
HPLINPACK BENCHMARK
ON INTEL XEON PHI PROCESSOR FAMILY X200

WITH INTEL OMNI-PATH FABRIC 100

Alaa Eltablawy and Andrey Vladimirov

Colfax International

July 10, 2017

Abstract

We report the performance and a simplified tuning
methodology of the HPLinpack benchmark on a cluster
of Intel Xeon Phi processors 7250 with an Intel Omni-
Path Fabric 100 Series interconnect.

Our benchmarks are taken on the Colfax Cluster, a
state-of-the-art computing resource open to the public
for benchmarking and code validation. The paper pro-
vides recipes that may be used to reproduce our results
in environments similar to this cluster.

Table of Contents

1 HPLinpack Benchmark 2
1.1 Algorithm 2
1.2 HPL Configuration File 2

2 System Configuration 3
2.1 Intel Architecture 3
2.2 Colfax Cluster 4

3 Results . 4
3.1 Recipe 4
3.2 Performance 5
3.3 Impact of System Configuration 6

4 Summary 6

PUBLICATIONS
colfaxresearch.com/research

TRAINING
colfaxresearch.com/training

SERVICES
colfaxresearch.com/services

Colfax Research is a department of Colfax
International, a Silicon Valley-based provider of novel
computing systems. Our research team works to help
you leverage new hardware and software tools to
harness the full power of computational innovations.

We work independently as well as collaborate with other researchers in science and
industry to produce case studies, white papers, and educational materials with the
goal of developing a wide knowledge base of the applications of current and future
computational technologies. In addition, we run educational programs, provide
consulting services, and offer specialized hosting for technology adoption programs.

Who We Are What We Do

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 1

https://colfaxresearch.com/

1 HPLINPACK BENCHMARK

1. HPLINPACK BENCHMARK

The HPLinpack benchmark generates and
solves on distributed-memory computers a large
dense system of linear algebraic equations with
random coefficients [1]. The benchmark exer-
cises the floating-point arithmetic units, the mem-
ory subsystem, and the communication fabric. The
result of the HPLinpack benchmark is based on the
time required to solve the system. It expresses the
performance of that system in floating-point oper-
ations per second (FLOP/s).

To standardize the HPLinpack results, a code
called HPL was developed. HPL is a software
package implementing the HPLinpack benchmark
[2]. The code performs the benchmark workload
and reports the timing and an estimate of the accu-
racy of the solution. HPL is portable because for
linear algebra it interfaces with standard libraries,
including the Basic Linear Algebra Subprograms
(BLAS) and Linear Algebra Package (LAPACK),
and uses the Message Passing Interface (MPI) for
communication in a cluster. At the same time,
optimized versions of HPL for particular architec-
tures exist (e.g., [3]) and can be used without com-
pilation.

The HPLinpack benchmark expressed as HPL
is an industry-standard test of floating-point ca-
pabilities of parallel high-performance computing
systems. For instance, the TOP500 project [4] pro-
vides a regularly updated list of the most powerful
computer systems in the world ranked using HPL.
The systems are ranked according to their maxi-
mum LINPACK performance achieved, Rmax.

1.1. ALGORITHM

HPLinpack benchmark solves a system of lin-
ear algebraic equations of size n× n,

Ax = b. (1)

The solution is obtained by first computing the
LU factorization with row partial pivoting and then
solving a triangular system of equations. The size

of the problem, n, can be chosen arbitrarily. Usu-
ally, it is chosen to maximize the problem size
while still fitting the application in the RAM of the
compute nodes.

In order to verify the solution, the input ma-
trix and the right-hand side are regenerated, and
the normwise backward error is computed:

∆ =
||Ax− b||∞

ε(||A||∞||x||∞ + ||b||∞)n
, (2)

where ε is the relative machine percision [5]. The
solution is verified when the condition ∆ < O(1)
is satisfied, where O(1) is a threshold value of the
order 1.0.

To convert the execution time T to perfor-
mance Rmax in GFLOP/s, the benchmark assumes
that the number of floating operations performed
to solve the system (1) is 2n3/3 + 2n2, i.e.,

Rmax

GFLOP/s
=

2n3/3 + 2n2

109

(
T

seconds

)−1

. (3)

1.2. HPL CONFIGURATION FILE

HPL gives the user the ability to tune the
benchmark parameters and select one of multi-
ple factorization algorithms. All benchmark argu-
ments are read from a text file called HPL.dat.
Tuning the parameters in this file for a particular
system is often difficult and, in general, requires a
scan of a parameter space. Instead of a parame-
ter scan, we used a simplified tuning methodology.
Specifically, we focus only on the most important
arguments in this file: N, NB, P and Q, and use
heuristic rules for picking their values.

PROBLEM SIZE n

The amount of memory used by HPL is only
slightly greater than the size of the coefficient ma-
trix. To get the best performance of a system, you
need to set the problem size n to the maximum size
that would fit into the memory of the computing
system. If n is chosen too small, the performance

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 2

https://colfaxresearch.com/

2 SYSTEM CONFIGURATION

will be dominated by memory or network traffic,
and the maximum performance of the system will
not be demonstrated. If the problem size chosen
is too large, performance will drop due to virtual
memory swapping to the hard drives.

This expression is an estimate of the value of
n for a cluster comprising C compute nodes with
each compute node having a memory of size M :

n = ξ · 11600
√

M

1 GiB
·
√
C, (4)

where ξ is a “slack factor” no greater than 1.0. We
used ξ ≈ 0.9 and M = 96 GiB in our calculations.

BLOCK SIZE nB , GRID SIZE P AND Q

When the equations are solved on a distributed-
memory system (a computing cluster), the coef-
ficient matrix is distributed across the compute
nodes in block-cyclic distribution scheme. For
that purpose, the code partitions matrix into blocks
each of dimension nB × nB, and each block is
mapped onto a P × Q grid of processes in a
wraparound fashion as in the diagram below:

C0 C1 C0 C1

C2 C3 C2 C3

C0 C1 C0 C1

C2 C3 C2 C3

Table 1: Example of the coefficient matrix partitioned
across four compute nodes C0 through C3. The
grid has dimensions P ×Q = 2×2 and nB = n/4.

The choice of nB is not trivial. This is the
size of the block of data that would be distributed
across nodes, so the smaller nB, the better the load
balance. On the other hand, nB that is too small
limits the computational performance because lit-
tle data is reused, and the amount of communi-
cation increases [6]. Generally, a parameter scan
must be performed to find the optimum nB. Usu-
ally, the optimum value will be a multiple of the
cache line size. However, beyond that, we are not

aware of an efficient heuristic recipe. However, In-
tel lists the following optimal values of nB for Intel
architecture processors:

Architecture nB

Intel Xeon processor X56*/E56*/E7-*/E7*/X7* 256
Intel Xeon processor E26*/E26* v2 256
Intel Xeon processor E26* v3/E26* v4 192
Intel Core i3/5/7-6* processor 192
Intel Xeon Phi processor 72* 336
Intel Xeon processor supporting AVX-512
(codename Skylake) 384

Table 2: Recommended values of nB for Intel processors.

For the Colfax Cluster servers (see configura-
tion details below) we used nB = 336.

Parameters P and Q represent the numbers of
process rows and columns of the grid. They should
be chosen so that P×Q = C, where C is the num-
ber of compute nodes. The best practice is to have
the grid as a square (i.e., P = Q). If it is not pos-
sible, choose P < Q. For example, in case of run-
ning HPL on C = 32 compute nodes, it is possible
to choose P ×Q as 1× 32, 2× 16 or 4× 8, but the
best value that will form an approximately square
grid is 4× 8.

2. SYSTEM CONFIGURATION

2.1. INTEL ARCHITECTURE

Intel Xeon Phi processors x200 family (for-
merly Knights Landing) are manycore processors
designed for parallel computational applications.
For applications that reach the performance limit
of traditional multi-core processors, this architec-
ture provides better performance to cost ratio and
better performance per watt [7].

Intel Omni-Path Fabric 100 Series intercon-
nect is a system of network adapters, switches, ca-
bles and software developed for communication in
computational applications running on computing
clusters. It is capable of delivering 100 Gb/s band-
width and sub-microsecond latencies of messages

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 3

https://colfaxresearch.com/

2.2 Colfax Cluster 3 RESULTS

in a cluster. For applications based on MPI, such
as HPL, it is easy to use Omni-Path: the MPI-
enabled code needs to be compiled and run with
an MPI implementations aware of the Omni-Path
fabric. We use Intel MPI for this purpose.

2.2. COLFAX CLUSTER

The cluster discussed here is currently avail-
able for public access for code and platform eval-
uation [8].

Our cluster contains 32 compute nodes. Each
compute node has an Intel Xeon Phi processor
7250 in the quadrant cache mode with 16 GiB
of MCDRAM in flat mode and 96 GiB of DDR4
memory at 2133 MHz in 16 GiB modules. Re-
fer to [9] for an explanation of the modes. Each
node contains a single Intel Omni-Path host fabric
interface adapter 100 series. The adapters are con-
nected to a 48-port Intel Omni-Path edge switch.

The compute nodes are running the CentOS
7.2 Linux* operating system and XPPSL 1.5.0.
Our tests used the Intel-optimized HPL Bench-
mark and Intel MPI included with Intel Parallel
Studio XE 2017 update 2.

3. RESULTS

3.1. RECIPE

Here we provide the step by step procedure to
run Intel-optimized precompiled HPL in an envi-
ronment similar to the Colfax Cluster.

CODE

To obtain the Intel-optimized HPL bench-
mark and its dependencies, either install In-
tel Parallel Studio XE (requires a paid license),
or install the Intel Math Kernel Library (avail-
able for free with a community license). This
will place the HPL binaries optimized for In-
tel Xeon and Intel Xeon Phi processors in
/opt/intel/mkl/benchmarks/mp linpack/.

Compilation is not needed to run this HPL appli-
cation.

CONFIGURATION FILE

After obtaining the executable, you need to
create the input file HPL.dat. The example file
supplied with the benchmark does not achieve
good performance on highly-parallel machines.
On the Colfax Cluster we have placed the tuned
configuration files in /opt/benchmarks/HPL,
and we also list an example HPL.dat for C = 16
compute nodes below.

HPLinpack benchmark input file
Innovative Computing Laboratory, University o...
HPL.out output file name (if any)
6 device out (6=stdout,7=stderr,file)
1 # of problems sizes (N)
410000 Ns
1 # of NBs
336 NBs
0 PMAP process mapping (0=Row-,1=Column...
1 # of process grids (P x Q)
4 Ps
4 Qs
16.0 threshold
1 # of panel fact
2 1 0 PFACTs (0=left, 1=Crout, 2=Right)
1 # of recursive stopping criterium
2 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
1 0 2 RFACTs (0=left, 1=Crout, 2=Right)
1 # of broadcast
0 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng...
1 # of lookahead depth
0 DEPTHs (>=0)
0 SWAP (0=bin-exch,1=long,2=mix)
1 swapping threshold
1 L1 in (0=transposed,1=no-transposed) ...
1 U in (0=transposed,1=no-transposed) ...
0 Equilibration (0=no,1=yes)
8 memory alignment in double (> 0)

Listing 1: Example HPL.dat for 16 compute nodes based
on Intel Xeon Phi processors with 96 GiB of
RAM in each compute node.

The key arguments are explained below.

• Line 3: if the user chooses to redirect the
output to a file, the file name should be spec-
ified in this line.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 4

https://colfaxresearch.com/

3.2 Performance 3 RESULTS

• device out: specifies where the output
should go, 6 means output generated will be
redirected to the standard output, 7 means it
will be redirected to standard error, and any
other integer means it will be redirected to
the file specified in the line above.

• # of problem sizes, # of NBs, #
of process grids (P x Q): it is
possible to benchmark multiple problems
with different sizes, multiple block sizes,
and multiple grid sizes, not to exceed 20 val-
ues for each.

• Ns: space-separated list of matrix sizes, n

• NBs: list of block sizes, nB

• Ps, Qs: lists of the number of process rows
and columns (P , Q)

• threshold: specifies the threshold to
which the residuals should be compared

• The remaining lines are specifying the algo-
rithm properties

RUNNING THE BENCHMARK

The commands to launch HPL on an MPI-
enabled cluster are:
export PATH=/opt/intel/mkl/benchmarks/mp_linpack
mpirun -machinefile <path> xhpl_intel64_dynamic

Here <path> is the path to the “machine file”,
which lists, one per line, the host names of the
compute nodes to use.

In the case of the Colfax Cluster, calculations
must go through a queue, and the resource man-
ager controlling the queue generates the machine
file. Therefore, the above commands are placed
into a text file (e.g., hpl-16), which is then sub-
mitted to the execution queue:
qsub -l nodes=16:knl:flat hpl-16

After the job is done, the results will be printed
into the standard output stream. On the Colfax

Cluster, the output goes into a file with the name
hpl-16.o<job ID>. Towards the end of the
output, the code reports the measured performance
like below.

...
===
T/V N NB P Q Time Gflops

WR00C2R2 410000 336 4 4 1639.23 2.80300e+04
...

||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)

= 0.0029148 PASSED
===
...

Listing 2: Snippet of HPL output reporting a performance
of Rmax = 28030 GFLOP/s.

3.2. PERFORMANCE

Table 3 shows the measured performance in
GFLOP/s for running problems of size n on C ∈
{1, 2, 4, 8, 16, 32} nodes. We studied the weak
scaling of the problem, i.e. n was increasing for
larger C according to Equation (4). The parallel
efficiency η was computed using the following for-
mula:

η =
Rmax(C = n)

n ·Rmax(C = 1)
(5)

C n P Q Rmax, GFLOP/s η, %
1 100000 1 1 1895±43 100
2 140000 1 2 3770±65 99.5±2.8
4 200000 2 2 7200±41 95.0±2.2
8 290000 2 4 14500±170 95.6±2.4
16 410000 4 4 29000±170 95.6±2.2
32 580000 4 8 57000±122 94.0±2.1

Table 3: Performance and parallel efficiency of the HPLin-
pack benchmark on the Colfax Cluster.

Figure 1 shows the measured HPL perfor-
mance and parallel efficiency.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 5

https://colfaxresearch.com/

3.3 Impact of System Configuration 4 SUMMARY

��

���

����

�� �� �� �� ��� ���

���

���

����

����

����
����
����
��

�
��
��
��
��
��
���
�
�
�
�
��

�
��
��
��
��
���

���������������

��������������������
������������������

Figure 1: HPLinpack benchmark on the Colfax Cluster

3.3. IMPACT OF SYSTEM CONFIGURATION

Several boot-time settings in Intel Xeon Phi
processors may impact the performance of calcu-
lations. They include the high-bandwidth memory
mode (flat, cache or hybrid) and the cache cluster-
ing mode (all-to-all, quadrant, hemisphere, SNC-2
or SNC-4) [9]. We used the flat memory mode
expecting the Intel MKL to automatically take ad-
vantage of the addressable high-bandwidth mem-
ory. We set the clustering mode to quadrant, which
is optimal for most workloads. To validate our de-
cision, we performed single-node (C = 1) HPL
benchmark in several other modes. As Table 4
demonstrates, the configuration that we picked in-
deed provides the best single-node performance.
For multi-node runs, we expect the same configu-
ration to be optimal.

Mode Rmax, GFLOP/s
Quadrant, flat 1895
Quadrant, cache 1850
All-to-all, flat 1866
SNC-4, flat (1 MPI process) 703
SNC-4, flat (4 MPI processes) 332

Table 4: Single-node HPL performance in various memory
and cache modes.

4. SUMMARY

We presented the performance of the HPLin-
pack benchmark on the Colfax Cluster with up to
32 compute nodes. We also provided a simplified
tuning methodology for HPL.dat.

The benchmark tuning parameters n, nB, P
and Q are critical for achieving better perfor-
mance. P and Q must be chosen to make the grid
square (P = Q) or almost square (P < Q). We
used the block size nB = 336, which is the recom-
mended value for Intel Xeon Phi processors 7250.
The problem size n is set to define the biggest
problem that would fit into the available memory.

Our simplified tuning methodology yields
acceptable results. For 32 nodes, the mea-
sured parallel efficiency η = 94 ± 2% with
Rmax = 57 TFLOP/s. This amounts to 57/32 =
1.78 TFLOP/s per node. In comparison, accord-
ing to the TOP500 list, the Intel S7200AP Cluster
(Stampede-KNL) at the Texas Advanced Comput-
ing Center (TACC) achieves 842.9 TFLOP/s with
504 nodes, which amounts to 1.67 TFLOP/s per
node.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 6

https://colfaxresearch.com/

REFERENCES REFERENCES

REFERENCES

[1] J. J. Dongarra, P. Luszczek, and A. Petitet ”The
LINPACK Benchmark: Past, Present, and Future.” Con-
currency and Computation: Practice and Experience vol.
15, no. 9, pp. 803-820, August, 2003.

[2] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary ”HPL-A
Portable Implementation of the High-Performance Lin-
pack Benchmark for Distributed-Memory Computers”,
2016.
http://www.netlib.org/benchmark/hpl/.

[3] Intel software developer zone, ”HPL application note”,
2015.
https://software.intel.com/en-us/articles/performance-
tools-for-software-developers-hpl-application-note.

[4] Top500, ”THE LINPACK BENCHMARK”.
https://www.top500.org/project/linpack/.

[5] HPL Algorithm.
http://www.netlib.org/benchmark/hpl/algorithm.html.

[6] HPL Frequently Asked Questions.
http://www.netlib.org/benchmark/hpl/faqs.html.

[7] Hands-On Workshop ”Performance Optimization for In-
tel Xeon Phi x200 Product Family”, 2016.
https://colfaxresearch.com/how-knl/.

[8] Colfax Cluster public access request
https://colfaxresearch.com/remote-access/

[9] Colfax Research. Get Ready for Intel’s Knights Landing
(KNL) – 3 papers. https://colfaxresearch.com/knl-ready

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 7

http://www.netlib.org/benchmark/hpl/
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-hpl-application-note
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-hpl-application-note
https://www.top500.org/project/linpack/
 http://www.netlib.org/benchmark/hpl/algorithm.html
 http://www.netlib.org/benchmark/hpl/faqs.html
 https://colfaxresearch.com/how-knl/
https://colfaxresearch.com/remote-access/
https://colfaxresearch.com/knl-ready
https://colfaxresearch.com/

	HPLinpack Benchmark
	Algorithm
	HPL Configuration File

	System Configuration
	Intel Architecture
	Colfax Cluster

	Results
	Recipe
	Performance
	Impact of System Configuration

	Summary

