
CAPABILITIES OF INTEL R⃝ AVX-512
IN INTEL R⃝ XEON R⃝ SCALABLE PROCESSORS (SKYLAKE)

Alaa Eltablawy and Andrey Vladimirov

Colfax International

September 29, 2017

Abstract
This paper reviews the Intel R⃝ Advanced Vector Ex-

tensions 512 (Intel R⃝ AVX-512) instruction set and an-
swers two critical questions:

1. How do Intel R⃝ Xeon R⃝ Scalable processors based
on the Skylake architecture (2017) compare to
their predecessors based on Broadwell due to
AVX-512?

2. How are Intel Xeon processors based on Sky-
lake different from their alternative, Intel R⃝ Xeon
Phi

TM
processors with the Knights Landing archi-

tecture, which also feature AVX-512?

We address these questions from the programmer’s
perspective by demonstrating C language code of mi-
crokernels benefitting from AVX-512. For each exam-
ple, we dig deeper and analyze the compilation prac-
tices, resultant assembly, and optimization reports.

In addition to code studies, the paper contains
performance measurements for a synthetic benchmark
with guidelines on estimating peak performance. In
conclusion, we outline the workloads and application
domains that can benefit from the new features of AVX-
512 instructions.

Table of Contents

1 Intel R⃝ Advanced Vector Extensions 512 . . 2
1.1 Instruction Sets in Intel architecture . . 2
1.2 AVX-512 Modules 3
1.3 Automatic Vectorization 4

2 Skylake and Broadwell 9
2.1 AVX-512: ZMM Registers 9
2.2 Clock Frequency and Peak Performance 14
2.3 AVX-512CD: Conflict Detection 15
2.4 AVX-512F: Masking 19
2.5 AVX-512F: Compress/Expand 23
2.6 AVX-512F: New Shuffle Instructions . 25
2.7 AVX-512F: Gather/Scatter 29
2.8 AVX-512F: Embedded Broadcasting . 32
2.9 AVX-512F: Ternary Logic 35
2.10 AVX-512F: Embedded Rounding . . . 37

3 Skylake and Knights Landing 38
3.1 AVX-512ER: Exponential, Reciprocal . 38
3.2 AVX-512PF: Prefetch for Gather/Scatter 41
3.3 AVX-512DQ: Double and Quad Words 44
3.4 AVX-512BW: Byte and Word Support . 46
3.5 AVX-512VL: Vector Length Orthog.-ty 48

4 Applicability of AVX-512 50

PUBLICATIONS
colfaxresearch.com/research

TRAINING
colfaxresearch.com/training

SERVICES
colfaxresearch.com/services

Colfax Research is a department of Colfax
International, a Silicon Valley-based provider of novel
computing systems. Our research team works to help
you leverage new hardware and software tools to
harness the full power of computational innovations.

We work independently as well as collaborate with other researchers in science and
industry to produce case studies, white papers, and educational materials with the
goal of developing a wide knowledge base of the applications of current and future
computational technologies. In addition, we run educational programs, provide
consulting services, and offer specialized hosting for technology adoption programs.

Who We Are What We Do

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 1

https://colfaxresearch.com/

1 INTEL R⃝ ADVANCED VECTOR EXTENSIONS 512

1. INTEL R⃝ ADVANCED VECTOR EXTENSIONS 512

1.1. INSTRUCTION SETS IN INTEL ARCHITECTURE

Vector instructions are an essential functionality of modern processors. These instructions are one of
the forms of SIMD (Single Instruction Multiple Data) parallelism. Vector instructions enable faster com-
puting in cases where a single stream of instructions inside a process or thread may be applied to multiple
data elements. For example, the addition (multiplication) of two arrays element by element can be per-
formed with vector instructions, which add (multiply) several elements concurrently. Other instructions in
modern vector instruction sets include fused multiply-add (FMA), some transcendental functions, division
and reciprocal calculation. Some instruction sets support vector lane masking, permutation, and shuffling.
Depending on the data type and CPU architecture, modern Intel processors can operate on vectors of 2 to
16 floating-point numbers or 2 to 64 integers.

Intel architecture processors support legacy as well as modern instruction sets, from 64-bit Multimedia
Extensions (MMX) to the new 512-bit instructions AVX-512. Newer instruction sets generally provide
a greater variety of operations and data types and also support larger vectors. As new Intel architecture
processors are released, they support newer instruction sets, usually maintaining backward compatibility
with the older ones. Figure 1 shows the microarchitecture codenames, model families and supported
instructions in enterprise-class Intel processors dating back to 2009.

SSE*

AVX

AVX2

AVX-512F

AVX-512CD

AVX-512BW

AVX-512VL

AVX-512DQ

SSE*

AVX

AVX2

AVX-512F

AVX-512CD

AVX-512PF

AVX-512ER

SSE*

AVX

AVX2

SSE*

AVX

SSE*

Sandy Bridge (2012):
Intel Xeon
Processor
E3/E5 family

Ivy Bridge (2013):
Intel Xeon
Processor
E3 v2/E5 v2/E7 v2
Family

Haswell (2014):
Intel Xeon
Processor
E3 v3/E5 v3/E7 v3
Family

Broadwell (2015):
Intel Xeon
Processor
E3 v4/E5 v4/E7 v4
Family

Knights Landing
(2016):
Intel Xeon Phi
Processor x200
Family

Skylake (2017):
Intel Xeon Scalable
Processor Family

Nehalem (2009),
Westmere (2010):
Intel Xeon
Processors
(legacy)

IMCI

Knights Corner
(2012):
Intel Xeon Phi
Coprocessor x100
Family

128-bit

256-bit

256-bit

512-bit

512-bit

512-bit

— primary instruction set — legacy instruction set

Figure 1: Instruction sets supported by different architectures.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 2

https://colfaxresearch.com/

1.2 AVX-512 Modules 1 INTEL R⃝ ADVANCED VECTOR EXTENSIONS 512

At the time of writing (September 2017), the most recent of the widely adopted enterprise proces-
sors use vector instructions up to Intel R⃝ AVX and Intel R⃝ AVX2. Specifically, these instructions are the
foundation of the Intel R⃝ Xeon R⃝ E5 v4 processor family (formerly Broadwell) introduced in 2015. AVX
and AVX2 had been the most advanced of Intel instruction sets until the introduction of Intel R⃝ Advanced
Vector Extensions 512 (Intel R⃝ AVX-512 or just AVX-512 in subsequent discussion). AVX-512 as first
used in Intel R⃝ Xeon PhiTM processor family x200 (formerly Knights Landing) launched in 2016. Later, in
2017, AVX-512 was used in Intel R⃝ Xeon R⃝ processor Scalable family (formerly Skylake).

The most notable new feature of AVX-512 compared to AVX/AVX2 is the 512-bit vector register
width, which is twice the size of the AVX/AVX2 registers. However, AVX-512 is more than just a promo-
tion of the vector register width from 256 to 512 bits. It adds capabilities that did not exist in AVX/AVX2
and earlier instruction sets, such as high-accuracy transcendental functions, histogram support, byte, word,
double word and quadword scalar data types, masking, and others.

To developers and maintainers of computational codes, the introduction of AVX-512 is a call for ac-
tion. AVX-512 instructions offer significant speedup when used in applications. However, this speedup is
not automatic, and the software developer is responsible for enabling vector processing in computational
codes. In this paper, we study the developer’s perspective on the innovations brought about by AVX-512.

1.2. AVX-512 MODULES

Skylake and Knights Landing implement different flavors of AVX-512. The Knights Landing archi-
tecture uses modules AVX-512F, -CD, -BW and -PF. Two of these modules, AVX-512F and -CD are also
found in the Skylake architecture, which additionally features AVX-512DQ, -BW and -VL. Table 1 shows
AVX-512 modules found in Skylake (SKL) and Knights Landing (KNL) architectures and lists the main
functionality of each module.

Module Functionality SKL KNL
AVX-512F The fundamental instruction set, it expands most of AVX functions to sup-

port 512-bit registers and adds masking, embedded broadcasting, embedded
rounding and exception control.

√ √

AVX-512CD Conflict Detection instruction set allows vectorization of loops with vector de-
pendency due to writing conflicts

√ √

AVX-512BW Byte and Word support instruction set: 8-bit and 16-bit integer operations,
processing up to 64 8-bit elements or 32 16-bit integer elements per vector

√

AVX-512DQ Double and Quad word instruction set, supports new instructions for double-
word (32-bit) and quadword (64-bit) integer and floating-point elements

√

AVX-512VL Vector Length extensions: support for vector lengths smaller than 512 bits
√

AVX-512PF Data prefetching for gather and scatter instructions
√

AVX-512ER Exponential and Reciprocal instruction set for high-accuracy base-2 exponen-
tial functions, reciprocals, and reciprocal square root

√

Table 1: AVX-512 modules, functionality, and architectures supporting each module.

In anticipation of future Intel architectures, it is important to mention that not all AVX-512 modules are
required to be supported by all architectures implementing them. AVX-512F, the Fundamental extensions,
is the only module required to be supported by all future architectures implementing AVX-512.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 3

https://colfaxresearch.com/

1.3 Automatic Vectorization 1 INTEL R⃝ ADVANCED VECTOR EXTENSIONS 512

1.3. AUTOMATIC VECTORIZATION

There are two essential ways to take advantage of wide vector registers and vectorization benefits:

1. explicit vectorization using assembly and intrinsic functions and

2. automatic vectorization of loops by the compiler.

Although explicit vectorization is more controllable, it lacks portability. For instance, code using AVX-
512 assembly or intrinsics will not work on an older processor that only supports instruction sets up to
AVX2 (e.g., Broadwell architecture, BDW). Conversely, code using explicit AVX/AVX2 instructions will
work on a Skylake or Knights Landing architecture, but in legacy mode, where it uses half the register
width and incomplete functionality. In contrast, automatic vectorization is portable. If the compiler can
vectorize a code for an older instruction set, then usually it can also vectorize it for newer instructions.
Therefore, only a recompilation is needed to produce an executable for a new processor architecture.

Table 2 shows the compiler arguments required for automatic vectorization with AVX-512 using Intel
C/C++/FORTRAN compilers 17/18 and the corresponding arguments for GNU and LLVM compilers.

Target Intel compilers 17.x Intel compilers 18.x GNU & LLVM
Cross-platform -xCommon-AVX512 -xCommon-AVX512 -mfma -mavx512f

-mavx512cd
SKL processors -xCore-AVX512 -xCore-AVX512

-qopt-zmm-usage=high
-march=skylake-avx512

KNL processors -xMIC-AVX512 -xMIC-AVX512 -march=knl

Table 2: AVX-512 compilation flags for Intel C/C++/FORTRAN 2017, GNU and LLVM compilers.

In Intel compilers, automatic vectorization is enabled at the default optimization level -O2, so no
additional arguments are needed. In GCC, to enable automatic vectorization, use the additional argument
-O3. Additionally, to vectorize transcendental functions with GCC, -ffast-math may be needed.

Listing 1 is an example of code that may be automatically vectorized by the compiler.

1 void VectorAddition(double * restrict A, double * restrict B) {
2 int i;
3 for(i = 0; i < 10000; i++)
4 A[i]+=B[i];
5 }

Listing 1: Automatic vectorization example, auto vec.c.

When the loop count (10000 in our case) is greater than the vector width, the compiler can combine several
scalar iterations of the loop into a single vector iteration and run the loop over the vector iterations. With
AVX-512, the vector width for double precision floating-point elements is 8, for single precision elements
it is 16. When the loop count is not a multiple of the vector width, a remainder loop will be executed.
Automatic vectorization does not require that the loop count is known at compilation time (i.e., we could
use a variable n instead of the constant 10000). However, if it is known at compilation time, the compiler
may choose a more efficient vectorization strategy.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 4

https://colfaxresearch.com/

1.3 Automatic Vectorization 1 INTEL R⃝ ADVANCED VECTOR EXTENSIONS 512

Listing 2 shows how to compile the example code to produce an auto-vectorized object file (first
command), assembly listing (second command), and optimization report (third command). Throughout
the paper we use Intel compiler 17.0.2.174 and the corresponding arguments from Table 2.

icc -xCORE-AVX512 -c auto_vec.c
icc -xCORE-AVX512 -S auto_vec.c
icc -xCORE-AVX512 -c auto_vec.c -qopt-report=5

Listing 2: Compilation commands to produce an object file, an assembly listing, and an optimization report.

The first command line in Listing 2 will produce an object file auto vec.o that can be linked to
an executable and run on the target architecture. The second command will produce an assembly listing
in the file auto vec.s instead of machine code. The snippet in Listing 3 shows the loop part of this
assembly listing. You can identify the loop pattern by matching the label B1.8 to the combination of
counter increment addq, loop termination condition check cmpq and conditional jump jb back to B1.8.

user@node% cat auto_vec.s
...
..B1.8: # Preds ..B1.8 ..B1.7

vmovups (%rdi,%r8,8), %zmm0 #4.5
vmovups 64(%rdi,%r8,8), %zmm1 #4.5
vmovups 128(%rdi,%r8,8), %zmm4 #4.5
vmovups 192(%rdi,%r8,8), %zmm5 #4.5
vaddpd (%rsi,%r8,8), %zmm0, %zmm2 #4.5
vaddpd 64(%rsi,%r8,8), %zmm1, %zmm3 #4.5
vaddpd 128(%rsi,%r8,8), %zmm4, %zmm6 #4.5
vaddpd 192(%rsi,%r8,8), %zmm5, %zmm7 #4.5
vmovupd %zmm2, (%rdi,%r8,8) #4.5
vmovupd %zmm3, 64(%rdi,%r8,8) #4.5
vmovupd %zmm6, 128(%rdi,%r8,8) #4.5
vmovupd %zmm7, 192(%rdi,%r8,8) #4.5
addq $32, %r8 #3.3
cmpq %rdx, %r8 #3.3
jb ..B1.8 # Prob 99% #3.3

...

Listing 3: Lines from the auto-vectorized assembly code.

Vectorization is apparent in this code because the instruction vmovups loads the data from memory
into the vector register, and vaddpd adds one vector to another. Here the prefix v- indicates the vec-
tor instruction, add is the name of the instruction, and the suffix -pd stands for “packed double”, i.e.,
the operation applies to a vector of double precision floating-point numbers. Other suffixes you may see
include: -ps (“packed single”), -epi64/-epi32/-epi16/-epi8 for vectors of signed 64-, 32-, 16-
or 8-bit integers; -epu64/-epu32/-epu16/-epu8 for vectors of unsigned integers; and suffixes indi-
cating the absence of vectorization: -sd (“scalar double”) and -ss (“scalar single”). The names of the
registers beginning with ZMM indicate 512-bit vectors of AVX-512. For other instruction sets, you may
see 256-bit YMM registers (AVX/AVX2) or 128-bit XMM registers (SSE*).

In addition to studying the assembly, you can diagnose vectorization using the optimization report.
To do that, compile the file with the argument -opt-report=n, where n is the desired verbosity level
from 1 to 5. An example of this argument is shown in the third command of Listing 2. In our case, the

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 5

https://colfaxresearch.com/

1.3 Automatic Vectorization 1 INTEL R⃝ ADVANCED VECTOR EXTENSIONS 512

command produces an optimization report file auto vec.optrpt, in which you will find the remarks
shown in Listing 4.

user@node% cat auto_vec.optrpt
...
LOOP BEGIN at auto_vec.c(3,3)
<Peeled loop for vectorization>

remark #15389: vectorization support: reference A[i] has unaligned access [auto_vec.c(4,5)]
remark #15389: vectorization support: reference A[i] has unaligned access [auto_vec.c(4,5)]
remark #15389: vectorization support: reference B[i] has unaligned access [auto_vec.c(4,11)]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15305: vectorization support: vector length 8
remark #15309: vectorization support: normalized vectorization overhead 1.167
remark #15301: PEEL LOOP WAS VECTORIZED
remark #25015: Estimate of max trip count of loop=1

LOOP END

LOOP BEGIN at auto_vec.c(3,3)
remark #15388: vectorization support: reference A[i] has aligned access [auto_vec.c(4,5)]
remark #15388: vectorization support: reference A[i] has aligned access [auto_vec.c(4,5)]
remark #15389: vectorization support: reference B[i] has unaligned access [auto_vec.c(4,11)]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15305: vectorization support: vector length 16
remark #15399: vectorization support: unroll factor set to 2
remark #15309: vectorization support: normalized vectorization overhead 0.591
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 8
remark #15477: vector cost: 0.680
remark #15478: estimated potential speedup: 11.550
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=312

LOOP END

LOOP BEGIN at auto_vec.c(3,3)
<Remainder loop for vectorization>

remark #15389: vectorization support: reference A[i] has unaligned access [auto_vec.c(4,5)]
remark #15389: vectorization support: reference A[i] has unaligned access [auto_vec.c(4,5)]
remark #15389: vectorization support: reference B[i] has unaligned access [auto_vec.c(4,11)]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15305: vectorization support: vector length 8
remark #15309: vectorization support: normalized vectorization overhead 1.167
remark #15301: REMAINDER LOOP WAS VECTORIZED

LOOP END
...

Listing 4: Optimization report produced by the Intel C compiler.

In this particular example we see that the compiler produced three parts of the loop:

1. A peel loop designed to process a few elements at the start of the loop to reach an aligned boundary
in memory. This loop is taken only if the beginning of A is not on a 64-byte aligned boundary (i.e.,
memory address of A[0] is not a multiple of 64 bytes).

2. The main loop that processes the bulk of the iterations, starting with the aligned address to which
the peel loop has progressed.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 6

https://colfaxresearch.com/

1.3 Automatic Vectorization 1 INTEL R⃝ ADVANCED VECTOR EXTENSIONS 512

3. The remainder loop that processes a few elements at the end of the loop in case the number of loop
iterations minus the peel size is not a multiple of the vector length (or the vector length multiplied
by the unroll factor).

In codes that have long loops or short loops with aligned data, the peel loop and the remainder loop do
not take a significant fraction of the processing time. Therefore, for our discussions in this paper, we will
be only interested in the main loop.

When we produce the assembly with -S, we find it useful to use an additional compiler argument,
-qopt-report-embed, which inserts remarks about vectorization into the assembly. In particular, it
helps us to distinguish between the code for the peel loop, the main loop, and the remainder loop. You
can see how they look in Listing 5. We do not show these remarks in assembly listings in the rest of this
paper, but we used them in the writing process to identify the main loop body.

user@node% icc -xCORE-AVX512 -S auto_vec.c -qopt-report-embed
user@node% cat auto_vec.s
..L3:

LOOP WAS VECTORIZED
PEELED LOOP FOR VECTORIZATION
MASKED VECTORIZATION
VECTORIZATION HAS UNALIGNED MEMORY REFERENCES
VECTORIZATION SPEEDUP COEFFECIENT 1.641602
VECTOR TRIP COUNT IS ESTIMATED CONSTANT
VECTOR LENGTH 8
NORMALIZED VECTORIZATION OVERHEAD 1.125000
MAIN VECTOR TYPE: 64-bits floating point

vpcmpud $1, %ymm0, %ymm1, %k1 #3.3
addq $8, %rcx #3.3
vpaddd %ymm2, %ymm1, %ymm1 #3.3
vmovupd (%rdx,%rdi), %zmm3{%k1}{z} #4.5

...

..L4:
LOOP WAS UNROLLED BY 2
LOOP WAS VECTORIZED
VECTORIZATION HAS UNALIGNED MEMORY REFERENCES
VECTORIZATION SPEEDUP COEFFECIENT 11.562500
VECTOR TRIP COUNT IS KNOWN CONSTANT
VECTOR LENGTH 16
NORMALIZED VECTORIZATION OVERHEAD 0.562500
MAIN VECTOR TYPE: 64-bits floating point

vmovups (%rdi,%r8,8), %zmm0 #4.5
vmovups 64(%rdi,%r8,8), %zmm1 #4.5
vmovups 128(%rdi,%r8,8), %zmm4 #4.5

...

..L5:
LOOP WAS VECTORIZED
REMAINDER LOOP FOR VECTORIZATION
MASKED VECTORIZATION
VECTORIZATION HAS UNALIGNED MEMORY REFERENCES
VECTORIZATION SPEEDUP COEFFECIENT 3.550781
VECTOR TRIP COUNT IS ESTIMATED CONSTANT
VECTOR LENGTH 8
NORMALIZED VECTORIZATION OVERHEAD 1.125000
MAIN VECTOR TYPE: 64-bits floating point

vpcmpud $1, %ymm0, %ymm1, %k1 #3.3
lea (%rax,%rcx), %r8d #4.5
vpaddd %ymm2, %ymm1, %ymm1 #3.3
movslq %r8d, %r8 #4.5

Listing 5: Remarks in the assembly listing produced by the Intel compiler with -qopt-report-embed.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 7

https://colfaxresearch.com/

1.3 Automatic Vectorization 1 INTEL R⃝ ADVANCED VECTOR EXTENSIONS 512

With the GNU C compiler, the equivalent compilation commands are shown in Listing 6.

gcc -O3 -march=skylake-avx512 -c auto_vec.c
gcc -O3 -march=skylake-avx512 -S auto_vec.c
gcc -O3 -march=skylake-avx5122 -c auto_vec.c -fopt-info-vec

Listing 6: Compilation commands for GCC to produce executable code and assembly listing.

The assembly produced by GCC 6.3.0 (see Listing 7) also contains vectorized addition. However, you
can see that GCC has decided not to unroll the loop, possibly leading to a less efficient implementation.

.L4:
vmovupd (%r8,%rax), %zmm0
vaddpd (%rcx,%rax), %zmm0, %zmm0
addl $1, %edx
vmovapd %zmm0, (%rcx,%rax)
addq $64, %rax
cmpl %r9d, %edx
jb .L4

Listing 7: Assembly of vector addition produced by GCC.

The optimization report produced by GCC with -fopt-info-vec is much less informative than
Intel compiler’s report, as shown in Listing 8.

user@node% gcc -O3 -march=skylake-avx512 -S auto_vec.c -fopt-info-vec
auto_vec.c:3:3: note: loop vectorized
auto_vec.c:3:3: note: loop peeled for vectorization to enhance alignment

Listing 8: Optimization report of GCC.

It is possible to obtain more information with -fopt-info-vec-all, or restrict the output to failed
vectorization with -fopt-info-vec-missed. However, the output of GCC with these arguments
in our simple case is not as informative and as easy to read as the Intel compiler’s report. Note that
the previously used argument for vectorization diagnostics, -ftree-vectorizer-verbose=n, is
deprecated in version 6.3.0 of GCC that we used for the materials of this paper.

Using the correct compiler arguments for automatic vectorization is only one of the instruments in the
programmer’s toolbox. In some cases, the programmer must expose vectorization opportunities, adjust
data containers, guide the compiler with directives, rebalance parallelism in the application, or optimize
the data traffic to get vectorization working efficiently. These techniques go beyond the scope of this paper,
and we can refer you to our free training programs for more details (e.g., [2, 3]).

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 8

https://colfaxresearch.com/

2 SKYLAKE AND BROADWELL

2. SKYLAKE AND BROADWELL

As we mentioned above, Intel Xeon processor Scalable family based on the Skylake (SKL) microar-
chitecture is the first Intel Xeon product line to support AVX-512. These processors succeed the Intel
Xeon processor v4 family based on the Broadwell (BDW) microarchitecture, which supports instructions
from MMX and SSE to AVX and AVX2.

Section 2 explains and illustrates with examples the differences in vectorization capabilities of the
Skylake and Broadwell architectures.

2.1. AVX-512: ZMM REGISTERS

Skylake cores support 512-bit registers while Broadwell cores use 256-bit vectors. Some instructions
have the same throughput (sustained number of pipelined instructions processed per cycle) on SKL and
BDW. For example, both BDW and SKL have a throughput for FMA of 2 instructions per cycle. These
considerations may lead to the erroneous conclusion that by just changing the width of vector iterations
in the code (or the names of vector registers in the assembly), we can port a code from BDW to SKL and
observe a speedup by a factor of 2 (relative to clock frequency). In reality, the porting process has several
complications:

1. SKL cores want to consume 2x as much data per cycle as BDW cores. However, the bandwidth of
SKL caches and memory is only slightly greater than on BDW. The difference between the amount
of improvement in throughput and in bandwidth means that data reuse optimizations (such as loop
tiling) must be adjusted before peak performance on SKL may be observed.

2. The latency of fast instructions, such as FMA, is different. On BDW, FMA from AVX2 has a latency
of 5 cycles, while on SKL the latency of FMA from AVX-512 is 4 cycles (on KNL, it is 6 cycles).
Therefore, more FMA instructions must be pipelined on BDW than on SKL to observe the effective
throughput of 2 instructions per cycle.

3. The number of available registers is different. Each SKL core supports 32 vector registers, while
BDW cores have 16 registers. Additional registers expand the opportunities for pipelining and data
reuse in registers on SKL.

The example in Listing 9 shows a benchmark of the fused multiply-add (FMA) operation. This code
is written in a way that the dataset can be contained completely in the registers. Therefore, it is a pure test
of performance. The code issues several FMA instructions in a row, which are independent (do not have
to wait for each other’s results). Multiple instructions are needed to populate the pipeline with sufficient
amount of work, which will help to achieve the performance limited by the FMA instruction throughput,
rather than latency. Therefore, n chained fmas must be chosen to be no less than the ratio of the
FMA latency (in cycles) to its reciprocal throughput (cycles per instruction). At the same time, this value
must be small enough that all of the fa* variables can be contained within the registers of one core.
Correspondingly, lines must be added or removed in blocks (R) and (E).

The dependence of the optimal number of chained FMAs on the architecture means that to tune the
code for Broadwell or Skylake, slightly different codes must be used for the two architectures. That is, of
course, in addition to using different compilation arguments for automatic vectorization.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 9

https://colfaxresearch.com/

2.1 AVX-512: ZMM Registers 2 SKYLAKE AND BROADWELL

1 #include <stdio.h>
2 #include <omp.h>
3
4 const int n_trials = 1000000000; // Enough to keep cores busy for a while and observe a steady state
5 const int flops_per_calc = 2; // Multiply + add = 2 instructions
6 const int n_chained_fmas = 10; // Must be tuned for architectures here and in blocks (R) and in (E)
7
8 int main() {
9

10 #pragma omp parallel
11 { } // Warm up the threads
12
13 const double t0 = omp_get_wtime(); // start timer
14 #pragma omp parallel
15 { // Benchmark in all threads
16 double fa[VECTOR_WIDTH*n_chained_fmas], fb[VECTOR_WIDTH], fc[VECTOR_WIDTH];
17
18 fa[0:VECTOR_WIDTH*n_chained_fmas] = 0.0; // prototype of a memory-based array
19 fb[0:VECTOR_WIDTH] = 0.5; // fixed
20 fc[0:VECTOR_WIDTH] = 1.0; // fixed
21
22 register double *fa01 = fa + 0*VECTOR_WIDTH; // This is block (R)
23 register double *fa02 = fa + 1*VECTOR_WIDTH; // To tune for a specific architecture,
24 register double *fa03 = fa + 2*VECTOR_WIDTH; // more or fewer fa* variables
25 register double *fa04 = fa + 3*VECTOR_WIDTH; // must be used
26 register double *fa05 = fa + 4*VECTOR_WIDTH;
27 register double *fa06 = fa + 5*VECTOR_WIDTH;
28 register double *fa07 = fa + 6*VECTOR_WIDTH;
29 register double *fa08 = fa + 7*VECTOR_WIDTH;
30 register double *fa09 = fa + 8*VECTOR_WIDTH;
31 register double *fa10 = fa + 9*VECTOR_WIDTH;
32
33 int i, j;
34 #pragma nounroll // Prevents automatic unrolling by compiler to avoid skewed benchmarks
35 for(i = 0; i < n_trials; i++)
36 #pragma omp simd // Ensures that vectorization does occur
37 for (j = 0; j < VECTOR_WIDTH; j++) { // VECTOR_WIDTH=4 for AVX2, =8 for AVX-512
38 fa01[j] = fa01[j]*fb[j] + fc[j]; // This is block (E)
39 fa02[j] = fa02[j]*fb[j] + fc[j]; // To tune for a specific architecture,
40 fa03[j] = fa03[j]*fb[j] + fc[j]; // more or fewer such FMA constructs
41 fa04[j] = fa04[j]*fb[j] + fc[j]; // must be used
42 fa05[j] = fa05[j]*fb[j] + fc[j];
43 fa06[j] = fa06[j]*fb[j] + fc[j];
44 fa07[j] = fa07[j]*fb[j] + fc[j];
45 fa08[j] = fa08[j]*fb[j] + fc[j];
46 fa09[j] = fa09[j]*fb[j] + fc[j];
47 fa10[j] = fa10[j]*fb[j] + fc[j];
48 }
49
50 fa[0:VECTOR_WIDTH*n_chained_fmas] *= 2.0; // Prevent dead code elimination
51 }
52 const double t1 = omp_get_wtime();
53
54 const double gflops = 1.0e-9*(double)VECTOR_WIDTH*(double)n_trials*(double)flops_per_calc*
55 (double)omp_get_max_threads()*(double)n_chained_fmas;
56 printf("Chained FMAs=%d, vector width=%d, GFLOPs=%.1f, time=%.6f s, performance=%.1f GFLOP/s\n",
57 n_chained_fmas, VECTOR_WIDTH, gflops, t1 - t0, gflops/(t1 - t0));
58
59 }

Listing 9: Fused multiply-add (FMA) benchmark with 8 chained FMAs.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 10

https://colfaxresearch.com/

2.1 AVX-512: ZMM Registers 2 SKYLAKE AND BROADWELL

We can estimate the optimal range for n chained fmas for both architectures.

• For Broadwell, FMA has a latency of 5 cycles and reciprocal throughput of 0.5 cycle (i.e., 2 instruc-
tions per cycle), so the number of chained FMAs must be no less than 5/0.5 = 10. At the same
time, with 16 registers per core, and two of them occupied by fb and fc, we can only use up to
16− 2 = 14 chained FMAs. So n chained fmas must be between 10 and 14, inclusive.

• For Skylake, FMA has a latency of 4 cycles and reciprocal throughput of 0.5 cycle (i.e., 2 instructions
per cycle), so the number of chained FMAs must be no less than 4/0.5 = 8. At the same time, with
32 registers per core, and two of them occupied by fb and fc, we can only use up to 32 − 2 = 30
chained FMAs. So n chained fmas must be between 8 and 30, inclusive, which is a much wider
range than for Broadwell.

To compile the code into assembly for the respective architectures, we used the commands shown
in Listing 10. As you can see, we are compiling different source files: for Broadwell, fma 10.c has
n chained fmas=10, and for Skylake, fma 08.c has n chained fmas=8.

icpc -qopenmp -DVECTOR_WIDTH=4 -xCORE-AVX2 -S -o fma_avx2_10.s fma_10.c
icpc -qopenmp -DVECTOR_WIDTH=8 -xCORE-AVX512 -S -o fma_avx512_08.s fma_08.c

Listing 10: Compilation of the fused multiply-add benchmark code for Broadwell and Skylake.

The generated assembly for Broadwell looks like in Listing 11. You can see the usage of
vfmadd213pd with two constant registers YMM0 and YMM7, and a set of registers YMM1 . . . YMM6
and YMM8 . . . YMM11 that serve as input as well as output. YMM are 256-bit wide AVX2 registers,
each containing four double precision numbers.

..B1.24: # Preds ..B1.24 ..B1.23
Execution count [1.00e+06]

incl %eax #35.5
vfmadd213pd %ymm0, %ymm7, %ymm11 #38.35
vfmadd213pd %ymm0, %ymm7, %ymm10 #39.35
vfmadd213pd %ymm0, %ymm7, %ymm9 #40.35
vfmadd213pd %ymm0, %ymm7, %ymm8 #41.35
vfmadd213pd %ymm0, %ymm7, %ymm2 #42.35
vfmadd213pd %ymm0, %ymm7, %ymm3 #43.35
vfmadd213pd %ymm0, %ymm7, %ymm4 #44.35
vfmadd213pd %ymm0, %ymm7, %ymm5 #45.35
vfmadd213pd %ymm0, %ymm7, %ymm6 #46.35
vfmadd213pd %ymm0, %ymm7, %ymm1 #47.35
cmpl $1000000000, %eax #35.5
jb ..B1.24 # Prob 99% #35.5

Listing 11: Lines from Fused Multiply Add example assembly code on Broadwell.

The generated assembly for Skylake looks like in Listing 12. It also uses the vfmadd213pd instruc-
tion, but ZMM are the 512-bit AVX-512 registers. Therefore, every instruction processes eight double
precision numbers.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 11

https://colfaxresearch.com/

2.1 AVX-512: ZMM Registers 2 SKYLAKE AND BROADWELL

..B1.24: # Preds ..B1.24 ..B1.23
Execution count [1.00e+06]

incl %eax #33.5
vfmadd213pd %zmm0, %zmm1, %zmm9 #36.35
vfmadd213pd %zmm0, %zmm1, %zmm8 #37.35
vfmadd213pd %zmm0, %zmm1, %zmm7 #38.35
vfmadd213pd %zmm0, %zmm1, %zmm6 #39.35
vfmadd213pd %zmm0, %zmm1, %zmm5 #40.35
vfmadd213pd %zmm0, %zmm1, %zmm4 #41.35
vfmadd213pd %zmm0, %zmm1, %zmm3 #42.35
vfmadd213pd %zmm0, %zmm1, %zmm2 #43.35
cmpl $1000000000, %eax #33.5
jb ..B1.24 # Prob 99% #33.5

Listing 12: Lines from Fused Multiply Add example assembly code on Skylake.

We measured the performance of these codes on two systems:

1. Intel Xeon processor 2699 v4 (Broadwell) with 2 sockets, each socket with 22 cores at 2.2 GHz and

2. Intel Xeon Platinum 8160 processor (Skylake) with 2 sockets, each socket with 24 cores at 2.1 GHz.

On both systems we turned off the Intel R⃝ Turbo Boost technology by disabling the intel pstate
driver via a kernel argument (to fall back to the acpi-cpufreq driver) and setting the CPUfreq governor
“userspace” combined with a fixed clock frequency of 2.2 GHz on Broadwell and 2.1 GHz on Skylake.

Our measurements were taken for a set of codes with the number of chained FMAs ranging from 1
(no chaining) to 35 (too many to fit even in the Skylake register file). We set the environment variable
KMP HW SUBSET=1t, which results in 44 OpenMP threads on Broadwell and 48 threads on Skylake,
and KMP AFFINITY=compact,1, which places one thread on each physical core.

The results are shown in Figure 2.

��

����

�����

�����

�����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ��� ���

���������������
�����������

������������
�����

��������������������������

���������������
�����������

������������
�����

�������
�������

��
�
��
��
��
���
�
�
�
�
��

����������������������

�������
���������

Figure 2: Performance of the FMA benchmark on Broadwell and Skylake architecture processors with 1 thread/core.

We observe the optimum performance on Broadwell for the number of chained FMAs between 10 and
14. This range is consistent with our theoretical predictions. The best performance that we measured is
1540 GFLOP/s.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 12

https://colfaxresearch.com/

2.1 AVX-512: ZMM Registers 2 SKYLAKE AND BROADWELL

Skylake achieves the optimum performance for the number of chained FMAs between 8 and 30.
This range is also in agreement with our theoretical expectations. The best performance on Skylake is
3030 GFLOP/s.

The range of well-performing values for n chained fmas is much wider on Skylake than on Broad-
well due to a lower latency of FMA and a larger register file on SKL. This fact is important for performance
tuning strategy: instead of trying to contain the traffic of reusable data in caches, you can have better results
by reusing data in the register file.

In cases when you do not have enough independent instructions to populate the pipeline, you can use
the Intel R⃝ Hyper-Threading technology. This technology allows each core in the CPU to present itself as
two (for Intel Xeon processors) or four (for Intel Xeon Phi processors) logical processors, each of which
is designed to execute a single thread. The instruction decode unit in the core can pipeline instructions
from all logical processors in a core. Therefore, with two threads per core on Intel Xeon Processors or
two to four on Intel Xeon Phi processors, you can achieve the plateau of peak performance with fewer
chained instructions. The same approach can be used to mask the latency of memory accesses when fully
containing memory traffic to caches or registers is not possible or practical.

Figure 3 shows the performance benchmark of FMA, this time measured with two threads per core by
setting KMP HW SUBSET=2t, which results in 88 threads on Skylake and 96 on Broadwell.

��

����

�����

�����

�����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ��� ���

���������������
�����������

������������
�����

�������������������������������

���������������
�����������

������������
�����

���������������
��
��
�
��
��
���
�
�
�
�
��

����������������������

�������
���������

Figure 3: Performance of the FMA benchmark on Broadwell and Skylake architecture processors with 2 threads/core.

In this case, we can see the plateau achieved with just 4 and 6 chained FMAs on Skylake and Broad-
well, respectively.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 13

https://colfaxresearch.com/

2.2 Clock Frequency and Peak Performance 2 SKYLAKE AND BROADWELL

2.2. CLOCK FREQUENCY AND PEAK PERFORMANCE

Now we should estimate the theoretical peak performance to make sure that the measured numbers
make sense. The peak performance for a single instruction (we will denote it as P) can be estimated as

P

GFLOP/s
=

Clock frequency

GHz
× (# of cores)× (vector width)× instructions

cycle
× FLOPs

instruction
. (1)

In the case of FMA, FLOPs/instruction = 2 by definition, and the throughput instructions/cycle = 2
in both our systems. So for our Broadwell CPU (Intel Xeon processor E5-2699 v4),

PBDW = 2.2× 44× 4× 2× 2 = 1549 GFLOP/s. (2)

For the Skylake CPU (Intel Xeon Platinum processor 8160), the base frequency listed in the CPU specifi-
cations [4] is 2.1 GHz. However, this frequency is applicable only to non-AVX workloads. For workloads
heavy in AVX-512, like our benchmark, the CPU reduces the clock frequency. According to Intel Xeon
processor Scalable family specification [5], page 15, when all cores are heavily utilized with AVX-512,
the processor clocks down to 2.0 GHz, making

PSKL = 2.0× 48× 8× 2× 2 = 3072 GFLOP/s. (3)

These peak performance estimates are only marginally higher than our measurements for Broadwell and
Skylake, 1540 and 3030 GFLOP/s, respectively. Quantitatively, our efficiency in both cases is 99%.

At the same time, both processors are capable of frequency scaling thanks to the Intel Turbo Boost
technology. The maximum turbo frequency for Intel Xeon processor E5-2699 v4 is 3.6 GHz and for Intel
Xeon Platinum 8160 it is equal to 3.7 GHz. If the Intel Turbo Boost technology is enabled in the BIOS, and
the CPUfreq governor in the Linux kernel allows frequency scaling, the runtime frequency may be greater
than the base clock frequency, up to the maximum Turbo frequency. We ran the benchmark without
modification on the Broadwell processor with enabled frequency scaling, and in the optimum case, the
cores settled into a clock frequency of 2.6 GHz and delivered a maximum performance of 1940 GFLOP/s,
which is 26% greater than the measurement without frequency scaling. On Skylake, cores settled into
a clock frequency of 2.0 GHz, producing the nearly same performance as without frequency scaling,
3040 GFLOP/s.

We will not discuss clock frequencies further in this publication, as this subject is only indirectly
related to the changes in the instruction set. We may cover this topic in a different paper.

Finally, regarding the throughput of FMA, it is important to mention that our Skylake processor deliv-
ered a throughput of two FMA instructions per cycle because it had two FMA units ported to port 0 and
5. Some other processors based on the Skylake architecture may have a single FMA unit located on port
0. The lack of a second FMA unit reduces the throughput expectation to one instruction per cycle. More
details can be found in Section 13.20 of[6].

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 14

https://colfaxresearch.com/

2.3 AVX-512CD: Conflict Detection 2 SKYLAKE AND BROADWELL

2.3. AVX-512CD: CONFLICT DETECTION

The conflict detection instruction introduced in AVX-512CD operates on a vector of memory addresses
or integers. It returns the set of vector lanes that contain elements equal to any other elements in this vector.
This instruction, along with a few other support instructions of AVX-512CD, allows the vectorization of
codes with indirect memory accesses leading to write conflicts. Binning (histogram data computation) is
an example of such workloads. Binning was not fully vectorizable in earlier instruction sets (see, e.g., [7]).

Figure 4 illustrates the workflow of the microkernel A[B[i]]+=1, where i ranges from 0 to n-1.
For older instruction sets (e.g., AVX/AVX2), this kernel must be executed sequentially, i.e., one value of
i per instruction. Indeed, if the offset B[i] has the same value for different values of i, then the cor-
responding values of A must be incremented several times. In contrast, for AVX-512CD, Intel compilers
implement a procedure that consists of three steps. First, the code loads a block of values from B in a
vector register, and a conflict detection instruction identifies vector lanes in which the values (offsets) are
identical, i.e., in conflict. Second, the code increments the values of A corresponding to non-conflicting
values of i in parallel with a vector addition instruction. Third, the code sequentially increments the values
of A corresponding to conflicting values of i. In the last step, sequential execution is necessary to produce
correct results. However, in the second step, parallelism is acceptable, and vectorization of this step may
yield performance gains compared to sequential execution, especially if the frequency of conflicts is low.

Figure 4: Histogram data computation with conflict detection

Let’s study this new functionality with an example. The for-loop in Listing 13 is an example of a
vector dependence due to the possible writing conflict in adjacent iterations, which makes it impossible to
vectorize on the Broadwell microarchitecture.

1 const int ARR_SIZE=8000;
2
3 int main() {
4
5 float A[ARR_SIZE],C[ARR_SIZE];
6 int B[ARR_SIZE];
7 int i;
8
9 for(i = 0; i < ARR_SIZE; i++)

10 A[B[i]] += 1.0f/C[i];
11
12 }

Listing 13: Loop with conflicts and vector dependencies.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 15

https://colfaxresearch.com/

2.3 AVX-512CD: Conflict Detection 2 SKYLAKE AND BROADWELL

To compile the example for Broadwell, use command lines in Listing 14 with -xCORE-AVX2.

icc CD.c -xCORE-AVX2 -O3 -qopt-report=5 -fp-model fast=2 -S

Listing 14: Compilation lines for conflict detection example (Broadwell).

This command produces an optimization report and assembly file. In the case of Broadwell, according
to the optimization report in Listing 15, the loop was not vectorized due to a vector dependence (i.e.,
operations a block of values of i cannot be performed in parallel using vector instructions).

LOOP BEGIN at CD.c(9,3)
remark #15344: loop was not vectorized: vector dependence prevents vectorization
remark #15346: vector dependence: assumed FLOW dependence between A[B[i]] (10:5) and A[B[i]] (10:5)
remark #15346: vector dependence: assumed ANTI dependence between A[B[i]] (10:5) and A[B[i]] (10:5)
remark #25438: unrolled without remainder by 4
remark #25456: Number of Array Refs Scalar Replaced In Loop: 4

LOOP END

Listing 15: Optimization report for conflict detection example on Broadwell.

The associated assembly code in Listing 16 shows that the loop was not vectorized, and it was imple-
mented on the lower 128 bits (XMM) of the vector registers.

..B1.2: # Preds ..B1.2 ..B1.6
Execution count [2.00e+03]

vdivss 64000(%rsp,%rax), %xmm0, %xmm1 #10.21
vdivss 64004(%rsp,%rax), %xmm0, %xmm3 #10.21
vdivss 64008(%rsp,%rax), %xmm0, %xmm5 #10.21
vdivss 64012(%rsp,%rax), %xmm0, %xmm7 #10.21
movslq 32000(%rsp,%rax), %rcx #10.7
incl %edx #9.3
movslq 32004(%rsp,%rax), %rdi #10.7
movslq 32008(%rsp,%rax), %r9 #10.7
movslq 32012(%rsp,%rax), %r10 #10.7
lea (,%rcx,4), %rsi #10.5
addq $16, %rax #9.3
lea (,%rdi,4), %r8 #10.5
vaddss (%rsp,%rcx,4), %xmm1, %xmm2 #10.5
vmovss %xmm2, (%rsp,%rsi) #10.5
vaddss (%rsp,%rdi,4), %xmm3, %xmm4 #10.5
vmovss %xmm4, (%rsp,%r8) #10.5
vaddss (%rsp,%r9,4), %xmm5, %xmm6 #10.5
vmovss %xmm6, (%rsp,%r9,4) #10.5
vaddss (%rsp,%r10,4), %xmm7, %xmm8 #10.5
vmovss %xmm8, (%rsp,%r10,4) #10.5
cmpl $2000, %edx #9.3
jb ..B1.2 # Prob 99% #9.3

LOE rax rbx r12 r13 r14 r15 edx xmm0

Listing 16: Lines from assembly code for compiling conflict detection example on Broadwell.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 16

https://colfaxresearch.com/

2.3 AVX-512CD: Conflict Detection 2 SKYLAKE AND BROADWELL

To compile the code for Skylake, use the command in Listing 17 with -xCORE-AVX512.

icc CD.c -xCORE-AVX512 -O3 -qopt-report=5 -fp-model fast=2 -S

Listing 17: Compilation lines for conflict detection example (Skylake).

In the case of Skylake, the optimization report in Listing 18 shows that the loop was vectorized and
that the vector dependencies were resolved by recognizing a histogram calculation pattern.

LOOP BEGIN at CD.c(9,3)
remark #15388: vectorization support: reference B[i] has aligned access [CD.c(10,7)]
remark #15388: vectorization support: reference B[i] has aligned access [CD.c(10,7)]
remark #15388: vectorization support: reference C[i] has aligned access [CD.c(10,21)]
remark #15416: vectorization support: irregularly indexed store was generated for the variable

<A[B[i]]>, part of index is read from memory [CD.c(10,5)]
remark #15415: vectorization support: irregularly indexed load was generated for the variable

<A[B[i]]>, part of index is read from memory [CD.c(10,5)]
remark #15305: vectorization support: vector length 16
remark #15300: LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 2
remark #15462: unmasked indexed (or gather) loads: 1
remark #15463: unmasked indexed (or scatter) stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 36
remark #15477: vector cost: 16.810
remark #15478: estimated potential speedup: 2.140
remark #15486: divides: 1
remark #15488: --- end vector cost summary ---
remark #15499: histogram: 2
remark #25015: Estimate of max trip count of loop=500

LOOP BEGIN at <compiler generated>
remark #25460: No loop optimizations reported

LOOP END
LOOP END

Listing 18: Optimization report for conflict detection example on Skylake.

According to the optimization report, the potential speedup of the loop vectorization on Skylake is 2.14
compared to scalar code. Note that speedups in the optimization report are estimated relative to scalar code
on the same architecture and cannot be used to compare the estimated performance between architectures.

In Listing 19 we show the assembly for the Skylake code.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 17

https://colfaxresearch.com/

2.3 AVX-512CD: Conflict Detection 2 SKYLAKE AND BROADWELL

..B1.2: # Preds ..B1.6 ..B1.10
Execution count [0.00e+00]

vmovups 32064(%rsp,%rcx,4), %zmm2 #10.21
vrcp14ps %zmm2, %zmm1 #10.21
vmulps %zmm2, %zmm1, %zmm2 #10.21
vaddps %zmm1, %zmm1, %zmm4 #10.21
vfnmadd213ps %zmm4, %zmm1, %zmm2 #10.21
vmovups 64064(%rsp,%rcx,4), %zmm4 #10.7
kmovw %k1, %k2 #10.5
vpconflictd %zmm4, %zmm1 #10.5
vptestmd .L_2il0floatpacket.1(%rip), %zmm1, %k0 #10.5
kmovw %k0, %eax #10.5
vpxord %zmm0, %zmm0, %zmm0 #10.5
vgatherdps (%rdx,%zmm4,4), %zmm0{%k2} #10.5
vaddps %zmm2, %zmm0, %zmm3 #10.5
testl %eax, %eax #10.5
je ..B1.6 # Prob 30% #10.5

LOE rdx rcx rbx r12 r13 r14 r15 zmm1 zmm2 zmm3 zmm4 k1
..B1.3: # Preds ..B1.2

Execution count [0.00e+00]
vpbroadcastmw2d %k1, %zmm6 #10.5
vplzcntd %zmm1, %zmm5 #10.5
vmovups .L_2il0floatpacket.2(%rip), %zmm0 #10.5
vptestmd %zmm1, %zmm6, %k0 #10.5
vpsubd %zmm5, %zmm0, %zmm0 #10.5
kmovw %k0, %eax #10.5

LOE rdx rcx rbx r12 r13 r14 r15 eax zmm0 zmm1 zmm2 zmm3 zmm4 k1
..B1.4: # Preds ..B1.4 ..B1.3

Execution count [0.00e+00]
kmovw %eax, %k2 #10.5
vpbroadcastmw2d %k2, %zmm5 #10.5
vpermps %zmm3, %zmm0, %zmm3{%k2} #10.5
vptestmd %zmm1, %zmm5, %k0{%k2} #10.5
vaddps %zmm2, %zmm3, %zmm3{%k2} #10.5
kmovw %k0, %eax #10.5
testl %eax, %eax #10.5
jne ..B1.4 # Prob 70% #10.5

LOE rdx rcx rbx r12 r13 r14 r15 eax zmm0 zmm1 zmm2 zmm3 zmm4 k1
..B1.6: # Preds ..B1.4 ..B1.2

Execution count [8.00e+03]
addq $16, %rcx #9.3
kmovw %k1, %k2 #10.5
vscatterdps %zmm3, (%rdx,%zmm4,4){%k2} #10.5
cmpq $8000, %rcx #9.3
jb ..B1.2 # Prob 99% #9.3

LOE rdx rcx rbx r12 r13 r14 r15 k1

Listing 19: Lines from assembly code for compiling conflict detection example on Skylake.

In block B1.2, the vpconflictd instruction compares each element of the vector register with all
previous elements in that register and outputs the results of all comparisons. If there are no conflicts, the
code jumps to block B1.6, where the resulting vector is scattered into array A. Otherwise (i.e., in case of
conflicts), the code makes preparation work in B1.3 and sets up a loop in B1.4 over the conflicted vector
lanes. After that, in B1.6, the resulting vector with the correctly incremented vector lanes is written back
to memory.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 18

https://colfaxresearch.com/

2.4 AVX-512F: Masking 2 SKYLAKE AND BROADWELL

2.4. AVX-512F: MASKING

Masking in AVX-512 is supported by a set of eight 64-bit opmask registers. Masking registers condi-
tionally control computational operations and updates of the destination vector with per-element granular-
ity. The purpose of masked operations is vectorization of loops with if-statements.

The AVX-512 masking support is an improvement over AVX2. Masking in AVX2 uses one of the
256-bit YMM vector registers to hold the mask. AVX2 load, store, gather and blend operations accept
the mask register explicitly, and masked memory access may be sufficient for simple cases. Other AVX2
instructions do not explicitly support masking, but in more complex cases, the compiler can emulate
masking in other instructions by performing unmasked arithmetic followed by bitwise “and” with the
mask register. These operations must be followed by a blend instruction. In contrast, AVX-512 masking
uses dedicated bitmask registers, which do not occupy ZMM space. Most AVX-512 instructions accept
a mask explicitly, so following up with bitwise “and” is not neccessary. Additionally, AVX-512 masking
is enabled for 128, 256 and 512-bit vector length, and supports all data types: byte, word, double and
quad-word [6].

Figure 5 demonstrates the difference between the implementation of masking in AVX2 and AVX-
512 for the kernel “if (B[i] < 0.0) B[i]*=0.1”. In AVX2, the mask is stored in a YMM data
register, while in AVX-512 it is stored in a bitmask register k1. AVX2 requires two operations: unmasked
multiplication and blending, while AVX-512 uses only one masked multiplication. AVX2 uses five data
registers, while AVX-512 uses three data registers and one bitmask register.

40

-30

60

80

0.1

0.1

0.1

0.1

-3

6

8

4 40

-30

60

80

-3

6

8

4 40

-3

60

80

0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0

40

-30

60

80

0.1

0.1

0.1

0.1

0

1

0

0

40

-3

60

80

Mult Blend Masked
Mult

YMM1YMM2 YMM3 YMM3YMM1YMM4 YMM5

... ...

ZMM1 ZMM2 k1 ZMM3

AVX2 AVX-512

Figure 5: Illustration of the difference between masking functionality in AVX2 and AVX-512.

Listing 20 contains an example of a loop that the Intel compiler can vectorize with the help of masking.

1 void ConditionalLoop(double * restrict A, double * restrict B, double * restrict C) {
2 int i;
3 for(i = 0; i < 10000; i++) {
4 if(B[i] > 0.0)
5 A[i] *= B[i];
6 else
7 A[i] += B[i];
8 }
9 }

Listing 20: Masking example.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 19

https://colfaxresearch.com/

2.4 AVX-512F: Masking 2 SKYLAKE AND BROADWELL

Listing 21 shows the assembly and Listing 22 shows the optimization report for this code compiled for
the Broadwell target. The compiler unrolls the loop and for each vector iteration implements arithmetics
(vmulpd, vaddpd), comparison (vcmpgtpd), and masking (vxorpd, vandpd and vblendvpd).

..B1.11: # Preds ..B1.11 ..B1.10
vmovupd (%rsi,%rdx,8), %ymm5 #4.8
vmovupd 32(%rsi,%rdx,8), %ymm13 #4.8
vmovupd 32(%rdi,%rdx,8), %ymm12 #7.7
vmovupd (%rdi,%rdx,8), %ymm4 #7.7
vcmpgtpd %ymm1, %ymm5, %ymm8 #4.15
vmulpd %ymm13, %ymm12, %ymm15 #5.7
vmulpd %ymm5, %ymm4, %ymm7 #5.7
vxorpd %ymm8, %ymm0, %ymm2 #4.15
vandpd %ymm2, %ymm5, %ymm3 #7.15
vcmpgtpd %ymm1, %ymm13, %ymm2 #4.15
vaddpd %ymm3, %ymm4, %ymm6 #7.7
vxorpd %ymm2, %ymm0, %ymm10 #4.15
vandpd %ymm10, %ymm13, %ymm11 #7.15
vaddpd %ymm11, %ymm12, %ymm14 #7.7
vblendvpd %ymm8, %ymm7, %ymm6, %ymm9 #7.7
vblendvpd %ymm2, %ymm15, %ymm14, %ymm3 #7.7
vmovupd 96(%rsi,%rdx,8), %ymm15 #4.8
vmovupd 64(%rsi,%rdx,8), %ymm7 #4.8
vmovupd 64(%rdi,%rdx,8), %ymm6 #7.7
vmovupd 96(%rdi,%rdx,8), %ymm14 #7.7
vmovupd %ymm9, (%rdi,%rdx,8) #5.7
vmovupd %ymm3, 32(%rdi,%rdx,8) #5.7
vmulpd %ymm7, %ymm6, %ymm9 #5.7
vcmpgtpd %ymm1, %ymm15, %ymm2 #4.15
vcmpgtpd %ymm1, %ymm7, %ymm10 #4.15
vxorpd %ymm2, %ymm0, %ymm12 #4.15
vandpd %ymm12, %ymm15, %ymm13 #7.15
vxorpd %ymm10, %ymm0, %ymm4 #4.15
vaddpd %ymm13, %ymm14, %ymm12 #7.7
vmulpd %ymm15, %ymm14, %ymm13 #5.7
vandpd %ymm4, %ymm7, %ymm5 #7.15
vaddpd %ymm5, %ymm6, %ymm8 #7.7
vblendvpd %ymm2, %ymm13, %ymm12, %ymm3 #7.7
vblendvpd %ymm10, %ymm9, %ymm8, %ymm11 #7.7
vmovupd %ymm3, 96(%rdi,%rdx,8) #5.7
vmovupd %ymm11, 64(%rdi,%rdx,8) #5.7
addq $16, %rdx #3.3
cmpq %rax, %rdx #3.3
jb ..B1.11 # Prob 99% #3.3

Listing 21: Lines of assembly code for compiling masking example on Broadwell.

LOOP BEGIN at MA.c(3,3)
remark #15300: LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15476: scalar cost: 20
remark #15477: vector cost: 5.500
remark #15478: estimated potential speedup: 3.620
remark #25015: Estimate of max trip count of loop=625

LOOP END

Listing 22: Abridged optimization report for masking example on Broadwell.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 20

https://colfaxresearch.com/

2.4 AVX-512F: Masking 2 SKYLAKE AND BROADWELL

For Skylake, the compiler produces a simpler assembly as shown in Listing 23. This AVX-512 code
writes the result of the comparison in the if-statement condition (vcmppd) into masks k2, k4, k6 and
k1, and the multiplication instruction vmulpd uses this bitmask. The intermediate store instructions
vmovapd use the inverse of the masks stored in k1, k3, k5 and k7 (similar to vpblendvpd in AVX2),
and eventually the data is written to memory by vmovupd without masking.

..B1.8: # Preds ..B1.8 ..B1.7
vmovups (%rsi,%rcx,8), %zmm3 #4.8
vmovups 64(%rsi,%rcx,8), %zmm7 #4.8
vmovups 128(%rsi,%rcx,8), %zmm11 #4.8
vmovups 192(%rsi,%rcx,8), %zmm15 #4.8
vmovups (%rdi,%rcx,8), %zmm2 #7.7
vmovups 64(%rdi,%rcx,8), %zmm6 #7.7
vmovups 128(%rdi,%rcx,8), %zmm10 #7.7
vmovups 192(%rdi,%rcx,8), %zmm14 #7.7
vcmppd $6, %zmm0, %zmm3, %k2 #4.15
vcmppd $6, %zmm0, %zmm7, %k4 #4.15
vcmppd $6, %zmm0, %zmm11, %k6 #4.15
knotw %k2, %k1 #7.15
knotw %k4, %k3 #7.15
knotw %k6, %k5 #7.15
vmovapd %zmm3, %zmm1{%k1}{z} #7.15
vcmppd $6, %zmm0, %zmm15, %k1 #4.15
vaddpd %zmm1, %zmm2, %zmm4 #7.7
knotw %k1, %k7 #7.15
vmulpd %zmm3, %zmm2, %zmm4{%k2} #5.7
vmovapd %zmm7, %zmm5{%k3}{z} #7.15
vmovapd %zmm11, %zmm9{%k5}{z} #7.15
vmovapd %zmm15, %zmm13{%k7}{z} #7.15
vaddpd %zmm5, %zmm6, %zmm8 #7.7
vaddpd %zmm9, %zmm10, %zmm12 #7.7
vaddpd %zmm13, %zmm14, %zmm16 #7.7
vmulpd %zmm7, %zmm6, %zmm8{%k4} #5.7
vmulpd %zmm11, %zmm10, %zmm12{%k6} #5.7
vmulpd %zmm15, %zmm14, %zmm16{%k1} #5.7
vmovupd %zmm4, (%rdi,%rcx,8) #5.7
vmovupd %zmm8, 64(%rdi,%rcx,8) #5.7
vmovupd %zmm12, 128(%rdi,%rcx,8) #5.7
vmovupd %zmm16, 192(%rdi,%rcx,8) #5.7
addq $32, %rcx #3.3
cmpq %rdx, %rcx #3.3
jb ..B1.8 # Prob 99% #3.3

Listing 23: Lines of assembly code for compiling masking example on Skylake.

The optimization report for the Skylake target is shown in Listing 24.

LOOP BEGIN at MA.c(3,3)
remark #15300: LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15476: scalar cost: 20
remark #15477: vector cost: 2.870
remark #15478: estimated potential speedup: 6.930
remark #25015: Estimate of max trip count of loop=312

LOOP END

Listing 24: Abridged optimization report for masking example on Skylake.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 21

https://colfaxresearch.com/

2.4 AVX-512F: Masking 2 SKYLAKE AND BROADWELL

In addition to loop unrolling by a factor of 4, you can notice that instructions in the unrolled iterations
are permuted. Eight loads (vmovups) are followed by three comparisons (vcmppd) and bitmask manipu-
lation (knotw), and the fourth comparison comes later. Similar permutations are seen in masked additions
(vaddpd) and multiplications (vmulpd). The compiler does not report the motivation for permutation.
However, we speculate that it optimally packs the pipeline of the Skylake architecture core.

Interestingly, when we compiled the code for Knights Landing with -xMIC-AVX512, the compiler
chose an unroll factor of 2 instead of 4 and also changed the instruction permutation strategy. The resulting
assembly for KNL is shown in Listing 25.

..B1.8: # Preds ..B1.8 ..B1.7
vcmppd $9, (%rsi,%rcx,8), %zmm0, %k2 #4.15 c1
vcmppd $9, 64(%rsi,%rcx,8), %zmm0, %k4 #4.15 c1
knotw %k2, %k1 #7.15 c3
knotw %k4, %k3 #7.15 c3
vmovups (%rdi,%rcx,8), %zmm2 #7.7 c3
vmovups 64(%rdi,%rcx,8), %zmm5 #7.7 c3
vmovupd (%rsi,%rcx,8), %zmm1{%k1}{z} #7.15 c9 stall 2
vmovupd 64(%rsi,%rcx,8), %zmm4{%k3}{z} #7.15 c9
vaddpd (%rdi,%rcx,8), %zmm1, %zmm3 #7.7 c15 stall 2
vaddpd 64(%rdi,%rcx,8), %zmm4, %zmm6 #7.7 c15
vmulpd (%rsi,%rcx,8), %zmm2, %zmm3{%k2} #5.7 c21 stall 2
vmovupd %zmm3, (%rdi,%rcx,8) #5.7 c27 stall 2
vmulpd 64(%rsi,%rcx,8), %zmm5, %zmm6{%k4} #5.7 c27
vmovupd %zmm6, 64(%rdi,%rcx,8) #5.7 c33 stall 2
addq $16, %rcx #3.3 c33
cmpq %rdx, %rcx #3.3 c35
jb ..B1.8 # Prob 99% #3.3 c37

Listing 25: Lines of assembly code for compiling masking example for Knights Landing.

The differences between AVX-512 code for Skylake and Knights Landing further demonstrate that in
the process of automatic vectorization, the compiler uses not only the instruction set of the target architec-
ture but also the low-level technical details of the architecture organization, particularly pipelining.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 22

https://colfaxresearch.com/

2.5 AVX-512F: Compress/Expand 2 SKYLAKE AND BROADWELL

2.5. AVX-512F: COMPRESS/EXPAND

AVX-512F in Skylake enables the vectorization of the data compress and expand operations. The
vcompress instruction reads elements from the input register using a read mask and writes them con-
tiguously into the output register. The vexpand instruction does the opposite: reads adjacent elements
from the input register and stores them in the destination register according to the write mask. These in-
structions are useful for compressing a subset of data into a compact new container or doing the opposite.

Listing 26 shows an example for compressing data with non-zero values.

1 void Compress(float* restrict A, float* restrict B) {
2 int i;
3 #pragma nounroll // Not needed in real-world calculation; used here to simplify assembly
4 for(i = 0; i < 8000; i++) {
5 if(A[i] != 0)
6 B[j++] = A[i];
7 }
8 }

Listing 26: Data compress example.

The compress operation in this code is implemented differently for AVX2 and AVX-512. In AVX2,
the compiler does not vectorize the data compression loop. Listing 27 shows the AVX2 assembly.

..B1.4: # Preds ..B1.6 ..B1.3
Execution count [8.00e+03]

vmovss (%rdi,%rax,4), %xmm1 #5.8
vucomiss %xmm0, %xmm1 #5.16
jp ..B1.5 # Prob 0% #5.16
je ..B1.6 # Prob 16% #5.16

LOE rax rdx rbx rbp rsi rdi r12 r13 r14 r15 xmm0 xmm1
..B1.5: # Preds ..B1.4

Execution count [6.72e+03]
vmovss %xmm1, (%rsi,%rdx,4) #6.7
incq %rdx #6.9

LOE rax rdx rbx rbp rsi rdi r12 r13 r14 r15 xmm0
..B1.6: # Preds ..B1.5 ..B1.4

Execution count [8.00e+03]
incq %rax #4.25
cmpq $8000, %rax #4.19
jl ..B1.4 # Prob 99% #4.19

Listing 27: Lines from assembly code for compiling data compress example on Broadwell.

The loop processes one element of A at a time because vmovss is a scalar load operation. The
vucomiss operation performs a comparison of A[i] with 0, and the subsequent code either stores it in
B (block B1.5) or skips it (block B1.6).

The optimization report in Listing 28 shows that vector dependence prevents vectorization, and the
loop uses scalar instructions.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 23

https://colfaxresearch.com/

2.5 AVX-512F: Compress/Expand 2 SKYLAKE AND BROADWELL

LOOP BEGIN at compress.c(4,3)
remark #15344: loop was not vectorized: vector dependence prevents vectorization
remark #15346: vector dependence: assumed FLOW dependence between j (6:9) and j (6:7)
remark #15346: vector dependence: assumed ANTI dependence between j (6:7) and j (6:9)

LOOP END

Listing 28: Lines from optimization report for data compress example on Broadwell.

When we compiled the code for Skylake (AVX-512), the loop was vectorized. Listing 29 shows the
assembly. The compress operation is performed directly using the vcompressps instruction. It copies
and compresses up to 16 single precision floating-point values into the destination operand using the source
operand ZMM1 and the opmask register k1. The opmask register selects the elements from the source
that get copied and compressed.

..B1.16: # Preds ..B1.18 ..B1.15
Execution count [0.00e+00]

vmovups (%rdi,%rax,4), %zmm1 #5.8
vpxord %zmm0, %zmm0, %zmm0 #5.16
vcmpps $4, %zmm0, %zmm1, %k1 #5.16
kmovw %k1, %r9d #5.16
testl %r9d, %r9d #5.16
je ..B1.18 # Prob 20% #5.16

LOE rax rdx rbx rbp rdi r8 r12 r13 r14 r15 ecx esi r9d zmm1 k1
..B1.17: # Preds ..B1.16

Execution count [8.00e+03]
movslq %ecx, %rcx #6.7
popcnt %r9d, %r9d #6.7
vcompressps %zmm1, (%r8,%rcx,4){%k1} #6.7
addl %r9d, %ecx #6.7

LOE rax rdx rbx rbp rdi r8 r12 r13 r14 r15 ecx esi
..B1.18: # Preds ..B1.17 ..B1.16

Execution count [8.00e+03]
addq $16, %rax #4.3
cmpq %rdx, %rax #4.3
jb ..B1.16 # Prob 99% #4.3

Listing 29: Lines from assembly code for compiling data compress example on Skylake.

The optimization report in Listing 30 shows that the loop was vectorized and that the compiler detects
one compress operation. The estimated potential speedup is 22.0 compared to scalar code.

LOOP BEGIN at compress.c(4,3)
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15457: masked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 18
remark #15477: vector cost: 0.810
remark #15478: estimated potential speedup: 22.000
remark #15488: --- end vector cost summary ---
remark #15497: vector compress: 1
remark #25015: Estimate of max trip count of loop=500

LOOP END

Listing 30: Lines from the optimization report for data compress example on Skylake.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 24

https://colfaxresearch.com/

2.6 AVX-512F: New Shuffle Instructions 2 SKYLAKE AND BROADWELL

2.6. AVX-512F: NEW SHUFFLE INSTRUCTIONS

AVX-512 on Skylake introduces a new set of shuffle instructions that allow you to rearrange elements
in one or two source registers and write them to the destination register. These instructions are supported
for different element sizes: byte, word, double and quadword.

Listing 31 shows a function that performs a transposition of an 8 × 8 matrix of double precision
floating-point numbers.

1 void Transpose8x8(double * restrict A, double * restrict B) {
2 int i, j;
3 for (i = 0; i < 8; i++)
4 for (j = 0; j < 8; j++)
5 A[i*8 + j] = B[j*8 + i];
6 }

Listing 31: Matrix transposition example.

We compiled the code with AVX2 using the compilation line in Listing 32.

icc PR.c -S -vec-threshold0 -xCORE-AVX2 -qopt-report=5

Listing 32: Compilation commands for matrix transposition example (Broadwell).

The optimization report in Listing 34 shows a potential speedup of 1.48 due to vectorization.

LOOP BEGIN at PR.c(4,5)
remark #15389: vectorization support: reference A[i*8+j] has unaligned access [PR.c(5,7)]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15328: vectorization support: non-unit strided load was emulated for the variable

<B[j*8+i]>, stride is 8 [PR.c(5,20)]
remark #15305: vectorization support: vector length 4
remark #15427: loop was completely unrolled
remark #15399: vectorization support: unroll factor set to 2
remark #15309: vectorization support: normalized vectorization overhead 0.125
remark #15300: LOOP WAS VECTORIZED
remark #15451: unmasked unaligned unit stride stores: 1
remark #15452: unmasked strided loads: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 5
remark #15477: vector cost: 3.000
remark #15478: estimated potential speedup: 1.480
remark #15488: --- end vector cost summary ---

LOOP END

Listing 33: Optimization report for matrix transposition example on Broadwell.

Even though Broadwell can run this code with vector instructions, it is important to see how exactly
the Intel compiler achieves this in AVX2. Listing 34 shows the assembly code for the matrix trans-
pose example compiled with -xCORE-AVX2. This code shuffles elements using multiple vmovups and
vinsertf128 instructions followed by vunpckhpd instruction. Instruction vunpckhpd unpacks and
interleaves double precision floating-point elements from the source operand into the destination operand.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 25

https://colfaxresearch.com/

2.6 AVX-512F: New Shuffle Instructions 2 SKYLAKE AND BROADWELL

vmovups 16(%rsi), %xmm7 #5.20
vmovups 80(%rsi), %xmm9 #5.20
vmovups 64(%rsi), %xmm8 #5.20
vmovups (%rsi), %xmm6 #5.20
vmovups 256(%rsi), %xmm15 #5.20
vmovups 272(%rsi), %xmm1 #5.20
vmovups 320(%rsi), %xmm2 #5.20
vmovups 336(%rsi), %xmm0 #5.20
vinsertf128 $1, 144(%rsi), %ymm7, %ymm12 #5.20
vinsertf128 $1, 208(%rsi), %ymm9, %ymm13 #5.20
vunpcklpd %ymm13, %ymm12, %ymm5 #5.20
vmovupd %ymm5, 128(%rdi) #5.7
vmovups 96(%rsi), %xmm5 #5.20
vunpckhpd %ymm13, %ymm12, %ymm3 #5.20
vmovupd %ymm3, 192(%rdi) #5.7
vmovups 32(%rsi), %xmm3 #5.20
vinsertf128 $1, 128(%rsi), %ymm6, %ymm10 #5.20
vinsertf128 $1, 192(%rsi), %ymm8, %ymm11 #5.20
vunpcklpd %ymm11, %ymm10, %ymm14 #5.20
vunpckhpd %ymm11, %ymm10, %ymm4 #5.20
vmovupd %ymm14, (%rdi) #5.7
vmovupd %ymm4, 64(%rdi) #5.7
vmovups 48(%rsi), %xmm4 #5.20
vmovups 112(%rsi), %xmm14 #5.20
vinsertf128 $1, 384(%rsi), %ymm15, %ymm6 #5.20
vinsertf128 $1, 400(%rsi), %ymm1, %ymm8 #5.20
vinsertf128 $1, 448(%rsi), %ymm2, %ymm7 #5.20
vinsertf128 $1, 464(%rsi), %ymm0, %ymm9 #5.20
vunpcklpd %ymm7, %ymm6, %ymm10 #5.20
vunpckhpd %ymm7, %ymm6, %ymm11 #5.20
vunpcklpd %ymm9, %ymm8, %ymm12 #5.20
vunpckhpd %ymm9, %ymm8, %ymm13 #5.20
vmovups 304(%rsi), %xmm6 #5.20
vmovups 352(%rsi), %xmm7 #5.20
vmovups 368(%rsi), %xmm8 #5.20
vmovupd %ymm10, 32(%rdi) #5.7
vmovupd %ymm11, 96(%rdi) #5.7
vmovupd %ymm12, 160(%rdi) #5.7
vmovupd %ymm13, 224(%rdi) #5.7
vinsertf128 $1, 224(%rsi), %ymm5, %ymm2 #5.20
vmovups 288(%rsi), %xmm5 #5.20
vinsertf128 $1, 160(%rsi), %ymm3, %ymm1 #5.20
vinsertf128 $1, 176(%rsi), %ymm4, %ymm0 #5.20
vinsertf128 $1, 240(%rsi), %ymm14, %ymm3 #5.20
vunpcklpd %ymm2, %ymm1, %ymm4 #5.20
vinsertf128 $1, 416(%rsi), %ymm5, %ymm9 #5.20
vinsertf128 $1, 432(%rsi), %ymm6, %ymm11 #5.20
vinsertf128 $1, 480(%rsi), %ymm7, %ymm10 #5.20
vinsertf128 $1, 496(%rsi), %ymm8, %ymm12 #5.20
vunpckhpd %ymm2, %ymm1, %ymm1 #5.20
vunpcklpd %ymm3, %ymm0, %ymm2 #5.20
vunpckhpd %ymm3, %ymm0, %ymm0 #5.20
vmovupd %ymm4, 256(%rdi) #5.7
vmovupd %ymm1, 320(%rdi) #5.7
vmovupd %ymm2, 384(%rdi) #5.7
vmovupd %ymm0, 448(%rdi) #5.7
vunpcklpd %ymm10, %ymm9, %ymm13 #5.20
vunpckhpd %ymm10, %ymm9, %ymm15 #5.20
vunpcklpd %ymm12, %ymm11, %ymm3 #5.20
vunpckhpd %ymm12, %ymm11, %ymm4 #5.20
vmovupd %ymm13, 288(%rdi) #5.7
vmovupd %ymm15, 352(%rdi) #5.7
vmovupd %ymm3, 416(%rdi) #5.7
vmovupd %ymm4, 480(%rdi) #5.7

Listing 34: Lines from assembly code for compiling the matrix transposition example for Broadwell.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 26

https://colfaxresearch.com/

2.6 AVX-512F: New Shuffle Instructions 2 SKYLAKE AND BROADWELL

In the case of Skylake, the compilation line in Listing 35 is used to compile the matrix transposition
example code and produce an assembly file and an optimization report.

icc PR.c -S -vec-threshold0 -xCORE-AVX512 -qopt-report=5

Listing 35: Compilation commands for matrix transposition example (Skylake).

The optimization report in Listing 36 confirms that the loop was vectorized and shows an estimated
potential speedup of 1.9 due to vectorization.

LOOP BEGIN at PR.c(4,5)
remark #15389: vectorization support: reference A[i*8+j] has unaligned access [PR.c(5,7)]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15415: vectorization support: non-unit strided load was generated for the variable

<B[j*8+i]>, stride is 8 [PR.c(5,20)]
remark #15305: vectorization support: vector length 8
remark #15427: loop was completely unrolled
remark #15309: vectorization support: normalized vectorization overhead 0.167
remark #15300: LOOP WAS VECTORIZED
remark #15451: unmasked unaligned unit stride stores: 1
remark #15452: unmasked strided loads: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 5
remark #15477: vector cost: 2.250
remark #15478: estimated potential speedup: 1.900
remark #15488: --- end vector cost summary ---

LOOP END

Listing 36: Optimization report for matrix transposition example on Skylake.

On Skylake, vectorization takes advantage of the new shuffle instructions. Listing 37 shows the assem-
bly for the matrix transposition example with the new AVX-512 instructions vpermt2q and vpermi2q.
These instructions permute double precision floating-point numbers from ZMM registers and store the
result back into the destination register. The following step is to blend and align the permuted data before
storing it back. Instruction vpblendmq blends elements from ZMM registers using the opmask registers,
and valignd merges vector registers.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 27

https://colfaxresearch.com/

2.6 AVX-512F: New Shuffle Instructions 2 SKYLAKE AND BROADWELL

vmovdqu32 (%rsi), %zmm20 #5.20
vmovdqu32 64(%rsi), %zmm7 #5.20
vmovdqu32 128(%rsi), %zmm16 #5.20
vmovdqu32 192(%rsi), %zmm9 #5.20
vmovdqu32 256(%rsi), %zmm19 #5.20
vmovdqu32 320(%rsi), %zmm11 #5.20
vmovdqu32 384(%rsi), %zmm18 #5.20
vmovdqu32 448(%rsi), %zmm13 #5.20
vmovdqu32 .L_2il0floatpacket.0(%rip), %zmm5 #5.20
vmovdqu32 .L_2il0floatpacket.1(%rip), %zmm2 #5.20
vmovdqu32 .L_2il0floatpacket.2(%rip), %zmm4 #5.20
vmovdqu32 .L_2il0floatpacket.3(%rip), %zmm3 #5.20
vmovdqu32 .L_2il0floatpacket.5(%rip), %zmm6 #5.20
vmovdqu32 .L_2il0floatpacket.6(%rip), %zmm8 #5.20
vmovdqu32 .L_2il0floatpacket.7(%rip), %zmm10 #5.20
vmovdqu32 .L_2il0floatpacket.8(%rip), %zmm12 #5.20
vmovdqu32 .L_2il0floatpacket.4(%rip), %zmm17 #5.20
vpermi2q %zmm7, %zmm20, %zmm5 #5.20
vpermi2q %zmm9, %zmm16, %zmm2 #5.20
vpermi2q %zmm11, %zmm19, %zmm4 #5.20
vpermi2q %zmm13, %zmm18, %zmm3 #5.20
vpermt2q %zmm7, %zmm6, %zmm20 #5.20
vpermt2q %zmm9, %zmm8, %zmm16 #5.20
vpermt2q %zmm11, %zmm10, %zmm19 #5.20
vpermt2q %zmm13, %zmm12, %zmm18 #5.20
kmovw %eax, %k1 #5.20
vpblendmq %zmm2, %zmm5, %zmm1{%k1} #5.20
movl $240, %eax #5.20
vpblendmq %zmm3, %zmm4, %zmm0{%k1} #5.20
vpblendmq %zmm16, %zmm20, %zmm15{%k1} #5.20
vpblendmq %zmm18, %zmm19, %zmm14{%k1} #5.20
vpermt2q %zmm2, %zmm17, %zmm5 #5.20
vpermt2q %zmm3, %zmm17, %zmm4 #5.20
vpermt2q %zmm16, %zmm17, %zmm20 #5.20
vpermt2q %zmm18, %zmm17, %zmm19 #5.20
valignd $8, %zmm1, %zmm0, %zmm22 #5.20
valignd $8, %zmm5, %zmm4, %zmm24 #5.20
valignd $8, %zmm15, %zmm14, %zmm26 #5.20
valignd $8, %zmm20, %zmm19, %zmm28 #5.20
vmovupd %zmm22, 64(%rdi) #5.7
vmovupd %zmm24, 192(%rdi) #5.7
vmovupd %zmm26, 320(%rdi) #5.7
vmovupd %zmm28, 448(%rdi) #5.7
kmovw %eax, %k2 #5.20
vpblendmq %zmm0, %zmm1, %zmm21{%k2} #5.20
vpblendmq %zmm4, %zmm5, %zmm23{%k2} #5.20
vpblendmq %zmm14, %zmm15, %zmm25{%k2} #5.20
vpblendmq %zmm19, %zmm20, %zmm27{%k2} #5.20
vmovupd %zmm21, (%rdi) #5.7
vmovupd %zmm23, 128(%rdi) #5.7
vmovupd %zmm25, 256(%rdi) #5.7
vmovupd %zmm27, 384(%rdi) #5.7

Listing 37: Lines from assembly code for transposition example on Skylake.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 28

https://colfaxresearch.com/

2.7 AVX-512F: Gather/Scatter 2 SKYLAKE AND BROADWELL

2.7. AVX-512F: GATHER/SCATTER

AVX2 includes a gather operation, which loads vector elements from non-adjacent memory locations
into a contiguous 256-bit YMM register. AVX-512F introduces gather with 512-bit registers and also a
scatter instruction, which stores elements from a contiguous vector into non-adjacent memory locations.

Listing 38 shows memory access with non-contiguous memory access, where the code reads a con-
tiguous array Y and scatters its elements into array X with a fixed stride of 8.

1 void Scatter(double* restrict X, double* restrict Y) {
2 int i;
3 for(i = 0; i < 10000; i++)
4 X[i*8] = Y[i];
5 }

Listing 38: Scatter example.

In the assembly compiled for Broadwell is shown in Listing 39.

..B1.7: # Preds ..B1.7 ..B1.6
Execution count [1.00e+04]

vmovupd (%rsi,%r8,8), %ymm0 #4.14
movl %r8d, %ecx #4.5
vmovupd 32(%rsi,%r8,8), %ymm2 #4.14
shll $3, %ecx #4.5
addq $8, %r8 #3.3
movslq %ecx, %rcx #4.5
cmpq %rdx, %r8 #3.3
vextractf128 $1, %ymm0, %xmm1 #4.5
vextractf128 $1, %ymm2, %xmm3 #4.5
vmovsd %xmm0, (%rdi,%rcx,8) #4.5
vmovhpd %xmm0, 64(%rdi,%rcx,8) #4.5
vmovsd %xmm1, 128(%rdi,%rcx,8) #4.5
vmovhpd %xmm1, 192(%rdi,%rcx,8) #4.5
vmovsd %xmm2, 256(%rdi,%rcx,8) #4.5
vmovhpd %xmm2, 320(%rdi,%rcx,8) #4.5
vmovsd %xmm3, 384(%rdi,%rcx,8) #4.5
vmovhpd %xmm3, 448(%rdi,%rcx,8) #4.5
jb ..B1.7 # Prob 99% #3.3

Listing 39: Lines from the assembly code for the scatter example on Broadwell.

This listing demonstrates that the scatter operation is performed using multiple vextractf128 and
scalar vmovsd/vmovhpd instructions. First, vmovupd loads four consecutive values from Y into a
YMM register. Then vextractf128 stores half of that YMM register into a new XMM register.
vmovsd stores the lower half of the XMM register (which amounts to one 64-bit double precision el-
ement) into array X, vmovhpd stores the upper half in the next position in array X. Then the procedure is
repeated until all four loaded values are scattered.

The optimization report in Listing 40 confirms that the loop was vectorized and mentions that a non-
unit stride store (i.e., a scatter operation) was emulated for the array A.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 29

https://colfaxresearch.com/

2.7 AVX-512F: Gather/Scatter 2 SKYLAKE AND BROADWELL

LOOP BEGIN at scatter.c(3,3)
remark #15388: vectorization support: reference Y[i] has aligned access [scatter.c(4,14)]
remark #15329: vectorization support: non-unit strided store was emulated for the variable

<X[i*8]>, stride is 8 [scatter.c(4,5)]
remark #15305: vectorization support: vector length 8
remark #15309: vectorization support: normalized vectorization overhead 0.435
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15453: unmasked strided stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 5
remark #15477: vector cost: 2.870
remark #15478: estimated potential speedup: 1.730
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=1250

LOOP END

Listing 40: Optimization report for the scatter example on Broadwell.

The code compiled for Skylake (Listing 41) shows that the compiler used the instruction
vscatterdpd. This instruction belongs to AVX-512F module. It scatters a register of double preci-
sion floating-point values to non-contiguous memory locations. The base address is YMM0, the offsets
are stored in r9, and the write mask k1/k2 has all bits set to 1.

..B1.7: # Preds ..B1.7 ..B1.6
Execution count [1.00e+04]

vpcmpeqb %xmm0, %xmm0, %k1 #4.5
movl %r8d, %ecx #4.5
vmovups (%rsi,%r8,8), %zmm1 #4.14
vmovups 64(%rsi,%r8,8), %zmm2 #4.14
shll $3, %ecx #4.5
addq $16, %r8 #3.3
movslq %ecx, %rcx #4.5
lea (%rdi,%rcx,8), %r9 #4.5
vscatterdpd %zmm1, (%r9,%ymm0,8){%k1} #4.5
vpcmpeqb %xmm0, %xmm0, %k2 #4.5
vscatterdpd %zmm2, 512(%r9,%ymm0,8){%k2} #4.5
cmpq %rdx, %r8 #3.3
jb ..B1.7 # Prob 99% #3.3

Listing 41: Lines from the assembly code for scatter example on Skylake.

The optimization report in Listing 42 also shows that the loop was vectorized, but this time non-unit
stride store was generated, rather than emulated for access to array A.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 30

https://colfaxresearch.com/

2.7 AVX-512F: Gather/Scatter 2 SKYLAKE AND BROADWELL

LOOP BEGIN at scatter.c(3,3)
remark #15388: vectorization support: reference Y[i] has aligned access [scatter.c(4,14)]
remark #15416: vectorization support: non-unit strided store was generated for the variable

<X[i*8]>, stride is 8 [scatter.c(4,5)]
remark #15305: vectorization support: vector length 16
remark #15309: vectorization support: normalized vectorization overhead 0.270
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15453: unmasked strided stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 5
remark #15477: vector cost: 2.310
remark #15478: estimated potential speedup: 2.150
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=625

LOOP END

Listing 42: Optimization report for scatter example on Skylake.

When memory access has good locality, the cost of gather/scatter is high, and the compiler may replace
a scatter operation with permutations or shuffles followed by unit-stride access. For example, the code in
Listing 43 accesses memory with a stride of 2. For this pattern, in every cache line, 1 out of 2 elements is
written. Stride 2 has better locality than stride 8, where only 1 element out of 8 is written.

1 void Scatter2(double* restrict X, double* restrict Y) {
2 int i;
3 for(i = 0; i < 10000; i++)
4 X[i*2] = Y[i];
5 }

Listing 43: Scatter with a small stride example.

AVX-512 assembly for this case is shown in Listing 44. Instead of vgatherdpd, the compiler chose
to use vexpandpd and vpermpd operations followed by unit-stride masked stores vmovupd.

..B1.7: # Preds ..B1.7 ..B1.6
Execution count [1.00e+04]

vmovups (%rsi,%r8,8), %zmm2 #4.14
movl %r8d, %ecx #4.5
vmovups 64(%rsi,%r8,8), %zmm5 #4.14
vexpandpd %zmm2, %zmm1{%k1}{z} #4.5
vpermpd %zmm2, %zmm0, %zmm3 #4.5
vexpandpd %zmm5, %zmm4{%k1}{z} #4.5
vpermpd %zmm5, %zmm0, %zmm6 #4.5
addl %ecx, %ecx #4.5
addq $16, %r8 #3.3
movslq %ecx, %rcx #4.5
vmovupd %zmm1, (%rdi,%rcx,8){%k1} #4.5
vmovupd %zmm3, 64(%rdi,%rcx,8){%k1} #4.5
vmovupd %zmm4, 128(%rdi,%rcx,8){%k1} #4.5
vmovupd %zmm6, 192(%rdi,%rcx,8){%k1} #4.5
cmpq %rdx, %r8 #3.3
jb ..B1.7 # Prob 99% #3.3

Listing 44: Assembly for the scatter example with a stride of 2 on Skylake.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 31

https://colfaxresearch.com/

2.8 AVX-512F: Embedded Broadcasting 2 SKYLAKE AND BROADWELL

2.8. AVX-512F: EMBEDDED BROADCASTING

Embedded broadcasting, a feature introduced in AVX-512, allows vector instructions to replicate scalar
elements across vector lanes and use them as operands. Before AVX-512, broadcasting a scalar across vec-
tor lanes was possible, but it required an explicit broadcast operation, and its result occupied an additional
vector register. Embedded broadcasting is supported for 32-bit and 64-bit scalars, which get replicated 16
or 8 times, respectively, but not for byte and word types. Because embedded broadcasting does not require
an additional register to store the result, it is particularly useful when the register space is in short supply.

Figure 6 illustrates the difference between broadcast in AVX and AVX-512 for an example kernel
A[i]+1.5, where the addition is vectorized in index i.

Figure 6: Broadcasting a scalar value across vector lanes in AVX and AVX-512.

The example in Listing 45 shows a case where embedded broadcasting may be used.

1 void Embedded_Broadcast (float * restrict A, float * restrict L, float * restrict U) {
2 int i, j, k;
3 int n = 16;
4
5 for (i = 0; i < n; i++)
6 for (k = 0; k < n; k++)
7 for (j = 0; j < n; j++)
8 A[i*n + j] += L[i*n + k]*U[k*n + j];
9 }

Listing 45: Matrix-matrix multiplication can benefit from embedded broadcast.

In this code, the innermost loop in j gets vectorized. The compiler expresses the multiplication and
accumulation operations in the loop for 8 values (in AVX) or 16 values (in AVX-512) of j as an FMA
instruction with three operands. Two of these operands are vectors with data loaded from A and U, and the
third one has the scalar value L[i*n+k] in all vector lanes.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 32

https://colfaxresearch.com/

2.8 AVX-512F: Embedded Broadcasting 2 SKYLAKE AND BROADWELL

Listing 46 shows the assembly for the above example compiled for Broadwell.

..B1.2: # Preds ..B1.2 ..B1.1
Execution count [4.56e+00]

vmovups 32(%rdi,%rax,4), %ymm4 #8.9
incb %dl #5.3
vmovups (%rdi,%rax,4), %ymm2 #8.9
vbroadcastss 16(%rsi,%rax,4), %ymm3 #8.23
vbroadcastss 12(%rsi,%rax,4), %ymm14 #8.23
vbroadcastss 8(%rsi,%rax,4), %ymm1 #8.23
vbroadcastss 4(%rsi,%rax,4), %ymm13 #8.23
vbroadcastss (%rsi,%rax,4), %ymm15 #8.23
vfmadd231ps -336(%rbp), %ymm3, %ymm4 #8.9[spill]
vfmadd231ps -720(%rbp), %ymm15, %ymm2 #8.9[spill]
vfmadd231ps -400(%rbp), %ymm14, %ymm4 #8.9[spill]
vfmadd231ps -464(%rbp), %ymm1, %ymm4 #8.9[spill]
vfmadd231ps -656(%rbp), %ymm13, %ymm4 #8.9[spill]

...
addq $16, %rax #5.3
cmpb $16, %dl #5.3
jb ..B1.2 # Prob 99% #5.3

Listing 46: Lines from the assembly code for matrix multiplication example on Broadwell.

The broadcast operation in this code is separate from the FMA operation. It replicates the value of
L[i*n+k] across all vector lanes. The result of the broadcast occupies the register YMM0. This register
is subsequently used in the FMA operation, in which the companion operand contains the values of U for
8 values of j.

The potential speedup due to vectorization, according to the optimization report in Listing 47, is 5.5
compared to scalar code.

LOOP BEGIN at EB.c(6,5)
remark #15542: loop was not vectorized: inner loop was already vectorized
remark #25436: completely unrolled by 16

LOOP BEGIN at EB.c(7,7)
remark #15389: vectorization support: reference A[i*16+j] has unaligned access [EB.c(8,9)]
remark #15389: vectorization support: reference A[i*16+j] has unaligned access [EB.c(8,9)]
remark #15389: vectorization support: reference U[k*16+j] has unaligned access [EB.c(8,34)]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15305: vectorization support: vector length 8
remark #15427: loop was completely unrolled
remark #15399: vectorization support: unroll factor set to 2
remark #15309: vectorization support: normalized vectorization overhead 0.455
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 2
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 11
remark #15477: vector cost: 1.370
remark #15478: estimated potential speedup: 5.500
remark #15488: --- end vector cost summary ---

LOOP END
LOOP END

Listing 47: Optimization report for matrix multiplication example on Broadwell.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 33

https://colfaxresearch.com/

2.8 AVX-512F: Embedded Broadcasting 2 SKYLAKE AND BROADWELL

In the case of Skylake, AVX-512 is supported, so Listing 48 shows embedded broadcast.

..B1.2: # Preds ..B1.2 ..B1.1
vbroadcastss (%rsi,%rax,4), %zmm16 #8.23
incb %dl #5.3
vfmadd213ps (%rdi), %zmm15, %zmm16 #8.9
vfmadd231ps 4(%rsi,%rax,4){1to16}, %zmm14, %zmm16 #8.9
vfmadd231ps 8(%rsi,%rax,4){1to16}, %zmm13, %zmm16 #8.9
vfmadd231ps 12(%rsi,%rax,4){1to16}, %zmm12, %zmm16 #8.9
vfmadd231ps 16(%rsi,%rax,4){1to16}, %zmm11, %zmm16 #8.9
vfmadd231ps 20(%rsi,%rax,4){1to16}, %zmm10, %zmm16 #8.9
vfmadd231ps 24(%rsi,%rax,4){1to16}, %zmm9, %zmm16 #8.9
vfmadd231ps 28(%rsi,%rax,4){1to16}, %zmm8, %zmm16 #8.9
vfmadd231ps 32(%rsi,%rax,4){1to16}, %zmm7, %zmm16 #8.9
vfmadd231ps 36(%rsi,%rax,4){1to16}, %zmm6, %zmm16 #8.9
vfmadd231ps 40(%rsi,%rax,4){1to16}, %zmm5, %zmm16 #8.9
vfmadd231ps 44(%rsi,%rax,4){1to16}, %zmm4, %zmm16 #8.9
vfmadd231ps 48(%rsi,%rax,4){1to16}, %zmm3, %zmm16 #8.9
vfmadd231ps 52(%rsi,%rax,4){1to16}, %zmm2, %zmm16 #8.9
vfmadd231ps 56(%rsi,%rax,4){1to16}, %zmm1, %zmm16 #8.9
vfmadd231ps 60(%rsi,%rax,4){1to16}, %zmm0, %zmm16 #8.9
addq $16, %rax #5.3
vmovups %zmm16, (%rdi) #8.9
addq $64, %rdi #5.3
cmpb $16, %dl #5.3
jb ..B1.2 # Prob 99% #5.3

Listing 48: Embedded broadcast in matrix multiplication example on Skylake.

In this assembly, 15 out of 16 broadcast operations are embedded in the vfmadd231ps operation
(embedded expressions are the ones with syntax like “4(%rsi,%rax,4){1to16}”). The 16th FMA
operation has an implicit load of A from %rdi, which is followed by vfmadd213ps (a different flavor
of FMA) to get the correct sequence of arithmetic instructions.

The k-loop is unrolled by 16, and the code uses a total of 16 + 1 = 17 registers: ZMM0 . . . ZMM15
containing matrix U and register ZMM16 containing the destination A. If embedded broadcasting was not
available, the compiler would have had to implement explicit broadcasts, and we would need additional
16 registers for a total of 17 + 16 = 33 registers. This is too many to fit in the AVX-512 register file.
Therefore, the unroll factor would have to be reduced, leading to sub-optimal performance.

The optimization report for Skylake in Listing 49 shows the estimated potential speedup of 8.38.

LOOP BEGIN at EB.c(6,5)
remark #15542: loop was not vectorized: inner loop was already vectorized
remark #25436: completely unrolled by 16
LOOP BEGIN at EB.c(7,7)

remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 2
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 11
remark #15477: vector cost: 0.680
remark #15478: estimated potential speedup: 8.380
remark #15488: --- end vector cost summary ---

LOOP END
LOOP END

Listing 49: Optimization report for matrix multiplication example on Skylake.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 34

https://colfaxresearch.com/

2.9 AVX-512F: Ternary Logic 2 SKYLAKE AND BROADWELL

2.9. AVX-512F: TERNARY LOGIC

A new operation, ternary logic, is introduced by AVX-512F to execute any bitwise logical functions
on three operands in one instruction. The ternary logic instruction accepts three short vector arguments,
up to 512-bits each, and an 8-bit integer representing an arbitrary truth table. To apply the logical function
with this truth table to the input data, the processor traverses the three input vectors bit by bit. Each triplet
of bits forms an index, which is then used to look up the output bit in the truth table.

The application of the ternary logic function is shown in Figure 7.

Figure 7: Ternary logic in AVX-512.

The example in Listing 50 performs a ternary operation with bitwise OR and bitwise AND operators.

1 void Ternary_Logic (int * restrict A, int * restrict B, int * restrict C) {
2 int i, n;
3 #pragma vector aligned
4 #pragma nounroll
5 for (i = 0; i < n; i++) {
6 A[i]= B[i] ˆ A[i] & C[i];
7 }
8 }

Listing 50: Bitwise logic instruction example.

In the code for Broadwell shown in Listing 53, the AND and XOR are issued separately.

..B1.8: # Preds ..B1.8 ..B1.7
Execution count [5.00e+00]

vmovdqu (%rdi,%rcx,4), %ymm0 #6.18
vpand (%rdx,%rcx,4), %ymm0, %ymm1 #6.25
vpxor (%r8,%rcx,4), %ymm1, %ymm2 #6.25
vmovdqu %ymm2, (%rdi,%rcx,4) #6.5
addq $8, %rcx #5.3
cmpq %rax, %rcx #5.3
jb ..B1.8 # Prob 82% #5.3

Listing 51: Lines from the assembly code for bitwise logic instruction example on Broadwell.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 35

https://colfaxresearch.com/

2.9 AVX-512F: Ternary Logic 2 SKYLAKE AND BROADWELL

The optimization report shown in Listing 52 shows an estimated potential speedup of 9.150.

LOOP BEGIN at TR.c(5,3)
... vectorization support: reference A[i] has aligned access [TR.c(6,5)]
... vectorization support: reference B[i] has aligned access [TR.c(6,11)]
... vectorization support: reference A[i] has aligned access [TR.c(6,18)]
... vectorization support: reference C[i] has aligned access [TR.c(6,25)]
... vectorization support: vector length 8
... LOOP WAS VECTORIZED
... unmasked aligned unit stride loads: 3
... unmasked aligned unit stride stores: 1
... --- begin vector cost summary ---
... scalar cost: 9
... vector cost: 0.870
... estimated potential speedup: 9.150
... --- end vector cost summary ---

LOOP END

Listing 52: Optimization report for bitwise logic instruction example on Broadwell.

In the code compiled for Skylake with AVX-512, the vpternlogd instruction is used to perform
both AND and XOR logical operations in one instruction.

..B1.8: # Preds ..B1.8 ..B1.7
Execution count [5.00e+00]

vmovups (%rax,%rsi,4), %zmm1 #6.11
vmovups (%r9,%rsi,4), %zmm0 #6.18
vpternlogd $120, (%rdx,%rsi,4), %zmm0, %zmm1 #6.25
vmovdqu32 %zmm1, (%r9,%rsi,4) #6.5
addq $16, %rsi #5.3
cmpq %rcx, %rsi #5.3
jb ..B1.8 # Prob 82% #5.3

Listing 53: Lines from the assembly code for bitwise logic instruction example on Skylake.

According to the optimization report in Listing 54, the estimated potential speedup due to vectorization
and, consequently, due to the ternary logic function, is 19.280.

LOOP BEGIN at TR.c(5,3)
... vectorization support: reference A[i] has aligned access [TR.c(6,5)]
... vectorization support: reference B[i] has aligned access [TR.c(6,11)]
... vectorization support: reference A[i] has aligned access [TR.c(6,18)]
... vectorization support: reference C[i] has aligned access [TR.c(6,25)]
... vectorization support: vector length 16
... LOOP WAS VECTORIZED
... unmasked aligned unit stride loads: 3
... unmasked aligned unit stride stores: 1
... --- begin vector cost summary ---
... scalar cost: 9
... vector cost: 0.430
... estimated potential speedup: 19.280
... --- end vector cost summary ---

LOOP END

Listing 54: Optimization report for bitwise logic instruction example on Skylake.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 36

https://colfaxresearch.com/

2.10 AVX-512F: Embedded Rounding 2 SKYLAKE AND BROADWELL

2.10. AVX-512F: EMBEDDED ROUNDING

Intel AVX-512 introduces the embedded rounding feature, which allows most arithmetic instructions
to define a rounding mode applied to just this particular instruction. To take advantage of this feature,
instructions must use a rounding attribute. Embedded rounding overrides the rounding mode set by the
control register MXCSR. In addition to the rounding mode, AVX-512 instructions support embedded sup-
pression of exceptions.

While it is not possible to set embedded rounding in automatically vectorized code, the user can control
rounding at instruction level with the help of intrinsic functions that have the suffix round . Listing 55
shows an example of this functionality.

1 #include <immintrin.h>
2
3 void DivRound(float *A, float *B, float *C) {
4 for (int i = 0; i < 1024; i += 16) {
5 __m512 A_vec = _mm512_load_ps(A + i);
6 __m512 B_vec = _mm512_load_ps(B + i);
7 __m512 C_vec = _mm512_div_round_ps(A_vec, B_vec, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
8 _mm512_store_ps(C + i, C_vec);
9 }

10 }

Listing 55: Example: vector division with embedded rounding using intrinsics.

Our intrinsics-based example code results in the assembly shown in Listing 56.

..B1.2: # Preds ..B1.2 ..B1.1
Execution count [6.25e+01]

vmovups (%rdi,%rax,4), %zmm0 #7.20
vmovups (%rsi,%rax,4), %zmm1 #7.20
vdivps {rn-sae}, %zmm1, %zmm0, %zmm2 #7.20
vmovups %zmm2, (%rdx,%rax,4) #8.21
addq $16, %rax #4.29
cmpq $1024, %rax #4.23
jl ..B1.2 # Prob 98% #4.23

Listing 56: Compiled division with embedded rounding.

Here the attribute rn of the vdivps instruction indicates the rounding mode of the vector division
operation, rounding to the nearest integer. The sae part of the attribute instructs the processor to suppress
all floating-point exceptions.

Other rounding modes supported in AVX-512 are shown in Table 3.

Flag Setting
MM FROUND TO NEAREST INT round to nearest integer
MM FROUND TO NEG INF round down toward −∞
MM FROUND TO POS INF round up toward +∞
MM FROUND TO ZERO truncate
MM FROUND NO EXC (in combination with the above) suppress floating-point exceptions

Table 3: Rounding modes in AVX-512.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 37

https://colfaxresearch.com/

3 SKYLAKE AND KNIGHTS LANDING

3. SKYLAKE AND KNIGHTS LANDING

In this section, we discuss the main differences between AVX-512 on Skylake and Knights Landing.
As we mentioned in Section 1.1, the first two processors to support Intel AVX-512 instructions are Intel
Xeon Phi processor family x200 (2016, formerly Knights Landing) and Intel Xeon processor Scalable
family (2017, formerly Skylake). However, the modules of AVX-512 used in these architectures are
different. Knights Landing supports AVX-512F, AVX-512CD, AVX-512ER, and AVX-512PF. Skylake
supports AVX-512F, AVX-512CD, AVX-512VL, AVX-512BW, and AVX-512DQ. See Table 1 for more
details.

3.1. AVX-512ER: EXPONENTIAL, RECIPROCAL

AVX-512ER, the “exponential and reciprocal” module, provides high-accuracy base-2 exponential,
reciprocal and reciprocal square root instructions. It is supported by KNL only. The base-2 exponen-
tial function in AVX-512ER provides a maximum relative error of 2−23, and the reciprocal and reciprocal
square root provide an error of 2−28. These high-accuracy functions are an improvement over the function-
ality of AVX-512F, in which the exponential function is not supported, and the reciprocal and reciprocal
square root functions provide a maximum relative error of 2−14.

In automatically vectorized codes, access to the AVX-512ER instructions in double precision is pro-
vided via the Math library SIMD-enabled functions exp2(x) and invsqrt(x) and the division op-
erator 1.0/x. In single precision, the functions are exp2f(x) and invsqrtf(x), and the oper-
ator is 1.0f/x. Intel compilers may translate these functions to vector code in different ways, de-
pending on whether AVX-512ER is available in the target architecture, and depending on the required
transcendental function accuracy. The required accuracy can be set, for example, with the argument
-fimf-precision=low|medium|high or -fimf-accuracy-bits=n. Specifically, the Math
library function call may be translated into one of the following in the assembly:

1. the corresponding AVX-512F or AVX-512ER vector instruction combined with a normalization of
the function argument,

2. the corresponding AVX-512F or AVX-512ER vector instruction followed by Newton-Raphson iter-
ation to improve accuracy,

3. a polynomial approximation to the function with a normalized argument, or

4. a call to an SVML (Short Vector Math Library) function implementing an analytic approximation
of the transcendental function.

The specific recommendations for implementation can be found in Section 13.24 of [6].
Additionally, in Table 4 we show the implementation of the three functions in single precision and

in double precision for Skylake and Knights Landing produced by the Intel C compiler 17.0.2.174.
We compiled the code with -fimf-precision=low to obtain the low-accuracy implementation and
-fimf-precision=high for the high-accuracy one.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 38

https://colfaxresearch.com/

3.1 AVX-512ER: Exponential, Reciprocal 3 SKYLAKE AND KNIGHTS LANDING

High Accuracy Low Accuracy

Skylake Knights Landing Skylake Knights Landing

exp2(x) svml exp28 ha svml exp28 ha svml exp28 ep svml exp28 ep

exp2f(x) svml exp2f16 ha svml exp2f16 ha Polynomial vexp2ps

invsqrt(x) svml invsqrt8 ha vrsqrt28pd + NR svml invsqrt8 ep vrsqrt28pd

invsqrtf(x) svml invsqrtf16 ha vrsqrt28ps svml invsqrtf16 ep svml invsqrtf16 ha

1.0/x vdivpd vdivpd vdivpd vrcp28pd + NR

1.0f/x vdivps vdivps vrcp14ps + NR vrcp14ps

Table 4: Implementation of transcendental math in vector calculations.

To give you a better idea of how the various implementations look in code, we compiled the example
in Listing 57 for the reciprocal square root operation for both architectures: Skylake and Knights Landing.

1 void Reciprocal_sqrt (double * restrict A, double * restrict B) {
2 int i;
3 for (i = 0; i < 10000; i++)
4 B[i] = invsqrt(A[i]);
5 }

Listing 57: Reciprocal square root example .

First, we compiled the code for Skylake with -xCORE-AVX512 and -fimf-precision=high
and obtained the assembly shown in Listing 58.

vmovups (%r14,%r13,8), %zmm0 #4.20
vmovups 64(%r14,%r13,8), %zmm16 #4.20
call __svml_invsqrt8_ha #4.12
vmovaps %zmm0, %zmm17 #4.12
vmovaps %zmm16, %zmm0 #4.12
call __svml_invsqrt8_ha #4.12
vmovupd %zmm17, (%rsi,%r13,8) #4.5
vmovupd %zmm0, 64(%rsi,%r13,8) #4.5

Listing 58: Lines from assembly code for reciprocal square root operation with high accuracy for Skylake.

This code relies on the high-accuracy implementation (see suffix ha) of the reciprocal square root
from the SVML.

Second, we recompiled the code for Knights Landing with -xMIC-AVX512, still keeping the preci-
sion flag -fimf-precision=high. This resulted in the assembly shown in Listing 59.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 39

https://colfaxresearch.com/

3.1 AVX-512ER: Exponential, Reciprocal 3 SKYLAKE AND KNIGHTS LANDING

vmovups (%rdi,%r8,8), %zmm5 #4.20 c1
vmovups 64(%rdi,%r8,8), %zmm10 #4.20 c1
vmovaps %zmm4, %zmm2 #4.12 c1
vmovaps %zmm4, %zmm8 #4.12 c1
vpcmpq $1, .L_2il0floatpacket.2(%rip){1to8}, %zmm5, %k1 #4.12 c7 stall 2
vpcmpq $1, .L_2il0floatpacket.2(%rip){1to8}, %zmm10, %k2 #4.12 c7
vscalefpd .L_2il0floatpacket.3(%rip){1to8}, %zmm5, %zmm5{%k1} #4.12 c9
vscalefpd .L_2il0floatpacket.3(%rip){1to8}, %zmm10, %zmm10{%k2} #4.12 c9
vrsqrt28pd %zmm5, %zmm0 #4.12 c11
vrsqrt28pd %zmm10, %zmm6 #4.12 c11
vpandq .L_2il0floatpacket.4(%rip){1to8}, %zmm0, %zmm11 #4.12 c19 stall 3
vpandq .L_2il0floatpacket.4(%rip){1to8}, %zmm6, %zmm12 #4.12 c19
vmulpd {rn-sae}, %zmm11, %zmm11, %zmm1 #4.12 c21
vmulpd {rn-sae}, %zmm12, %zmm12, %zmm7 #4.12 c21
vfnmadd213pd .L_2il0floatpacket.5(%rip){1to8}, %zmm5, %zmm1 #4.12 c27 stall 2
vfnmadd213pd .L_2il0floatpacket.5(%rip){1to8}, %zmm10, %zmm7 #4.12 c27
vfmadd213pd .L_2il0floatpacket.2(%rip){1to8}, %zmm1, %zmm2 #4.12 c33 stall 2
vfmadd213pd .L_2il0floatpacket.2(%rip){1to8}, %zmm7, %zmm8 #4.12 c33
vmulpd {rn-sae}, %zmm2, %zmm1, %zmm3 #4.12 c39 stall 2
vmulpd {rn-sae}, %zmm8, %zmm7, %zmm9 #4.12 c39
vfmadd231pd %zmm11, %zmm3, %zmm11 #4.12 c45 stall 2
vfmadd231pd %zmm12, %zmm9, %zmm12 #4.12 c45
vscalefpd .L_2il0floatpacket.7(%rip){1to8}, %zmm11, %zmm11{%k1} #4.12 c51 stall 2
vscalefpd .L_2il0floatpacket.7(%rip){1to8}, %zmm12, %zmm12{%k2} #4.12 c51
vfixupimmpd $112, .L_2il0floatpacket.8(%rip){1to8}, %zmm5, %zmm11 #4.12 c53
vmovupd %zmm11, (%rsi,%r8,8) #4.5 c55
vfixupimmpd $112, .L_2il0floatpacket.8(%rip){1to8}, %zmm10, %zmm12 #4.12 c55
vmovupd %zmm12, 64(%rsi,%r8,8) #4.5 c57

Listing 59: Reciprocal square root in double precision with high accuracy on Knights Landing.

Here the compiler used the AVX-512ER instruction vrsqrt28pd followed by Newton-Raphson
iterations to improve accuracy.

Finally, we compiled the code for Skylake with -fimf-precision=low. The result is shown in
Listing 60.

vmovups (%rdi,%r8,8), %zmm0 #4.20 c1
vmovups 64(%rdi,%r8,8), %zmm1 #4.20 c1
vpcmpq $1, .L_2il0floatpacket.2(%rip){1to8}, %zmm0, %k1 #4.12 c7 stall 2
vpcmpq $1, .L_2il0floatpacket.2(%rip){1to8}, %zmm1, %k2 #4.12 c7
vscalefpd .L_2il0floatpacket.3(%rip){1to8}, %zmm0, %zmm0{%k1} #4.12 c9
vscalefpd .L_2il0floatpacket.3(%rip){1to8}, %zmm1, %zmm1{%k2} #4.12 c9
vrsqrt28pd %zmm0, %zmm2 #4.12 c11
vrsqrt28pd %zmm1, %zmm3 #4.12 c11
vscalefpd .L_2il0floatpacket.4(%rip){1to8}, %zmm2, %zmm2{%k1} #4.12 c19 stall 3
vmovupd %zmm2, (%rsi,%r8,8) #4.5 c21
vscalefpd .L_2il0floatpacket.4(%rip){1to8}, %zmm3, %zmm3{%k2} #4.12 c21
vmovupd %zmm3, 64(%rsi,%r8,8) #4.5 c23

Listing 60: Reciprocal square root in double precision with low accuracy on Knights Landing.

Here the compiler only normalizes the argument of the reciprocal square root and then uses
vrsqrt28pd without Newton-Raphson iterations.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 40

https://colfaxresearch.com/

3.2 AVX-512PF: Prefetch for Gather/Scatter 3 SKYLAKE AND KNIGHTS LANDING

3.2. AVX-512PF: PREFETCH FOR GATHER/SCATTER

AVX-512PF is an AVX-512 module featuring the “Prefetch” instructions for gather and scatter oper-
ations. This module is included in the Knights Landing architecture, but not in Skylake. The instructions
of AVX-512PF allow the code to prefetch 8 or 16 elements into the L1 or the L2 cache. The element
addresses are specified in the instruction with a base address and a vector of 32-bit or 64-bit offsets. These
instructions are useful for codes with complex memory access patterns where the automatic hardware
prefetching functionality is not sufficient.

Prefetching is not unique to AVX-512PF. Indeed, it is also available in SSE, where the
prefetchnta, prefetcht0, prefetcht1, and prefetcht2 can be used to prefetch a cache
line from memory into the L1 or L2 cache before the core needs it. This strategy can reduce the latency of
memory accesses by partially overlapping data movement with computation. In each architecture, there is
a limit on how many prefetch instructions can be executed concurrently per core. This limit together with
the latency of memory access determines the maximum achievable memory bandwidth.

It is not necessary to use software prefetching to achieve a high bandwidth of memory access. That is
because most Intel architecture processors also have hardware prefetching, which is applied to the running
code automatically. When the memory access pattern is predictable, the hardware prefetch unit in the core
trains on the pattern and sets the hardware prefetch distance automatically.

What makes the AVX-512PF prefetch different from the SSE prefetch instruction is that the AVX-
512PF prefetch requires just one instruction to fetch up to 16 elements scattered in memory, while the SSE
prefetch accesses only a single cache line, i.e., 64 consecutive bytes.

An example of code with memory access pattern that calls for automatic prefetching with AVX-512PF
is shown in Listing 61.

1 void Transpose(float* restrict dest, float* restrict source, int* restrict offset, int n) {
2 int i;
3 for (i = 0; i < n; i++)
4 dest[i] = source[offset[i]];
5 }

Listing 61: Code with indirect memory access may be optimized with software prefetching.

In this code, the array source can be prefetched with the AVX-512PF instruction, which will gather
16 values pointed to by the indices in offset before these values are used to write into dist.

Without AVX-512PF (e.g., on Skylake), prefetching is still possible, but with the help of as many as 16
regular prefetch instructions, each of which prefetches a cache line containing one element of source.
To observe this, we compiled this code for the Skylake architecture as shown in Listing 62. To illustrate
the handling of prefetching and AVX2 gather instruction, we used -vec-threshold0 to force vector-
ization with the gather instruction even though the compiler estimated that vectorization was not profitable
in this case.

1 icc -xCORE-AVX512 -O3 -qopt-prefetch=5 -vec-threshold0 -S -qopt-report-embed indirect.c

Listing 62: Compilation for Skylake with automatic prefetching.

The resulting assembly is shown in Listing 63.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 41

https://colfaxresearch.com/

3.2 AVX-512PF: Prefetch for Gather/Scatter 3 SKYLAKE AND KNIGHTS LANDING

..B1.13: # Preds ..B1.15 ..B1.12
vmovups (%r9,%rcx), %zmm0 #4.22
vpcmpeqb %xmm0, %xmm0, %k1 #4.15
vpxord %zmm1, %zmm1, %zmm1 #4.15
vgatherdps (%rsi,%zmm0,4), %zmm1{%k1} #4.15
vmovups %zmm1, (%r9,%rdi) #4.5
cmpl %r8d, %r10d #3.3
jg ..B1.15 # Prob 18% #3.3

..B1.14: # Preds ..B1.13
movslq 128(%r9,%rcx), %r11 #4.22
prefetcht1 (%rsi,%r11,4) #4.15
movslq (%rcx), %r11 #4.22
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht1 (%rsi,%r11,4) #4.15
prefetcht0 512(%r9,%rcx) #4.22
prefetcht0 512(%r9,%rdi) #4.5

..B1.15: # Preds ..B1.13 ..B1.14
addl $16, %edx #3.3
addq $64, %r9 #3.3
addl $16, %r10d #3.3
cmpl %r8d, %edx #3.3
jb ..B1.13 # Prob 82% #3.3

Listing 63: Gather with prefetching for Skylake.

The long list of prefetcht1 instructions fetches 16 elements from RAM to the level 2 cache for a
subsequent vgatherdps operation.

In contrast, when we compile for Knights Landing as shown in Listing 64, we see a different result.

1 icc -xMIC-AVX512 -O3 -qopt-prefetch=5 -S -qopt-report-embed indirect.c

Listing 64: Compilation with automatic prefetching.

The assembly produced by the above compilation command is shown in Listing 65.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 42

https://colfaxresearch.com/

3.2 AVX-512PF: Prefetch for Gather/Scatter 3 SKYLAKE AND KNIGHTS LANDING

..B1.12: # Preds ..B1.14 ..B1.11
Execution count [5.00e+00]

vmovups (%r9,%r8), %zmm0 #6.22 c1
vpxord %zmm1, %zmm1, %zmm1 #6.15 c1
kmovw %k1, %k2 #6.15 c1
vgatherdps (%rsi,%zmm0,4), %zmm1{%k2} #6.15 c7 stall 2
vmovups %zmm1, (%r9,%rdi) #6.5 c13 stall 2
cmpl %edx, %r10d #5.3 c13
jg ..B1.14 # Prob 18% #5.3 c15

LOE rbx rbp rsi rdi r8 r9 r12 r13 r14 r15 eax edx ecx r10d k1
..B1.13: # Preds ..B1.12

Execution count [4.10e+00]
prefetcht0 512(%r9,%r8) #6.22 c1
vpbroadcastd 512(%r9,%r8), %zmm0 #6.15 c1
vgatherpf1dps (%rsi,%zmm0){%k1} #6.15 c7 stall 2
prefetcht0 512(%r9,%rdi) #6.5 c7

LOE rbx rbp rsi rdi r8 r9 r12 r13 r14 r15 eax edx ecx r10d k1
..B1.14: # Preds ..B1.12 ..B1.13

Execution count [5.00e+00]
addl $16, %eax #5.3 c1
addq $64, %r9 #5.3 c1
addl $16, %r10d #5.3 c3
cmpl %edx, %eax #5.3 c3
jb ..B1.12 # Prob 82% #5.3 c5

Listing 65: Gather with prefetching for Knights Landing.

Instead of 16 prefetch instructions, there is a single vgatherpd1dps instruction for access to array
source. Arrays dest and offset are accessed with unit stride (i.e., consecutively), so for these arrays,
the compiler inserted the regular SSE prefetcht0 instructions.

To enable automatic generation of AVX-512PF prefetch instructions by Intel compilers, use the opti-
mization level -O3 and the argument -qopt-prefetch=5 like we did above. Additional fine-tuning
of AVX-512PF instructions is possible only via the intrinsic function mm512 i32 gather ps() and
other variants of this intrinsic (masked, scatter, double precision and 64-bit index intrinsics).

If you want to tune regular prefetching (i.e., SSE cache line prefetch), then additional fine-tuning is
also available with one of the following methods. None of the methods listed below result in AVX-512PF;
the only access to AVX-512PF is through the above-mentioned intrinsics and automatic vectorization.

1. You can place directive #pragma prefetch before a loop (similar syntax available in Fortran),
which specifies the prefetched variable, distance and the prefetch hint (i.e., destination cache). For
example, the code shown below prefetches array source into the L1 cache with a distance of 8
iterations. This directive requires the compiler argument -qopt-prefetch=n with n at least 2.

1 #include <immintrin.h>
2 ...
3 #pragma prefetch source:_MM_HINT_T0:8
4 for (i = 0; i < n; i++)
5 dest[i] = source[offset[i]];

2. Use the compiler argument -qopt-prefetch-distance=n1[,n2] combined with
-qopt-prefetch-distance=5 to request a prefetch distance of n1 for the L2 cache and,
optionally, a distance of n2 for prefetching to the L1 cache.

3. Insert the intrinsic mm prefetch() in the code.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 43

https://colfaxresearch.com/

3.3 AVX-512DQ: Double and Quad Words 3 SKYLAKE AND KNIGHTS LANDING

3.3. AVX-512DQ: DOUBLE AND QUAD WORDS

AVX-512DQ is a module of AVX-512 supported by Skylake to extend the support for double word
(i.e., 32-bit) and quadword (64-bit) types for some of the operations available in AVX-512F. For instance,
AVX-512DQ includes:

• instructions for converting 32- and 64-bit floating-point numbers to 64-bit integers,

• instructions for converting 64-bit integers to 32- and 64-bit floating-point numbers,

• multiplication of 64-bit integers with intermediate results stored as 128-bit integers,

• reduction operations (min, max, sum) across vectors of 32- and 64-bit floating-point numbers.

AVX-512DQ is not available in the Knights Landing architecture.
Listing 66 shows an example for conversion from double precision floating-point elements to 64-bit

integers.

1 void Convert (long * restrict A, double * restrict B) {
2 int i;
3
4 for (i = 0; i < 10000; i++)
5 A[i]=(long)B[i];
6 }

Listing 66: Conversion example: 64-bit floating-point numbers to 64-bit integers.

For the Skylake target (i.e., with the compiler argument -xCORE-AVX512), the compiler-generated
assembly looks like in Listing 67.

..B1.8: # Preds ..B1.8 ..B1.7
vcvttpd2qq (%rsi,%r8,8), %zmm0 #5.16
vcvttpd2qq 64(%rsi,%r8,8), %zmm1 #5.16
vcvttpd2qq 128(%rsi,%r8,8), %zmm2 #5.16
vcvttpd2qq 192(%rsi,%r8,8), %zmm3 #5.16
vmovdqu64 %zmm0, (%rdi,%r8,8) #5.5
vmovdqu64 %zmm1, 64(%rdi,%r8,8) #5.5
vmovdqu64 %zmm2, 128(%rdi,%r8,8) #5.5
vmovdqu64 %zmm3, 192(%rdi,%r8,8) #5.5
addq $32, %r8 #4.3
cmpq %rdx, %r8 #4.3
jb ..B1.8 # Prob 99% #4.3

Listing 67: Lines from assembly code for conversion example on Skylake.

Here the instruction vcvttpd2qq is used for the conversion operation on ZMM registers. This
instruction belongs to AVX-512DQ module, and it converts 64-bit floating-point numbers to 64-bit integers
with truncation.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 44

https://colfaxresearch.com/

3.3 AVX-512DQ: Double and Quad Words 3 SKYLAKE AND KNIGHTS LANDING

LOOP BEGIN at convert.c(4,3)
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 7
remark #15477: vector cost: 0.560
remark #15478: estimated potential speedup: 12.350
remark #15487: type converts: 1
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=312

LOOP END

Listing 68: Optimization report for conversion example on Skylake.

In the case of the Knights Landing target (-xMIC-AVX512), Listing 69 shows the assembly produced
by the compiler. In this case, instruction vcvttsd2si was used, which belongs to the AVX-512F mod-
ule. It converts the floating-point number contained in the lower 64 bits of the XMM register to a 64-bit
integer with truncation.

..B1.8: # Preds ..B1.8 ..B1.7
vmovups (%rsi,%rcx,8), %zmm10 #5.16 c1
vmovups 64(%rsi,%rcx,8), %zmm6 #5.16 c1
vpermpd %zmm10, %zmm13, %zmm2 #5.16 c7 stall 2
vpermpd %zmm10, %zmm16, %zmm5 #5.16 c7
vpermpd %zmm10, %zmm11, %zmm7 #5.16 c9
vcvttsd2si %xmm2, %r12 #5.16 c11
movq %r12, 96(%rsp) #5.16 c13
vpermpd %zmm6, %zmm16, %zmm2 #5.16 c13
vcvttsd2si %xmm5, %r9 #5.16 c15
movq %r9, 72(%rsp) #5.16 c17

...
addq $32, %rcx #4.3 c111
cmpq %rax, %rcx #4.3 c113
jb ..B1.8 # Prob 99% #4.3 c115

Listing 69: Lines from assembly code for conversion example on Knights Landing.

LOOP BEGIN at convert.c(4,3)
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 7
remark #15477: vector cost: 0.560
remark #15478: estimated potential speedup: 12.350
remark #15487: type converts: 1
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=312

LOOP END

Listing 70: Optimization report for conversion example on Knights landing.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 45

https://colfaxresearch.com/

3.4 AVX-512BW: Byte and Word Support 3 SKYLAKE AND KNIGHTS LANDING

3.4. AVX-512BW: BYTE AND WORD SUPPORT

The AVX-512BW module available in Skylake offers basic arithmetic operations and masking for 512-
bit vectors of byte-size (8-bit) and word-size (16-bit) integer elements. A processor with AVX-512BW
can perform plain or masked addition, multiplication, comparison, element broadcast, type conversion,
permutation, min/max reduction and bitwise operations on vectors of 64 elements of byte size or 32
elements of word size.

This functionality is useful for applications with byte- or word-size data elements, including image
processing and experimental data analysis. In Knights Landing, where AVX-512BW is not available, such
data would require conversion to 32-bit elements for processing with 512-bit vectors. Alternatively, KNL
can perform 8-bit and 16-bit arithmetics with legacy 256-bit AVX2 instructions. In contrast, Skylake can
do data storage and arithmetic on 8-bit or 16-bit elements using the full 512-bit vector width.

Listing 71 shows an example requiring byte-size element support. The directive #pragma vector
aligned promises to the compiler that both A and B begin on a 64-byte aligned boundary. At the time
of allocation of these arrays, this alignment must be enforced for the code to work correctly.

1 void Byte_Add (char * restrict A, char * restrict B) {
2 int i;
3
4 #pragma vector aligned
5 for (i = 0; i < 10000; i++)
6 if(A[i]>1)
7 A[i]=B[i]+1;
8 }

Listing 71: Byte-word support example: operations on 8-bit integers.

In the case of Skylake, the assembly in Listing 72 shows that the vpcmpgtb instruction operating
on ZMM registers was used. This instruction compares packed 8-bit signed integers in ZMM registers
and sets a vector mask to reflect zero/non-zero status for each element of the result. After that, masked
vpaddb is used for addition of byte-size elements in 512-bit ZMM resisters. Arithmetic in ZMM was
possible because of the AVX-512BW module.

..B1.2: # Preds ..B1.2 ..B1.1
vmovups (%rax,%rdi), %zmm1 #7.7
vmovups 64(%rax,%rdi), %zmm2 #7.7
vpcmpgtb %zmm0, %zmm1, %k1 #6.13
vpcmpgtb %zmm0, %zmm2, %k2 #6.13
vpaddb (%rsi,%rax), %zmm0, %zmm1{%k1} #7.17
vpaddb 64(%rsi,%rax), %zmm0, %zmm2{%k2} #7.17
vmovdqu32 %zmm1, (%rax,%rdi) #7.7
vmovdqu32 %zmm2, 64(%rax,%rdi) #7.7
addq $128, %rax #5.3
cmpq $9984, %rax #5.3
jb ..B1.2 # Prob 99% #5.3

Listing 72: Lines from assembly code for byte-word support example on Skylake.

The optimization report in Listing 73 shows an estimated speedup of 52.740.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 46

https://colfaxresearch.com/

3.4 AVX-512BW: Byte and Word Support 3 SKYLAKE AND KNIGHTS LANDING

LOOP BEGIN at bw.c(5,3)
...

remark #15305: vectorization support: vector length 64
remark #15399: vectorization support: unroll factor set to 2
remark #15300: LOOP WAS VECTORIZED

...
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 15
remark #15477: vector cost: 0.280
remark #15478: estimated potential speedup: 52.740
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=78

LOOP END

Listing 73: Optimization report for byte-word support example on Skylake.

In the case of Knights Landing, assembly code in Listing 74 shows that the vpcmpgtb instruction
is used, but this time it is a part of the AVX2 instruction set, which operates on YMM registers. The
compiler did not use AVX-512 instructions to vectorize these operations on 8-bit integers because the
minimum element size in AVX-512F is 32 bits, and Knights Landing does not support AVX-512BW.

..B1.2: # Preds ..B1.2 ..B1.1
vmovdqu (%rax,%rdi), %ymm1 #7.7 c1
vmovdqu 32(%rax,%rdi), %ymm5 #7.7 c1
vpcmpgtb %ymm0, %ymm1, %ymm3 #6.13 c7 stall 2
vpaddb (%rsi,%rax), %ymm0, %ymm2 #7.7 c7
vpcmpgtb %ymm0, %ymm5, %ymm7 #6.13 c7
vpaddb 32(%rsi,%rax), %ymm0, %ymm6 #7.7 c7
vpblendvb %ymm3, %ymm2, %ymm1, %ymm4 #7.7 c9
vmovdqu %ymm4, (%rax,%rdi) #7.7 c11
vpblendvb %ymm7, %ymm6, %ymm5, %ymm8 #7.7 c11
vmovdqu %ymm8, 32(%rax,%rdi) #7.7 c13
addq $64, %rax #5.3 c13
cmpq $9984, %rax #5.3 c15
jb ..B1.2 # Prob 99% #5.3 c17

Listing 74: Lines from assembly code for byte-word support example on Knights landing.

According to the optimization report in Listing 75, the use of YMM decreases the vector length to 32
and reduces the estimated speedup due to vectorization from 52.740 to 26.530.

LOOP BEGIN at bw.c(5,3)
...

remark #15305: vectorization support: vector length 32
remark #15399: vectorization support: unroll factor set to 2
remark #15300: LOOP WAS VECTORIZED

...
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 15
remark #15477: vector cost: 0.560
remark #15478: estimated potential speedup: 26.530
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=156

LOOP END

Listing 75: Optimization report for byte-word support example on Knights landing.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 47

https://colfaxresearch.com/

3.5 AVX-512VL: Vector Length Orthog.-ty 3 SKYLAKE AND KNIGHTS LANDING

3.5. AVX-512VL: VECTOR LENGTH ORTHOGONALITY

The AVX-512VL feature available in the Skylake architecture allows most of the AVX-512 instruc-
tions to operate at three vector lengths: 128-bit (XMM), 256-bit (YMM) and 512-bit (ZMM). The suffix
-VL denotes the full name of this feature, “Vector Length Orthogonality”. This feature allows AVX-512
instructions to operate on XMM or YMM registers, which are normally used in SSE and AVX, respec-
tively, and at the same time use the AVX-512 capabilities, including 32 vector registers and 8 opmask
registers [8]. AVX-512VL is important for applications in which the amount of data parallelism cannot
fill the 512-bit vector register. It is not possible to use embedded rounding in instructions that rely on
AVX-512VL. In Knights Landing, the AVX-512VL feature is not available.

Listing 76 shows an example where vector length orthogonality can be useful.

1 void bitwise_op (char * restrict A, char * restrict B, char * restrict C) {
2 int i;
3
4 for (i = 0; i < 16; i++)
5 B[i] = A[i] & B[i] | C[i];
6 }

Listing 76: Vector length support example: a ternary bitwise operation on 16-byte vectors.

This workload uses two bitwise logical operations, and as we know from Section 2.9, AVX-512 can
process it as a ternary operation. However, with only 16 bytes of data processed in the loop, the 64-byte
ZMM registers will not be filled. At the same time, it is not possible to use SSE instructions on 16-byte
XMM registers, either, because ternary operations are not available on SSE.

In the case of Skylake, the assembly in Listing 77 shows that the ternary instruction vpternlogd is
used to perform bitwise logical operations on three operands. This instruction belongs to AVX-512F and
supported by AVX-512VL so it can operate on the lower 128 bits of the ZMM registers named as XMM
registers.

vmovdqu (%rdi), %xmm0 #5.14
vmovdqu (%rdx), %xmm1 #5.28
vpternlogd $248, (%rsi), %xmm0, %xmm1 #5.28
vmovdqu %xmm1, (%rsi) #5.7
ret #6.1

Listing 77: Lines from assembly code for vector length support example on Skylake.

LOOP BEGIN at VL.c(4,3)
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 3
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 13
remark #15477: vector cost: 1.000
remark #15478: estimated potential speedup: 7.420
remark #15488: --- end vector cost summary ---

LOOP END

Listing 78: Optimization report for vector length support example on Skylake.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 48

https://colfaxresearch.com/

3.5 AVX-512VL: Vector Length Orthog.-ty 3 SKYLAKE AND KNIGHTS LANDING

In the case of Knights Landing, the assembly in Listing 79 shows that the bitwise operations on the
three operands are performed in 2 steps using 2 instructions: vpand and vpor. These instructions operate
on XMM registers and belong to AVX instruction set.

vmovdqu (%rdi), %xmm0 #5.14 c1
vpand (%rsi), %xmm0, %xmm1 #5.21 c3
vpor (%rdx), %xmm1, %xmm2 #5.28 c5
vmovdqu %xmm2, (%rsi) #5.7 c7

Listing 79: Lines from assembly code for vector length support example on Knights Landing.

Optimization report for Knights Landing is shown in Listing 80.

LOOP BEGIN at VL.c(4,3)
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 3
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 13
remark #15477: vector cost: 1.000
remark #15478: estimated potential speedup: 7.420
remark #15488: --- end vector cost summary ---

LOOP END

Listing 80: Optimization report for vector length support example on Knights Landing.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 49

https://colfaxresearch.com/

4 APPLICABILITY OF AVX-512

4. APPLICABILITY OF AVX-512

Intel Advanced Vector Extensions 512 (Intel AVX-512) is a major refresh of the vector instruction
set for modern Intel architecture processors. The first processor families to support it are Intel Xeon Phi
processor family x200 (formerly Knights Landing) and Intel Xeon processor Scalable family (formerly
Skylake). AVX-512 consists of multiple modules (AVX-512F, -CD, -ER, -PF, -BW, -DQ, -VL, and several
more modules expected in future processors), and different architectures support different sets of modules.

In our discussion of AVX-512, we saw that its innovations allow computational applications to take
advantage of data parallelism better than with earlier instruction sets. Processors based on the Skylake
architecture, compared to their predecessors based on the Broadwell architecture, have access to:

• wider vectors (512-bit up from 256-bit);

• more registers per core (32 registers up from 16);

• conflict detection instruction;

• bitmask-enabled vector arithmetics (as opposed to register-stored masks);

• instructions for vectorized data compress/expand, shuffle, and gather/scatter;

• functionality that frees up the register space and reduces the instruction count: embedded broadcast-
ing and ternary logic; and

• embedded rounding for quick adjustment of the rounding mode for individual instructions.

Processors based on the Knights Landing architecture have a different subset of AVX-512 functionality.
Compared to Skylake, they can vectorize

• high-precision exponential, reciprocal and reciprocal square root functions and

• prefetching of scattered memory addresses.

At the same time, in Skylake, compared to Knights Landing,

• there are additional 512-bit instructions for operations with double word (32-bit) and quadword
(64-bit) integers and

• 512-bit instructions for arithmetics on byte-wide (8-bit) and word (16-bit) data types.

When you use automatic vectorization, you do not have to commit to a particular architecture.
To switch the compilation target from Skylake to Knights Landing, you only need to change the
compiler argument -xCORE-AVX512 to -xMIC-AVX512 (Intel compilers 18.x additionally require
-qopt-zmm-usage=high for Skylake). You can also produce an executable that will work on both of
these platforms by using -xCOMMON-AVX512, which restricts AVX-512 modules used in the executable
to the ones that are common to Skylake and Knights Landing. However, one platform may be a better fit
for your application than the other depending on the type of vector processing that you require and on a
range of other factors.

Both Intel Xeon Scalable processors and Intel Xeon Phi processors are highly parallel and feature
advanced vector processing capabilities. They differ in their balance between versatility and specialization,
performance to cost ratio, and vector processing support. In Table 5 we compare the vector functionality

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 50

https://colfaxresearch.com/

4 APPLICABILITY OF AVX-512

in these processor families to help you make an informed decision regarding the best platform for your
workloads.

Function SKL KNL Workload Applications
AVX-512F:
floating-point math

Yes Yes Diverse Engineering, physics, statistics, data analyt-
ics, energy applications

AVX-512F:
fused multiply-add

Yes Yes Dense linear algebra Deep learning, engineering, fluid dynamics

AVX-512F:
bitmasks

Yes Yes Loops with branches Classical machine learning, particle trans-
port, software-defined visualization

AVX-512F:
data compress/expand

Yes Yes Sparse linear algebra Mechanical engineering, seismic simula-
tion, data analytics

AVX-512F:
embedded rounding

Yes Yes Discretization, numeri-
cal integration

Video transcoding, mathematical libraries

AVX-512F:
gather/scatter

Yes Yes Stencils, table lookups,
sparse linear algebra

Weather modeling, plasma physics, data an-
alytics

AVX-512CD:
conflict detection

Yes Yes Binning Monte Carlo simulations: computational fi-
nance, physics; statistics and data analytics

AVX-512ER:
transendentals

Yes N-body simulations,
function approximation

Astrophysics, molecular dynamics, particle
physics

AVX-512PF:
gather/scatter prefetch

Yes Stencils, table lookups,
sparse linear algebra

Weather modeling, plasma physics, data an-
alytics

AVX-512DQ:
large integers

Yes Encryption, random
numbers

Security, statistics, Monte Carlo simula-
tions, financial applications

AVX-512BW:
small integers

Yes Special data types Game theory, signal processing, experimen-
tal data analysis, image manipulation

AVX-512VL:
shorter vectors

Yes Array-of-Structures data
layouts

Legacy simulations of molecular dynamics,
particle physics; classical machine learning

Table 5: Comparison of vector functionality and application areas of Intel Xeon processor Scalable family (SKL) and Intel
Xeon Phi processor family x200 (KNL).

The list of applications in Table 5 is only a rough guideline to the domains of applicability of the new
AVX-512 vector instructions in Intel architecture. Furthermore, vectorization functionality is only one of
the factors that you need to consider to identify the optimal architecture for a problem. The full scope of
analysis for the choice of the best architecture includes:

• Memory architecture, including the size and speed of caches, access to high-bandwidth memory,
non-uniform memory architecture versus symmetric multiprocessing.

• Multi-core organization, including the choice between high parallel scalability and resilience to
under-subscription of the cores,

• Distributed-memory scalability options with modern high-performance network fabrics, and

• Cost and energy efficiency of the platform for a particular workload.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 51

https://colfaxresearch.com/

REFERENCES REFERENCES

The choice of the computing platform for your task is a significant factor in application performance.
However, the code that you run on your system may have far greater impact on your results. Numerous
case studies of the recent years testify that code modernization may lead to performance improvements by
orders of magnitude even on the same computing solution (see, e.g., [9, 10, 11, 12]).

To extract the best value out of your computing infrastructure investment, you need to assess how well
the code base of your application takes advantage of modern processor features, including the multi-core
architecture, vector instructions, hierarchical memory and high-performance networking. If the code uses
legacy practices, it needs to be optimized before it can efficiently use Intel Xeon Scalable processors, Intel
Xeon Phi processors, or any other modern processor family.

Colfax Research can help you to identify performance issues of your applications, optimize your code
base, and help you to select the best platform for your needs. You can learn more about our consulting and
contract research capabilities and engage with us at colfaxresearch.com.

REFERENCES

[1] Alaa Eltablawy and Andrey Vladimirov. Capabilities of Intel R⃝ AVX-512 in Intel R⃝ Xeon R⃝ Scalable Processors (Skylake),
2017 (HTML version of this paper).
http://colfaxresearch.com/skl-avx512.

[2] HOW Series “Deep Dive” – Webinars on Parallel Programming and Optimization.
https://colfaxresearch.com/how-series/.

[3] HOW Series “Knights Landing” – Programming Intel Xeon Phi Processor Family x200.
https://colfaxresearch.com/knl-how/.

[4] Intel Xeon Platinum 8160 Processor.
https://ark.intel.com/products/120501/Intel-Xeon-Platinum-8160-Processor-33M-Cache-2 10-GHz.

[5] Intel Xeon Processor Scalable Family, specification update, August, 2017.
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html.

[6] Intel 64 and IA-32 Architectures Optimization Reference Manual, July, 2017.
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf.

[7] Andrey Vladimirov. Optimization Techniques for the Intel MIC Architecture. Part 2 of 3: Strip-Mining for Vectorization,
2015.
https://colfaxresearch.com/?p=709.

[8] James Reinders. AVX-512 May Be a Hidden Gem in Intel Xeon Scalable Processors, June 29, 2017.
https://www.hpcwire.com/2017/06/29/reinders-avx-512-may-hidden-gem-intel-xeon-scalable-processors/.

[9] Accelerating Public Domain Applications: Lessons from Models of Radiation Transport in the Milky Way Galaxy.
https://colfaxresearch.com/?p=25.

[10] Parallel Computing in the Search for New Physics at LHC.
https://colfaxresearch.com/parallel-computing-in-the-search-for-new-physics-at-lhc/.

[11] Machine Learning on 2nd Generation Intel Xeon Phi Processors: Image Captioning with NeuralTalk2, Torch, 2016.
https://colfaxresearch.com/isc16-neuraltalk/.

[12] Ryo Asai. Optimization of Hamerlys K-Means Clustering Algorithm: CFXKMeans Library, 2017.
http://colfaxresearch.com/cfxkmeans.

Intel, Intel Xeon Phi and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 52

https://colfaxresearch.com/
http://colfaxresearch.com/skl-avx512
https://colfaxresearch.com/how-series/
https://colfaxresearch.com/knl-how/
https://ark.intel.com/products/120501/Intel-Xeon-Platinum-8160-Processor-33M-Cache-2_10-GHz
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://colfaxresearch.com/?p=709
https://www.hpcwire.com/2017/06/29/reinders-avx-512-may-hidden-gem-intel-xeon-scalable-processors/
https://colfaxresearch.com/?p=25
https://colfaxresearch.com/parallel-computing-in-the-search-for-new-physics-at-lhc/
https://colfaxresearch.com/isc16-neuraltalk/
http://colfaxresearch.com/cfxkmeans
https://colfaxresearch.com/

	Intel® Advanced Vector Extensions 512
	Instruction Sets in Intel architecture
	AVX-512 Modules
	Automatic Vectorization

	Skylake and Broadwell
	AVX-512: ZMM Registers
	Clock Frequency and Peak Performance
	AVX-512CD: Conflict Detection
	AVX-512F: Masking
	AVX-512F: Compress/Expand
	AVX-512F: New Shuffle Instructions
	AVX-512F: Gather/Scatter
	AVX-512F: Embedded Broadcasting
	AVX-512F: Ternary Logic
	AVX-512F: Embedded Rounding

	Skylake and Knights Landing
	AVX-512ER: Exponential, Reciprocal
	AVX-512PF: Prefetch for Gather/Scatter
	AVX-512DQ: Double and Quad Words
	AVX-512BW: Byte and Word Support
	AVX-512VL: Vector Length Orthog.-ty

	Applicability of AVX-512

