that are capable of being assigned this operation.

We believe that the extra memory operations performed by G++, some of which can only be executed
on one port inside the CPU, causes the code compiled by G++ to be slower as compared to that compiled
by Intel C++ compiler.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 23

https://colfaxresearch.com/

B.4 AOCC B JACOBI SOLVER

B.4. AOCC

We compile the code using the compile line in Listing 19

clang++ -o critical.o -c critical.cpp -D__ALGORITHM__=SOLVE_OPT -D__AUTO__
-O3 -Wall -std=c++14 -m64 -flto -ffast-math -fassociative-math -mfma
-ffp-contract=fast -fopenmp=libomp -Rpass-analysis=loop-vectorize
-Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-fsave-optimization-record -gline-tables-only -gcolumn-info
-march=skylake-avx512

clang++ -o jacobiSolve -flto -fuse-ld=lld
grid.o critical.o jacobi.o jacobiSolve.o -lomp -lm

Listing 19: Compile and link lines for compiling the Jacobi solver critical.cpp source file with AOCC.

Listing 20 shows the assembly generated by AOCC for the inner loop using the Intel syntax.

2012d0: vmovsd xmm3,[rsi+rcx*8]
2012d5: vaddsd xmm3,xmm3,[rdx+rcx*8]
2012da: vmulsd xmm3,xmm3,[rbp+0x50]
2012df: vmovsd xmm4,[rdi+rcx*8-0x10]
2012e5: vaddsd xmm4,xmm4,[rdi+rcx*8]
2012ea: vfmadd132sd xmm4,xmm3,[rbp+0x58]
2012f0: vmovsd xmm3,[rax+rcx*8]
2012f5: vfnmadd132sd xmm3,xmm4,[rbp+0x60]
2012fb: vmulsd xmm3,xmm3,[rbp+0x68]
201300: vsubsd xmm4,xmm3,[rbx+rcx*8]
201305: vandpd xmm4,xmm4,xmm1
201309: vmaxsd xmm2,xmm4,xmm2
20130d: vmovsd [rbx+rcx*8],xmm3
201312: lea rcx,[rcx+0x1]
201316: cmp r11,rcx
201319: jne 2012d0

Listing 20: Assembly of critical col-loop produced by the AOCC compiler.

On our test system, this sequence of instructions yields 4.72 GFLOP/s in single threaded mode and
58.16 GFLOP/s when running with 44 threads for a 12.3× speedup (0.28×/thread).

AOCC has trouble with the reduce clause and is unable to vectorize the
col-loop when performing the inter-procedural optimizations (compiler diagnostic:
value that could not be identified as reduction is used outside
the loop). Instead, the compiler issues pure scalar AVX instructions. As a direct consequence of not
vectorizing the loop, the AOCC produced code runs almost 4× slower than the code produced by Intel
C++ compiler when run with a single thread. Although the expected theoretical drop in performance
between scalar and AVX-512 code is 8×, the Intel C++ compiler-code uses masked instructions, reducing
the amount of useful work per loop iteration.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 24

https://colfaxresearch.com/

B.5 Clang B JACOBI SOLVER

When run with more than a single thread of execution, the AOCC-produced code running with 44
threads is only ∼ 0.57× slower than the Intel C++ compiler-produced code running with 14 threads.
While the overall performance is improved relative to Intel C++ compiler, AOCC has the poorest gain per
extra thread of execution. We hypothesize that the improvement in relative performance arises because of
differences in the OpenMP implementation provided by the Intel and AMD OpenMP libraries.

We believe that the inability of AOCCto vector instructions for the innermost col-loop hurts the
performance of the AOCC-generated code.

B.5. CLANG

We compile the code using the compile line in Listing 21

clang++ -o critical.o -c critcal.cpp -D__ALGORITHM__=SOLVE_OPT -D__AUTO__
-O3 -Wall -std=c++14 -stdlib=libc++ -fopenmp=libomp
-m64 -flto -ffast-math -fassociative-math -mfma -ffp-contract=fast
-Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-Rpass-analysis=loop-vectorize
-fsave-optimization-record -gline-tables-only -gcolumn-info
-mllvm -polly -mllvm -polly-vectorizer=stripmine -march=skylake-avx512

clang++ -o jacobiSolve -flto -fuse-ld=lld
grid.o critical.o jacobi.o jacobiSolve.o -lomp -lm

Listing 21: Compile and link lines for compiling the Jacobi solver critical.cpp source file with Clang.

Listing 22 shows the assembly generated by Clang for the inner loop using the Intel syntax.

2012e0: vmovsd xmm3,[rcx+rsi*8]
2012e5: vaddsd xmm3,xmm3,[rdx+rsi*8]
2012ea: vmovsd xmm4,[rdi+rsi*8-0x10]
2012f0: vaddsd xmm4,xmm4,[rdi+rsi*8]
2012f5: vmovhpd xmm4,xmm4,[rax+rsi*8]
2012fa: vmulpd xmm4,xmm4,[rbp+0x58]
2012ff: vfmadd132sd xmm3,xmm4,[rbp+0x50]
201305: vpermilpd xmm4,xmm4,0x1
20130b: vsubsd xmm3,xmm3,xmm4
20130f: vmulsd xmm3,xmm3,[rbp+0x68]
201314: vsubsd xmm4,xmm3,[rbx+rsi*8]
201319: vandpd xmm4,xmm4,xmm1
20131d: vmaxsd xmm2,xmm4,xmm2
201321: vmovsd [rbx+rsi*8],xmm3
201326: lea rsi,[rsi+0x1]
20132a: cmp r11,rsi
20132d: jne 2012e0

Listing 22: Assembly of critical col-loop produced by the LLVM compiler.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 25

https://colfaxresearch.com/

B.6 Zapcc B JACOBI SOLVER

On our test system, this sequence of instructions yields 4.39 GFLOP/s in single threaded mode and
42.31 GFLOP/s when running with 20 threads for a 9.6× speedup (0.48×/thread).

Like AOCC, Clang is unable to properly vectorize the inner col-loop when performing interproce-
dural optimizations. Instead, Clangissues scalar AVX instructions to perform the loop operations. Unlike
AOCC, the Clang-generated code performs a small number of operations using vector instructions start-
ing with the load instruction on line 2012f5 that loads the double precision value at the location held
in rax+rsi*8 into the upper half of the zmm4 register, filling it with 2 double precision values. How-
ever, in practice, this approach does not work as well as that adopted by AOCC, yielding slightly poorer
performance when run with a single thread.

B.6. ZAPCC

We compile the code using the compile line in Listing 23

zapcc++ -o critical.o -c critical.cpp -D__ALGORITHM__=SOLVE_OPT -D__AUTO__
-O3 -Wall -std=c++14 -fopenmp=libomp
-m64 -flto -ffast-math -fassociative-math -mfma -ffp-contract=fast
-Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-Rpass-analysis=loop-vectorize -fsave-optimization-record
-gline-tables-only -gcolumn-info -march=skylake-avx512

zapcc++ -o jacobiSolve -flto -fuse-ld=lld
grid.o critical.o jacobi.o jacobiSolve.o -lomp -lm

Listing 23: Compile and link lines for compiling the Jacobi solver critical.cpp source file with Zapcc.

Listing 24 shows the assembly instructions generated by Zapcc for the inner loop using the Intel syntax.

2012e0: vmovsd xmm3,[rcx+rsi*8]
2012e5: vaddsd xmm3,xmm3,[rdx+rsi*8]
2012ea: vmovsd xmm4,[rdi+rsi*8-0x10]
2012f0: vaddsd xmm4,xmm4,[rdi+rsi*8]
2012f5: vmovhpd xmm4,xmm4,[rax+rsi*8]
2012fa: vmulpd xmm4,xmm4,[rbp+0x58]
2012ff: vfmadd132sd xmm3,xmm4,[rbp+0x50]
201305: vpermilpd xmm4,xmm4,0x1
20130b: vsubsd xmm3,xmm3,xmm4
20130f: vmulsd xmm3,xmm3,[rbp+0x68]
201314: vsubsd xmm4,xmm3,[rbx+rsi*8]
201319: vandpd xmm4,xmm4,xmm1
20131d: vmaxsd xmm2,xmm4,xmm2
201321: vmovsd [rbx+rsi*8],xmm3
201326: lea rsi,[rsi+0x1]
20132a: cmp r11,rsi
20132d: jne 2012e0

Listing 24: Assembly of critical col-loop produced by the ZAPCC compiler.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 26

https://colfaxresearch.com/

B.7 PGC++ B JACOBI SOLVER

On our test system, this sequence of instructions yields 4.40 GFLOP/s in single threaded mode and
41.40 GFLOP/s when running with 21 threads for a 9.4× speedup (0.45×/thread).

Zapcc produces the exact same set of instructions as Clang for this computational kernel. The observed
performance is very similar with the difference being attributable to runtime statistical variations.

B.7. PGC++

We compile the code using the compile line in Listing 25

pgc++ -o critical.o -c critical.cpp -D__ALGORITHM__=SOLVE_OPT -D__AUTO__
-O3 -Minform=warn -std=c++11 -tp=haswell -fast -O4
-Mipa=fast,align,inline -fma
-Mvect=altcode,gather,simd,assoc,cachesize:32768
-Msmart -Mfma -Mcache_align
-Mipa=all -Mmovnt -mp -Mquad
-Msafeptr=all -Minfo=all -Mnoprefetch

pgc++ -o jacobiSolve -Mipa=fast,align,inline -mp=bind
grid.o critical.o jacobi.o jacobiSolve.o -lstdc++ -lpgmp -lm

Listing 25: Compile and link lines for compiling the Jacobi solver critical.cpp source file with PGC++.

Listing 26 shows the assembly instructions generated by PGC++ for the time consuming inner col-
loop using the Intel syntax. Only 4 out of the 16 available xmm registers are used.

404208: vmovsd xmm1,[rsi]
40420c: mov r14,[rbp-0x18]
404210: vmovsd xmm3,[rdx-0x10]
404215: sub r9,0x1
404219: vaddsd xmm2,xmm1,[rdi]
40421d: vmulsd xmm1,xmm2,[r14+0x50]
404223: vaddsd xmm2,xmm3,[rdx]
404227: add rsi,0x8
40422b: vfmadd132sd xmm2,xmm1,[r14+0x58]
404231: vmovsd xmm1,[r14+0x60]
404237: vfnmadd132sd xmm1,xmm2,[r8]
40423c: vmulsd xmm2,xmm1,[r14+0x68]
404242: add r8,0x8
404246: vsubsd xmm3,xmm2,[rcx]
40424a: vmovsd [rcx],xmm2
40424e: vandpd xmm1,xmm3,[rip+0xfffffffffffffe2a]
404256: add rcx,0x8
40425a: vmaxsd xmm0,xmm0,xmm1
40425e: add rdi,0x8
404262: add rdx,0x8
404266: test r9,r9
404269: jg 404208

Listing 26: Assembly of critical col-loop produced by the PGI compiler.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 27

https://colfaxresearch.com/

B.8 Takeaway B JACOBI SOLVER

On our test system, this sequence of instructions yields 4.28 GFLOP/s in single threaded mode and
30.70 GFLOP/s when running with 13 threads for a 7.2× speedup (0.55×/thread).

PGC++ 17.4 (Community Edition) is not OpenMP 4.0 compliant and does not accept the
OpenMP 4.0 directive #pragma omp simd. Instead, we supply the PGI specific compiler directive
#pragma loop ivdep to inform the compiler that the loop is safe to vectorize. Notice though
that this directive has no ability to inform the compiler that we wish to perform a reduction over the
maxChange variable. The compiler fails to vectorize the loop emitting the un-helpful diagnostic:
potential early exits.

B.8. TAKEAWAY

Our second computational kernel tests the ability of each compiler to peer through the haze of abstrac-
tion and produce optimal code. Given the same information, only two compilers manage to successfully
vectorize the innermost loop in the Jacobi solver.

Large scientific/engineering/financial codes can contain dense layers of abstraction designed to let the
programmer reason about the program. The abstraction can take a significant portion of the project time to
develop. It is crucial for the compiler used for such development to be able to optimize non-HPC modern
C++ code written for readability and maintainability.

In the second computational kernel, the difference in performance between the best and worst compil-
ers jumps to 3.5× (Intel C++ compiler v/s PGC++).

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 28

https://colfaxresearch.com/

C STRUCTURE FUNCTION

C. STRUCTURE FUNCTION

C.1. WHAT IS THE STRUCTURE FUNCTION?

The autocorrelation function is a valuable diagnostic for studying time series data [20]. Polynomial
trends in the time series data can make direct estimation of the autocorrelation function difficult. Structure
functions can be used as a proxy for the autocorrelation function when studying time-series data since they
possess the proprty that an nth-order structure function is insensitive to polynomial trends of order n − 1
in the time series [21].

Given a time series A(t), the 1st-order structure function is defined as

SF(τ) = ⟨[A(t+ τ)− A(t)]2⟩t, (8)

where ⟨A⟩t is the expectation value of the random variable A over the epochs t.
The time series A may not be uniformly sampled making direct estimation of the structure function

using Equation (8) difficult. Non-uniformly sampled time series can be registered onto a uniform grid in
time by using a mask to track missing observations. Given n observations Ai on a uniform gridding with
timestep δt with binary mask Mi storing 1 at observed timesteps and 0 at missing observations, Equation
(8) can be expressed as

SF(o) =

∑
iMi+oMi[Ai+o − Ai]

2∑
iMi+τMi

, (9)

with 0 ≤ o ≤ n− 1 and τ = oδt .
Listing 27 shows our implementation of Equation (9). Our implementation assumes that the input data

and mask arrays A and M are padded with 0s for 32 entries past the end of the arrays. The padding allows
us to write simpler loops inside the main loop and will be explained in more detail below.

We compute the structure function for entry SF[o] in blocks of size c = BLOCK SIZE. Thus our
outer oblk-loop loops over n/c blocks of o with each block being of size c.

We parallelize our structure function calculation over the oblk-loop, i.e., each thread evaluates the
structure function for a different block of o-values.

The number of computations required to compute SF[o] drops as o increases. Therefore the workload
in each block also reduces as oblk increases. We use ’dynamic‘ OpenMP scheduling to optimally balance
the computational workload across all the available threads.

The value of BLOCK SIZE has to be tuned for each system. We find that on our 2-socket Intel R⃝Xeon
Platinum 8168 test platform, setting BLOCK SIZE = 32 gives us good results.

We use the temporary arrays SFTemp private and countSFTemp private to accumulate the
contribution to the structure function from each term in the summation in the numerator and denominator
of Equation (9). Since the length of these temporary arrays (BLOCK SIZE) is known at compile time, we
declare the arrays on the function stack.

When the calculation is performed in parallel, each OpenMP thread possesses an individual stack and
the SFTemp private and countSFTemp private arrays are local to the stack of each OpenMP
thread. Since the arrays are relatively small compared to the OpenMP stacksize, the temporary arrays are
located far away from each other in memory. This makes false sharing almost negligible.

The i-loop ranges between 0 and n-oblk*c. We unroll the innermost o-loop by a factor of 4 and
rewrite it as a loop over the variable v. Since A and M are padded with 0s for 32 entries after the end of
each array, we can safely index each array inside the innermost v-loop.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 29

https://colfaxresearch.com/

C.1 What is the Structure Function? C STRUCTURE FUNCTION

1 void SF_compute_oblkio_opt(int const n, double const * const A,
2 double const * const M, double * const SF) {
3 #if defined(__PGI)
4 #pragma routine safe
5 #endif
6 const int c = BLOCK_SIZE;
7 #pragma omp parallel for schedule(dynamic)
8 for (int oblk = 0; oblk < n/c; ++oblk) {
9 double SFTemp_private[c];

10 double countSFTemp_private[c];
11 for (int ctr = 0; ctr < c; ++ctr) {
12 SFTemp_private[ctr] = 0.0;
13 countSFTemp_private[ctr] = 0.0;
14 } // end for ctr
15 register double * S0 = SFTemp_private + 0*8;
16 register double * S1 = SFTemp_private + 1*8;
17 register double * S2 = SFTemp_private + 2*8;
18 register double * S3 = SFTemp_private + 3*8;
19 register double * c0 = countSFTemp_private + 0*8;
20 register double * c1 = countSFTemp_private + 1*8;
21 register double * c2 = countSFTemp_private + 2*8;
22 register double * c3 = countSFTemp_private + 3*8;
23 for (int i = 0; i < n - oblk*c; ++i) {
24 double MVal0, MVal1, MVal2, MVal3;
25 #if defined(__PGI)
26 #pragma loop ivdep
27 #else
28 #pragma omp simd private(MVal0, MVal1, MVal2, MVal3)
29 #endif
30 for (int v = 0 ; v < 8; v++) {
31 MVal0 = M[i + oblk*c + 0*8 + v]*M[i];
32 S0[v] += MVal0*(A[i + oblk*c + 0*8 + v] - A[i])
33 *(A[i + oblk*c + 0*8 + v] - A[i]);
34 c0[v] += MVal0;
35 MVal1 = M[i + oblk*c + 1*8 + v]*M[i];
36 S1[v] += MVal1*(A[i + oblk*c + 1*8 + v] - A[i])
37 *(A[i + oblk*c + 1*8 + v] - A[i]);
38 c1[v] += MVal1;
39 MVal2 = M[i + oblk*c + 2*8 + v]*M[i];
40 S2[v] += MVal2*(A[i + oblk*c + 2*8 + v] - A[i])
41 *(A[i + oblk*c + 2*8 + v] - A[i]);
42 c2[v] += MVal2;
43 MVal3 = M[i + oblk*c + 3*8 + v]*M[i];
44 S3[v] += MVal3*(A[i + oblk*c + 3*8 + v] - A[i])
45 *(A[i + oblk*c + 3*8 + v] - A[i]);
46 c3[v] += MVal3;
47 } // end for v
48 } // end for i
49 for (int ctr = 0; ctr < c; ++ctr) {
50 SF[oblk*c + ctr] = SFTemp_private[ctr]/countSFTemp_private[ctr];
51 } } } // end for ctr, blk and function

Listing 27: Structure function implementation.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 30

https://colfaxresearch.com/

C.2 Intel C++ compiler C STRUCTURE FUNCTION

We vectorize the v-loop by issuing the OpenMP directive #pragma omp simd for Intel C++
compiler, G++, and the LLVM-based compilers. For PGC++ we issue the PGI-specific directive
#pragma loop ivdep. As confirmed by the optimization reports from each compiler and by an ex-
amination of the assembly, this is sufficient to let each compiler generate vectorized instructions for the
v-loop.

Each iteration of the o-loop performs a total of 6 floating point operations. Since the algorithm runs
over all unique pairs of observations Ai, there are a total of 3n(n − 1) useful floating point operations in
the v-loop followed by another n division operations in the final loop for a total of 3n2+2n floating point
operations to compute the structure function using this algorithm.

Recall that the theoretical peak performance for purely FMA double precision computations on a single
core is PFMA

×1 = 112 GFLOP/s for our test system. The Intel R⃝ and AMD compilers manage to reach ∼ 57
GFLOP/s which is about 0.5× the theoretical FMA peak and slightly higher than the P×1 = 56 GFLOP/s
non-FMA peak. The assembly generated by these compilers suggests that the gap in performance between
the theoretical peak and the achieved performance with these compilers is due to the combination of the
presence of mandatory load instructions as well as the presence of non-FMA computations in the final
code.

When executing with multiple threads of instructions both the Intel R⃝ and AMD compilers manage
to reach ∼ 2 TFLOP/s on our test system. This level of performance is ∼ 0.5× the theoretical FMA
peak of 3.84 TFLOP/s which shows that performance scales linearly with the number of cores on this
computational kernel, i.e., the kernel is compute bound.

We discuss the assembly code generated by each compiler to gain further insight.

C.2. INTEL C++ COMPILER

We compile the code using the compile line in Listing 28

icpc -o critical.o -c critical.cpp
-D__ALGORITHM__=OBLKIO_OPT -D__AUTO__
-O3 -std=c++14
-qopenmp -qopenmp-simd
-qopt-report=5
-qopt-assume-safe-padding
-xCORE-AVX512
-qopt-zmm-usage=high

Listing 28: Compile line for compiling the structure function critical.cpp source file with Intel C++ compiler.

Listing 29 shows the assembly instructions generated by Intel C++ compiler for the inner v-loop using
the Intel syntax. The assembly generated for the inner loop consists of a mix of primarily AVX-512F
instructions along with a handful of scalar x86 instructions for managing the loop. Correspondingly, the
zmm registers are used heavily (31 out of 32 registers used).

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 31

https://colfaxresearch.com/

C.2 Intel C++ compiler C STRUCTURE FUNCTION

32d: vmovups zmm13,[rcx+r9*8]
334: vmovups zmm18,[rcx+r9*8+0x40]
33c: vmovups zmm23,[rcx+r9*8+0x80]
344: vmovups zmm29,[rcx+r9*8+0xc0]
34c: vmovups zmm9,[rbx+r9*8]
353: vmovups zmm14,[rbx+r9*8+0x40]
35b: vmovups zmm19,[rbx+r9*8+0x80]
363: vmovups zmm24,[rbx+r9*8+0xc0]
36b: vbroadcastsd zmm30,[r13+r9*8+0x0]
373: vbroadcastsd zmm25,[r12+r9*8]
37a: vmulpd zmm10,zmm30,zmm13
380: vmulpd zmm15,zmm30,zmm18
386: vmulpd zmm20,zmm30,zmm23
38c: vmulpd zmm26,zmm30,zmm29
392: vfmadd231pd zmm7,zmm13,zmm30
398: vfmadd231pd zmm5,zmm18,zmm30
39e: vfmadd231pd zmm3,zmm23,zmm30
3a4: vfmadd231pd zmm1,zmm29,zmm30
3aa: vsubpd zmm11,zmm9,zmm25
3b0: vsubpd zmm16,zmm14,zmm25
3b6: vsubpd zmm21,zmm19,zmm25
3bc: vsubpd zmm27,zmm24,zmm25
3c2: vmulpd zmm12,zmm10,zmm11
3c8: vmulpd zmm17,zmm15,zmm16
3ce: vmulpd zmm22,zmm20,zmm21
3d4: vmulpd zmm28,zmm26,zmm27
3da: vfmadd231pd zmm8,zmm11,zmm12
3e0: vfmadd231pd zmm6,zmm16,zmm17
3e6: vfmadd231pd zmm4,zmm21,zmm22
3ec: vfmadd231pd zmm2,zmm27,zmm28
3f2: inc r9
3f5: cmp r9,r15
3f8: jb 32d

Listing 29: Assembly of critical o-loop produced by the Intel compiler.

On our test system, this sequence of instructions yields 57.40 GFLOP/s in single threaded mode and
2050.96 GFLOP/s when running with 48 threads.

Intel C++ compiler prefers to use almost every available AVX-512 register. The benefit of doing so
is that the resulting assembly instructions can be easily reordered by the CPU since there is minimal
dependency between instructions. As a result, there are only 10 memory accesses per v-loop iteration, all
of which consist of memory reads.

An analysis of the assembly shows that Intel C++ compiler chooses to compute the mask product
twice. Although this seems redundant, it allows the compiler to issue an extra FMA instruction instead
of a multiply instruction. This decision makes logical sense on the older Broadwell microarchitecture.
On the Broadwell microarchitecture, FMA instructions have a latency of 0.5 cycles as compared to a 1
cycle latency for multiply instructions. On the Skylake microarchitecture, all the basic AVX-512 floating
point operations ((v)addp*, (v)mulp*, (v)fmaddXXXp*, etc.) have the same throughput of 0.5
cycles/instruction. See Tables 2-2 and 2-3 in [19] for more details.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 32

https://colfaxresearch.com/

C.3 AOCC C STRUCTURE FUNCTION

C.3. AOCC

We compile the code using the compile line in Listing 30

clang++ -o critical.o -c critical.cpp -D__ALGORITHM__=OBLKIO_OPT -D__AUTO__
-O3 -std=c++14 -m64 -fopenmp=libomp
-ffast-math -mavx2 -fassociative-math -mfma -ffp-contract=fast
-Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-Rpass-analysis=loop-vectorize -fsave-optimization-record
-gline-tables-only -gcolumn-info -march=skylake-avx512

Listing 30: Compile line for compiling the structure function critical.cpp source file with AOCC..

Listing 31 shows the assembly generated by AOCC for the inner loop using the Intel syntax.

2b0: vmovapd zmm8,zmm7
2b6: vmovapd zmm7,zmm4
2bc: vmovapd zmm9,zmm5
2c2: vmovapd zmm10,zmm6
2c8: vbroadcastsd zmm6,[rdi+r15*8]
2cf: vbroadcastsd zmm11,[rbx+r15*8]
2d6: vmulpd zmm5,zmm6,[r14+r15*8-0xc0]
2de: vmovupd zmm4,[rsi+r15*8-0xc0]
2e6: vsubpd zmm4,zmm4,zmm11
2ec: vmulpd zmm4,zmm4,zmm4
2f2: vfmadd213pd zmm4,zmm5,zmm7
2f8: vaddpd zmm2,zmm2,zmm5
2fe: vmulpd zmm7,zmm6,[r14+r15*8-0x80]
306: vmovupd zmm5,[rsi+r15*8-0x80]
30e: vsubpd zmm5,zmm5,zmm11
314: vmulpd zmm5,zmm5,zmm5
31a: vfmadd213pd zmm5,zmm7,zmm9
320: vaddpd zmm1,zmm1,zmm7
326: vmulpd zmm9,zmm6,[r14+r15*8-0x40]
32e: vmovupd zmm7,[rsi+r15*8-0x40]
336: vsubpd zmm7,zmm7,zmm11
33c: vmulpd zmm7,zmm7,zmm7
342: vfmadd213pd zmm7,zmm9,zmm8
348: vaddpd zmm3,zmm3,zmm9
34e: vmulpd zmm8,zmm6,[r14+r15*8]
355: vmovupd zmm6,[rsi+r15*8]
35c: vsubpd zmm6,zmm6,zmm11
362: vmulpd zmm6,zmm6,zmm6
368: vfmadd213pd zmm6,zmm8,zmm10
36e: vaddpd zmm0,zmm0,zmm8
374: add r15,0x1
378: cmp r15,rdx
37b: jl 2b0

Listing 31: Assembly of critical o-loop produced by the AOCC compiler.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 33

https://colfaxresearch.com/

C.4 G++ C STRUCTURE FUNCTION

On our test system, this sequence of instructions yields 57.24 GFLOP/s in single threaded mode and
1987.35 GFLOP/s when running with 96 threads.

AOCC is very parsimonious when using only 12 zmm registers. It manages to be frugal by shuffling
values around rather than writing them to memory. For example, rather than writing out the values of the
running sums for the numerator and denominator of Equation (9), AOCC retains these sums in registers.
Line 2f2 uses the current value of the running sum of the numerator

∑
i M [i]M [i+ o](A[i+ o]− A[i])2

in the zmm7 register and puts the updated value into the zmm4 register. On the next loop iteration, line
2b6 moves the running sum from the zmm4 register into the zmm7 register making it ready for line 2f2
to re-use. Other such examples can be found by looking through Listing 31. A technique known as Zero-
Latency MOV instructions allows the CPU to perform most register to register data moves in the front-end
of the CPU and have no impact on the final performance of the code [19]. Therefore, each v-loop iteration
performs 10 memory reads with no writes to memory.

AOCC and Intel C++ compiler have different but ultimately equivalent approaches to handling the
partially-unrolled v-loop. Intel C++ compiler uses a large number of registers to hold intermediate results
such as the running sums in the numerator and denominator in order to minimize memory operations.
AOCC manages to achieve similar performance while using a smaller number of registers by moving
results around between registers. By minimizing memory operations, both codes manage to achieve very
good performance in this benchmark.

C.4. G++

We compile the code using the compile line in Listing 32

g++ -o critical.o -c critical.cpp
-D__ALGORITHM__=OBLKIO_OPT -D__AUTO__
-O3 -std=c++14 -m64
-ffast-math -fassociative-math
-ftree-vectorize -ftree-vectorizer-verbose=0
-fopenmp -fopenmp-simd
-fopt-info-all=sfComp.o.gnurpt
-march=skylake-avx512

Listing 32: Compile line for compiling the structure function critical.cpp source file with G++..

Listing 33 shows the assembly instructions generated by G++ for the time consuming inner v-loop
using the Intel syntax. Only 7 out of the 32 available zmm registers are used.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 34

https://colfaxresearch.com/

C.4 G++ C STRUCTURE FUNCTION

130: vbroadcastsd zmm1,[rax+rdx*1]
137: vmulpd zmm3,zmm1,[rax]
13d: add rax,0x8
141: add rcx,0x8
145: vbroadcastsd zmm0,[rcx+rdx*1-0x8]
14d: vmovupd zmm2,[rcx-0x8]
157: vsubpd zmm2,zmm2,zmm0
15d: vaddpd zmm6,zmm6,zmm3
163: vmulpd zmm4,zmm2,zmm3
169: vfmadd231pd zmm5,zmm4,zmm2
16f: vmovupd zmm2,[rcx+0x38]
179: vmulpd zmm4,zmm1,[rax+0x38]
183: vsubpd zmm2,zmm2,zmm0
189: vmulpd zmm3,zmm2,zmm4
18f: vaddpd zmm4,zmm4,[rbp-0xf0]
199: vfmadd213pd zmm2,zmm3,[rbp-0x1f0]
1a3: vmovapd [rbp-0xf0],zmm4
1ad: vmulpd zmm4,zmm1,[rax+0x78]
1b7: vmovapd [rbp-0x1f0],zmm2
1c1: vmovupd zmm2,[rcx+0x78]
1cb: vsubpd zmm2,zmm2,zmm0
1d1: vmulpd zmm3,zmm2,zmm4
1d7: vaddpd zmm4,zmm4,[rbp-0xb0]
1e1: vfmadd213pd zmm2,zmm3,[rbp-0x1b0]
1eb: vmovapd [rbp-0xb0],zmm4
1f5: vmovapd [rbp-0x1b0],zmm2
1ff: vmulpd zmm2,zmm1,[rax+0xb8]
209: vmovupd zmm1,[rcx+0xb8]
213: vsubpd zmm0,zmm1,zmm0
219: vmulpd zmm1,zmm0,zmm2
21f: vfmadd213pd zmm0,zmm1,[rbp-0x170]
229: vaddpd zmm1,zmm2,[rbp-0x70]
233: vmovapd [rbp-0x70],zmm1
23d: vmovapd [rbp-0x170],zmm0
247: cmp rdi,rax
24a: jne 130

Listing 33: Assembly of critical o-loop produced by the GNU compiler.

On our test system, this sequence of instructions yields 36.36 GFLOP/s in single threaded mode and
1375.06 GFLOP/s when running with 96 threads.

G++ also uses very few zmm registers, preferring to write out running sums to memory. It also main-
tains separate running sums for each of the unrolled loop sections necessitating a large number of memory
read and write operations. For example, lines 15d and 169 compute the updated running sums for the
numerator and denominator of Equation (9) for the first unrolled iteration and store the results in the zmm6
and zmm5 registers. Lines 18f and 199 compute the updated running sums for the numerator and denom-
inator of Equation (9) for the second unrolled iteration. However, instead of leaving these running sums
in the registers that they are computed in, G++ issues instructions that write the contents of these registers
to memory on lines 1a3 and 1b7. The same pattern is observed in the third and fourth un-peeled loop

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 35

https://colfaxresearch.com/

C.5 Clang C STRUCTURE FUNCTION

iterations for a total of 22 memory accesses per v-loop iteration (16 read accesses and 6 write accesses).
The Intel C++ compiler and AOCC compiled codes perform 10 memory reads per iteration of the

v-loop as opposed to the 16 reads and 6 writes performed by the G++ produced code. Each read/write
operation has a latency of 4 cycles (L1 cache), 12 cycles (L2 cache), and 44 cycles (L3 cache). Arithmetic
instructions such as vaddpd, vfmadd213pd, etc. have latencies of 4 to 6 cycles and throughputs of
0.5 cycles [19]. Since the read-write operations performed in Listing 33 are heavily predicated on the
arithmetic instructions due to the low register usage, the latency of the read-write operation is more relevant
than the throughput. Therefore, even a few extra read-write operations add significantly to the total number
of CPU cycles required to perform a single iteration of the v-loop.

We believe that the extra read-write instructions used by the code compiled with G++ are ultimately
responsible for the observed performance difference.

C.5. CLANG

We compile the code using the compile line in Listing 36

clang++ -o critical.o -c critical.cpp -D__ALGORITHM__=OBLKIO_OPT -D__AUTO__
-O3 -std=c++14 -m64
-ffast-math -fassociative-math -mfma -mavx2 -ffp-contract=fast
-fopenmp=libomp
-Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-Rpass-analysis=loop-vectorize
-fsave-optimization-record
-gline-tables-only -gcolumn-info
-mllvm -polly
-mllvm -polly-vectorizer=stripmine
-march=skylake-avx512

Listing 34: Compile line for compiling the structure function critical.cpp source file with Clang.

Listing 35 shows the assembly instructions generated by Clang for the time consuming inner v-loop
using the Intel syntax. Only 4 out of the 32 available zmm registers are used.

290: vbroadcastsd zmm1,[rsi+r13*8]
297: vbroadcastsd zmm0,[rdi+r13*8]
29e: test r12b,r12b
2a1: vmulpd zmm2,zmm1,[r15+r13*8-0xc0]
2a9: vmovupd zmm3,[rdx+r13*8-0xc0]
2b1: vsubpd zmm3,zmm3,zmm0
2b7: vmulpd zmm3,zmm3,zmm3
2bd: vfmadd213pd zmm3,zmm2,[rsp+0x160]
2c8: vmovupd [rsp+0x160],zmm3
2d3: vaddpd zmm2,zmm2,[rsp+0x60]
2de: vmovupd [rsp+0x60],zmm2
2e9: vmulpd zmm2,zmm1,[r15+r13*8-0x80]
2f1: vmovupd zmm3,[rdx+r13*8-0x80]
(continued on next page)

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 36

https://colfaxresearch.com/

C.5 Clang C STRUCTURE FUNCTION

(continued from previous page)
2f9: vsubpd zmm3,zmm3,zmm0
2ff: vmulpd zmm3,zmm3,zmm3
305: vfmadd213pd zmm3,zmm2,[rsp+0x1a0]
310: vmovupd [rsp+0x1a0],zmm3
31b: vaddpd zmm2,zmm2,[rsp+0xa0]
326: vmovupd [rsp+0xa0],zmm2
331: vmulpd zmm2,zmm1,[r15+r13*8-0x40]
339: vmovupd zmm3,[rdx+r13*8-0x40]
341: vsubpd zmm3,zmm3,zmm0
347: vmulpd zmm3,zmm3,zmm3
34d: vfmadd213pd zmm3,zmm2,[rsp+0x1e0]
358: vmovupd [rsp+0x1e0],zmm3
363: vaddpd zmm2,zmm2,[rsp+0xe0]
36e: vmovupd [rsp+0xe0],zmm2
379: vmulpd zmm1,zmm1,[r15+r13*8]
380: vmovupd zmm2,[rdx+r13*8]
387: vsubpd zmm0,zmm2,zmm0
38d: vmulpd zmm0,zmm0,zmm0
393: vfmadd213pd zmm0,zmm1,[rsp+0x220]
39e: vmovupd [rsp+0x220],zmm0
3a9: vaddpd zmm0,zmm1,[rsp+0x120]
3b4: vmovupd [rsp+0x120],zmm0
3bf: add r13,0x1
3c3: cmp r13,rax
3c6: jl 290

Listing 35: Assembly of critical o-loop produced by the LLVM compiler.

On our test system, this sequence of instructions yields 23.35 GFLOP/s in single threaded mode and
837.42 GFLOP/s when running with 96 threads.

Clang produces simple and easy to follow code. At the top of the loop, the values of M[i] and
A[i] are loaded into the zmm1 and zmm0 registers at lines 290 and 297. vmulpd vmovupd vsubpd
vmulpd vfmadd213pd vmovupd vaddpd vmovupd executes one unrolled loop iteration to update
the numerator and denominator of Equation (9).

Each sequence makes 26 memory accesses consisting of 18 reads and 8 writes to memory - four greater
than in the case of the code compiled with G++ and 16 greater than in the case of the code compiled with
Intel C++ compiler and AOCC. We believe that these extra memory operations are responsible for the
observed performance difference between the codes generated by the different compilers.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 37

https://colfaxresearch.com/

C.6 Zapcc C STRUCTURE FUNCTION

C.6. ZAPCC

We compile the code using the compile line in Listing 36

zapcc++ -o critical.o -c critical.cpp -D__ALGORITHM__=OBLKIO_OPT -D__AUTO__
-O3 -std=c++14 -m64
-ffast-math -fassociative-math -mfma -mavx2 -ffp-contract=fast
-fopenmp=libomp
-Rpass=loop-vectorize -Rpass-missed=loop-vectorize
-Rpass-analysis=loop-vectorize
-fsave-optimization-record
-gline-tables-only -gcolumn-info
-march=skylake-avx512

Listing 36: Compile line for compiling the structure function critical.cpp source file with Zapcc.

Listing 35 shows the assembly instructions generated by Clang for the time consuming inner v-loop
using the Intel syntax. Only 4 out of the 32 available zmm registers are used.

290: vbroadcastsd zmm1,[r14+r13*8]
297: vbroadcastsd zmm0,[rbx+r13*8]
29e: test r12b,r12b
2a1: je 380
2a7: vmulpd zmm2,zmm1,[r15+r13*8-0xc0]
2af: vmovupd zmm3,[rdx+r13*8-0xc0]
2b7: vsubpd zmm3,zmm3,zmm0
2bd: vmulpd zmm3,zmm3,zmm3
2c3: vfmadd213pd zmm3,zmm2,[rsp+0x160]
2ce: vmovupd [rsp+0x160],zmm3
2d9: vaddpd zmm2,zmm2,[rsp+0x60]
2e4: vmovupd [rsp+0x60],zmm2
2ef: vmulpd zmm2,zmm1,[r15+r13*8-0x80]
2f7: vmovupd zmm3,[rdx+r13*8-0x80]
2ff: vsubpd zmm3,zmm3,zmm0
305: vmulpd zmm3,zmm3,zmm3
30b: vfmadd213pd zmm3,zmm2,[rsp+0x1a0]
316: vmovupd [rsp+0x1a0],zmm3
321: vaddpd zmm2,zmm2,[rsp+0xa0]
32c: vmovupd [rsp+0xa0],zmm2
337: vmulpd zmm2,zmm1,[r15+r13*8-0x40]
33f: vmovupd zmm3,[rdx+r13*8-0x40]
347: vsubpd zmm3,zmm3,zmm0
34d: vmulpd zmm3,zmm3,zmm3
353: vfmadd213pd zmm3,zmm2,[rsp+0x1e0]
35e: vmovupd [rsp+0x1e0],zmm3
369: vaddpd zmm2,zmm2,[rsp+0xe0]
374: jmp 44d
380: vmulpd zmm2,zmm1,[r15+r13*8-0xc0]
388: vmovupd zmm3,[rdx+r13*8-0xc0]
(continued on next page)

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 38

https://colfaxresearch.com/

C.6 Zapcc C STRUCTURE FUNCTION

(continued from previous page)
390: vsubpd zmm3,zmm3,zmm0
396: vmulpd zmm3,zmm3,zmm3
39c: vfmadd213pd zmm3,zmm2,[rsp+0x160]
3a7: vmovupd [rsp+0x160],zmm3
3b2: vaddpd zmm2,zmm2,[rsp+0x60]
3bd: vmovupd [rsp+0x60],zmm2
3c8: vmulpd zmm2,zmm1,[r15+r13*8-0x80]
3d0: vmovupd zmm3,[rdx+r13*8-0x80]
3d8: vsubpd zmm3,zmm3,zmm0
3de: vmulpd zmm3,zmm3,zmm3
3e4: vfmadd213pd zmm3,zmm2,[rsp+0x1a0]
3ef: vmovupd [rsp+0x1a0],zmm3
3fa: vaddpd zmm2,zmm2,[rsp+0xa0]
405: vmovupd [rsp+0xa0],zmm2
410: vmulpd zmm2,zmm1,[r15+r13*8-0x40]
418: vmovupd zmm3,[rdx+r13*8-0x40]
420: vsubpd zmm3,zmm3,zmm0
426: vmulpd zmm3,zmm3,zmm3
42c: vfmadd213pd zmm3,zmm2,[rsp+0x1e0]
437: vaddpd zmm2,zmm2,[rsp+0xe0]
442: vmovupd [rsp+0x1e0],zmm3
44d: vmovupd [rsp+0xe0],zmm2
458: vmulpd zmm1,zmm1,[r15+r13*8]
45f: vmovupd zmm2,[rdx+r13*8]
466: vsubpd zmm0,zmm2,zmm0
46c: vmulpd zmm0,zmm0,zmm0
472: vfmadd213pd zmm0,zmm1,[rsp+0x220]
47d: vmovupd [rsp+0x220],zmm0
488: vaddpd zmm0,zmm1,[rsp+0x120]
493: vmovupd [rsp+0x120],zmm0
49e: add r13,0x1
4a2: cmp r13,rax
4a5: jl 290

Listing 37: Assembly of critical v-loop produced by the ZAPCC compiler.

On our test system, this sequence of instructions yields 23.40 GFLOP/s in single threaded mode and
840.57 GFLOP/s when running with 96 threads.

Although this sequence of instructions appears to be longer and more involved than that produced by
Clang, a closer look shows that the instructions between lines 2a7 and 369 are repeated in lines 380
through 442. The test and je instruction pair on lines 29e and 2a1 jump execution to line 380 if the
r12b register contains 0, bypassing the instructions between lines 2a7 and 369. On the other hand, if the
r12b register does not contain 0, the instructions between 2a7 and 369 are executed and control jumps
on line 374 to line 44d bypassing the repeated block between lines 380 and 442. While it is impossible
to tell which branch is used more often without knowing what the contents of the r12b register are, it is
likely that one of the branches is taken very infrequently.

Since both blocks contain the exact same instructions, it is not clear what the purpose of the compli-
cated jumps is. A clue may be found in the Clang listings (Listing 35). Notice that both Listings 35 and

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 39

https://colfaxresearch.com/

C.7 PGC++ C STRUCTURE FUNCTION

37 contain the same instructions, including the test instruction (line 29e in both listings). However,
while the Zapccproduced listings follow the test with a je, the Clang produced listings omit the jump
instruction along with one of the two blocks of identical code.

We hypothesize that Zapcc skips some of the steps taken by Clang to remove dead code, etc. This may
explain how Zapcc manages to produce equally optimized code but with a much shorter compile time than
Clang.

C.7. PGC++

We compile the code using the compile line in Listing 38

pgc++ -o critical.o -c critical.cpp -D__ALGORITHM__=OBLKIO_OPT -D__AUTO__
-O3 -tp=haswell -fast -O4 -fma
-Msmart -Mfma -Mcache_align
-Mipa=all -Mmovnt -mp -Mquad
-Msafeptr=all -Minfo=all
-Mnoprefetch

Listing 38: Compile line for compiling the structure function critical.cpp source file with PGC++.

Listing 39 shows the assembly instructions generated by PGC++ for the time consuming inner v-loop
using the Intel syntax. Only 6 out of the 16 available ymm registers are used.

680: mov r15,[rsp+0x3c8]
688: vmovupd ymm2,[r15+rax*1]
68e: vsubpd ymm3,ymm2,ymm0
692: mov r15,[rsp+0x3c0]
69a: vmovupd ymm2,[r15+rax*1]
6a0: vmulpd ymm4,ymm2,ymm1
6a4: vmulpd ymm5,ymm4,ymm3
6a8: mov r15,[rsp+0x3b8]
6b0: vmovupd ymm2,[r15+rax*1]
6b6: vfmadd231pd ymm2,ymm5,ymm3
6bb: vmovupd [r15+rax*1],ymm2
6c1: mov r15,[rsp+0x3b0]
6c9: vmovupd ymm2,[r15+rax*1]
6cf: vaddpd ymm3,ymm2,ymm4
6d3: vmovupd [r15+rax*1],ymm3
6d9: vmovupd ymm2,[r13+rax*1+0x0]
6e0: mov r15,[rsp+0x3a8]
6e8: vsubpd ymm3,ymm2,ymm0
6ec: vmovupd ymm2,[r15+rax*1]
6f2: vmulpd ymm4,ymm2,ymm1
6f6: vmulpd ymm5,ymm4,ymm3
6fa: vmovupd ymm2,[r14+rax*1]
700: vfmadd231pd ymm2,ymm5,ymm3
705: vmovupd [r14+rax*1],ymm2
70b: vmovupd ymm3,[r12+rax*1]
711: vaddpd ymm2,ymm3,ymm4
(continued on next page)

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 40

https://colfaxresearch.com/

C.8 Takeaway C STRUCTURE FUNCTION

(continued from previous page)
715: vmovupd [r12+rax*1],ymm2
71b: vmovupd ymm3,[r10+rax*1]
721: vmovupd ymm4,[rbx+rax*1]
726: vsubpd ymm2,ymm3,ymm0
72a: vmulpd ymm3,ymm4,ymm1
72e: vmulpd ymm5,ymm3,ymm2
732: vmovupd ymm4,[r11+rax*1]
738: vfmadd231pd ymm4,ymm5,ymm2
73d: vmovupd [r11+rax*1],ymm4
743: vmovupd ymm2,[r9+rax*1]
749: vaddpd ymm4,ymm2,ymm3
74d: vmovupd [r9+rax*1],ymm4
753: vmovupd ymm2,[rsi+rax*1]
758: vmovupd ymm4,[r8+rax*1]
75e: vsubpd ymm3,ymm2,ymm0
762: vmulpd ymm2,ymm1,ymm4
766: vmulpd ymm5,ymm2,ymm3
76a: vmovupd ymm4,[rdi+rax*1]
76f: vfmadd231pd ymm4,ymm5,ymm3
774: vmovupd [rdi+rax*1],ymm4
779: vmovupd ymm3,[rdx+rax*1]
77e: vaddpd ymm4,ymm3,ymm2
782: vmovupd [rdx+rax*1],ymm4
787: add rax,0x20
78b: cmp rax,rcx
78e: jb 680

Listing 39: Assembly of critical v-loop produced by the PGI compiler.

On our test system, this sequence of instructions yields 12.82 GFLOP/s in single threaded mode.
PGC++ does not support AVX-512 instruction generation as of the 17.4 Community Edition and 17.9

Professional Edition. Hence we instruct the compiler to target the Haswell microarchitecture.The resulting
assembly contains AVX2 instructions and uses 256-bit wide ymm registers as opposed to the 512-bit wide
zmm registers.

There are a total of 16 memory read instructions and 8 memory write instructions for a total of 24
memory operations per iteration of the v-loop.

We believe that the number of memory operations combined with the usage of AVX2 instructions
as opposed to AVX-512 instructions explains the relatively poor performance observed with the PGC++
generated code.

C.8. TAKEAWAY

Hand tuning code for optimal performance always yields superior performance from every compiler.
However, the absolute performance achieved by the different compilers can still be very different. Disre-
garding the PGC++ results because they are not generated using AVX-512 instructions, in this computa-
tional kernel we see a performance difference of 2.5× between the best and worst performing compilers
(Intel C++ compiler v/s Clang).

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 41

https://colfaxresearch.com/

D COMPILATION SPEED

D. COMPILATION SPEED

Our test for compilation speed sets each compiler with the goal of compiling the templated C++ linear
algebra library ‘TMV’. We pick TMV because the library supports all our compilers right of the box.
Furthermore, the total single threaded compile time is manageable, i.e., long enough to eliminate statistical
variations in compile time for individual files but short enough to obtain results quickly.

The TMV codebase consists of approximately 370 source and header files including files for instanti-
ating templates. TMV uses the Python-based SCons build system to manage the build process. We had
to make minor modifications to the top-level SConstruct file to update a few deprecated compiler options
and include paths in order to get the build system to successfully build the project with each compiler. Our
changes do not substantially change the build process.

Listing 40 shows the TMV implementation of LU decomposition with partial pivoting. We have per-
formed minor edits to the code to remove commented out code and debug sections. As is clear from the
listings, the TMV codebase makes heavy use of advanced C++ techniques and is representative of modern
C++ codebases.

It should come as no surprise that the Zapcc compiler is the fastest compiler. The LLVM infrastructure
is designed to support just-in-time (JIT) compilation for languages such as Julia, and Crystal. JIT compiled
languages rely on compiler speed to obfuscate the comp;ile process. LLVM-based compilers are amongst
the fastest compilers in the test. Zapcc was designed to provide a speed advantage over Clang.

The slowest compiler in the test is the PGI compiler. At 2750 s of compile time, PGC++ takes ∼ 5.4×
longer to compile our test case than Zapcc. PGI is working on an LLVM-based version of the PGI compiler
that should be significantly faster.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 42

https://colfaxresearch.com/

D COMPILATION SPEED

1 template <class T>
2 static void NonBlockLUDecompose(MatrixView<T> A, ptrdiff_t* P) {
3 TMVAssert(A.ct()==NonConj);
4 TMVAssert(A.iscm());
5 typedef TMV_RealType(T) RT;
6 const ptrdiff_t N = A.rowsize();
7 const ptrdiff_t M = A.colsize();
8 const ptrdiff_t R = TMV_MIN(N,M);
9 const T* Ujj = A.cptr();

10 const ptrdiff_t Ads = A.stepj()+1;
11 ptrdiff_t* Pj = P;
12 for (ptrdiff_t j=0; j<R; ++j,Ujj+=Ads,++Pj) {
13 if (j > 0) {
14 // Solve for U(0:j,j))
15 A.col(j,0,j) /= A.subMatrix(0,j,0,j).lowerTri(UnitDiag);
16 // Solve for v = L(j:M,j) U(j,j)
17 A.col(j,j,M) -= A.subMatrix(j,M,0,j) * A.col(j,0,j);
18 }
19 // Find the pivot element
20 ptrdiff_t ip;
21 RT piv = A.col(j,j,M).maxAbsElement(&ip);
22 // ip is relative to j index, not absolute.
23 // Check for underflow:
24 if (TMV_Underflow(piv)) {
25 *Pj = j;
26 A.col(j,j,M).setZero();
27 continue;
28 }
29 // Swap the pivot row with j if necessary
30 if (ip != 0) {
31 ip += j;
32 TMVAssert(ip < A.colsize());
33 TMVAssert(j < A.colsize());
34 A.swapRows(ip,j); // This does both Lkb and A’
35 *Pj = ip;
36 } else *Pj = j;
37

38 // Solve for L(j+1:M,j)
39 // If Ujj is 0, then all of the L’s are 0.
40 // ie. Ujj Lij = 0 for all i>j
41 // Any value for Lij is valid, so leave them 0.
42 if (*Ujj != T(0)) A.col(j,j+1,M) /= *Ujj;
43 }
44 if (N > M) {
45 // Solve for U(0:M,M:N))
46 A.colRange(M,N) /= A.colRange(0,M).lowerTri(UnitDiag);
47 }
48 }

Listing 40: Sample TMV code for non-block LU decomposition with partial pivoting.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 43

https://colfaxresearch.com/

	The Importance of a Good Compiler
	Testing Methodology
	Results
	Summary
	Appendix LU Decomposition
	Appendix Jacobi Solver
	Appendix Structure Function
	Appendix Compilation Speed

