
Terabyte RAM Servers:
Memory Bandwidth Benchmark

and How to Boost RAM Bandwidth by 20%
with a Single Command

Andrey Vladimirov
Stanford University

for Colfax International

January 16, 2012

Abstract

Colfax International produces servers capable of supporting up to 1 TB of RAM and up to 4 Intel Xeon CPUs. This
paper reports the memory bandwidth benchmark of these servers obtained using the STREAM code.

Our benchmark includes comprehensive statistical data: the mean, standard deviation, extrema and the distribution
of bandwidth measurements. The distribution of measurements reveals several modes of RAM performance, including
an above-average bandwidth mode. By default, the mode realized by any given benchmark depends on an unpredictable
runtime pattern of thread and memory binding to the physical cores. The paper shows how to optimize memory traffic
for bandwidth and consistently achieve the fastest mode. This is done by controlling the code’s thread affinity, and
results in a bandwidth increase around 20% over the average unoptimized performance.

Without optimization, the measured RAM bandwidth with one thread is 5.79±0.06 GB/s (the ‘copy’ test), and it
scales almost linearly with the number of threads until it peaks at 67±6 GB/s at 20 threads. Optimized code shows a
maximum bandwidth up to 78.9±0.3 GB/s. A list of references for the NUMA architecture tools is provided.

Contents
1 Very Large Memory Servers . 2

2 Bandwidth vs Number of Threads . 3

3 Distribution of bandwidth measurements . 4

4 Optimizing for Memory Bandwidth with Thread Affinity . 5

5 Additional resources and closing words . 6

Colfax International (http://www.colfax-intl.com/) is a leading provider of innovative and expertly engi-
neered workstations, servers, clusters, storage, and personal supercomputing solutions. Colfax International
is uniquely positioned to offer the broadest spectrum of high performance computing solutions, all of them
completely customizable to meet your needs - far beyond anything you can get from any other name brand.
Ready-to-go Colfax HPC solutions deliver significant price/performance advantages, and increased IT agility,
that accelerates your business and research outcomes. Colfax International’s extensive customer base includes
Fortune 1000 companies, educational institutions, and government agencies. Founded in 1987, Colfax Interna-
tional is based in Sunnyvale, California and is privately held.

c© Colfax International, January 2012 — http://research.colfaxinternational.com/ 1

http://www.colfax-intl.com
http://research.colfaxinternational.com/

1 VERY LARGE MEMORY SERVERS

1 Very Large Memory Servers
Colfax International makes servers capable of supporting up to 1 TB of RAM and up to 4 Intel Xeon

CPUs1. Each CPU is connected directly to 2 out of 8 memory banks, but the NUMA architecture (Non-
Uniform Memory Access)2 with the Intel QPI interface3 makes the machine a shared-memory system, in
which any CPU may address RAM connected to any other CPU.

Access to the RAM in these machines is non-uniform in the sense that the memory local to the CPU
accessing it has lower latency and higher bandwidth than remote memory, which needs to be fetched via a
bus. On the other hand, the complex memory hierarchy is hidden from the user. That is, from the applica-
tion’s perspective, the machine appears to have a large amount of RAM, all of which can be allocated using
standard programming tools, and no message passing between CPUs is required.

While today these machines may look exotic, if not for the novelty of the technology, then for the enor-
mous amount of RAM, they have a variety of useful applications, ranging from virtualization and databases
to memory-intensive scientific calculations. In a future publication, I will make an argument that these
systems may be invaluable as compute nodes in HPC clusters.

Figure 1: Four Intel Xeon CPUs and 1 TB of RAM onboard.

In this report, I present a memory bandwidth benchmark of one of these machines. In my configuration,
each of the 4 CPU sockets contained an Intel Xeon E7-4870 CPU4 with 30 MB of L3 cache and 10 cores
with hyper-threading technology, clocked at 2.40 GHz (i.e., a total of 40 cores and 120 MB of cache). The
total amount of RAM installed in the system was 1 TB in 1066 GHz speed DDR3 memory modules. The
system was running 64-bit CentOS Linux 6.05 with kernel version 2.6.32-71.el6.x86 64.

1http://www.colfax-intl.com/jlrid/SpotLight more Acc.asp?L=122&S=45&B=2329
2http://software.intel.com/en-us/articles/optimizing-software-applications-for-numa/
3http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
4http://ark.intel.com/products/53579/Intel-Xeon-Processor-E7-4870-(30M-Cache-2 40-GHz-6 40-GTs-Intel-QPI)
5http://www.centos.org/

c© Colfax International, January 2012 — http://research.colfaxinternational.com/ 2

http://www.colfax-intl.com/jlrid/SpotLight_more_Acc.asp?L=122&S=45&B=2329
http://www.colfax-intl.com/jlrid/SpotLight_more_Acc.asp?L=122&S=45&B=2329
http://software.intel.com/en-us/articles/optimizing-software-applications-for-numa/
http://software.intel.com/en-us/articles/optimizing-software-applications-for-numa/
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://ark.intel.com/products/53579/Intel-Xeon-Processor-E7-4870-(30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI)
http://www.centos.org/
http://www.colfax-intl.com/jlrid/SpotLight_more_Acc.asp?L=122&S=45&B=2329
http://software.intel.com/en-us/articles/optimizing-software-applications-for-numa/
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://ark.intel.com/products/53579/Intel-Xeon-Processor-E7-4870-(30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI)
http://www.centos.org/
http://research.colfaxinternational.com/

2 BANDWIDTH VS NUMBER OF THREADS

2 Bandwidth vs Number of Threads
I measured the memory bandwidth using the popular STREAM benchmark code6. The STREAM code

was compiled using the Intel C++ compiler version 12.0.47 with the working array size set to 500 MB (well
in excess of the total amount of L3 cache in the system). The number of threads accessing the memory
was determined by setting the environment variable OMP NUM THREADS to 1, 2, 4, 8, 16, 20, 40 and 80.
Hyper-threading was enabled in this test. For each value of OMP NUM THREADS, the benchmark was run
1000 times. Each of these series of 1000 runs yielded the mean value, standard deviation, minimum and
maximum of the bandwidth measurements.

Plots in Figure 2 show the bandwidth measured in these tests. The blue and red shaded regions delimit
the minimal and maximal bandwidth observed in the 20 runs. The markers and error bars show the mean
values and standard deviations of the bandwidth.

10.0

100.0

 1 10 100

M
em

or
y

Ba
nd

w
id

th
, G

B/
s

Number of Threads

STREAM benchmark: ADD

Min/Max
Mean/StDev

10.0

100.0

 1 10 100

M
em

or
y

Ba
nd

w
id

th
, G

B/
s

Number of Threads

STREAM benchmark: COPY

Min/Max
Mean/StDev

10.0

100.0

 1 10 100

M
em

or
y

Ba
nd

w
id

th
, G

B/
s

Number of Threads

STREAM benchmark: SCALE

Min/Max
Mean/StDev

10.0

100.0

 1 10 100

M
em

or
y

Ba
nd

w
id

th
, G

B/
s

Number of Threads

STREAM benchmark: TRIAD

Min/Max
Mean/StDev

Figure 2: STREAM benchmark results

The data show that the best performance in all tests is achieved with 20-40 threads. With fewer than
20 threads, the bandwidth scales almost linearly with the number of threads. The standard deviation of
multi-threaded runs is of order 10% of the mean value. For example, the ‘Copy’ test with 20 threads had a
mean of 67 GB/s and a standard deviation of 6 GB/s. In this test, the bandwidth measurements in 1000 runs
ranged from 47 to 83 GB/s. We will see in the next section that the probability distribution of the bandwidth
measurements is not normal (i.e., Gaussian), but multimodal.

6http://www.cs.virginia.edu/stream/
7http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

c© Colfax International, January 2012 — http://research.colfaxinternational.com/ 3

http://www.cs.virginia.edu/stream/
http://software.intel.com/en-us/articles/intel-parallel-studio-xe/
http://www.cs.virginia.edu/stream/
http://software.intel.com/en-us/articles/intel-parallel-studio-xe/
http://research.colfaxinternational.com/

3 DISTRIBUTION OF BANDWIDTH MEASUREMENTS

3 Distribution of bandwidth measurements
For some performance critical applications, one may want to know the minimal and maximal bandwidth

expected in any given memory access. In NUMA-enabled systems, the variation of bandwidth from run to
run is not guaranteed to be normal, and this section illustrates and explains this fact

Figures 3 and 4 show the numbers of runs out of 1000, in which the measured bandwidth fell into the
respective bins of the histogram. The width of the bins is 1 GB/s.

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: ADD, 40 threads

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: COPY, 40 threads

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)
Memory Bandwidth, GB/s

STREAM benchmark: SCALE, 40 threads

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: TRIAD, 40 threads

Figure 3: Distribution of memory bandwidth measurements with 40 threads

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: ADD, 20 threads

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: COPY, 20 threads

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: SCALE, 20 threads

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: TRIAD, 20 threads

Figure 4: Distribution of memory bandwidth measurements with 20 threads

In some cases (e.g., the ‘Add’ test with 40 threads), the distribution is consistent with the normal dis-
tribution. However, in other cases, a second, high bandwidth, mode is observed around 82 GB/s (e.g., the
‘Scale’ test with 40 threads). There was even a case (the ‘Copy’ test with 20 threads), where the distribution
had the form of several distinct, narrow peaks around 53, 62, 71 and 82 GB/s.

The reason for such multimodality is that the bandwidth depends on the distribution of threads and
allocated memory across the physical cores in the system. Some ”lucky” runs had distribution favorable
for bandwidth, while other had suboptimal operating conditions. For many applications, such behavior is
acceptable, as it strikes the balance between memory bandwidth and latency. However, for applications
sensitive to the speed of data streaming from RAM to the CPU, it is possible to tweak this behavior and
always use the highest bandwidth mode. We discuss this optimization in the next section.

c© Colfax International, January 2012 — http://research.colfaxinternational.com/ 4

http://research.colfaxinternational.com/

4 OPTIMIZING FOR MEMORY BANDWIDTH WITH THREAD AFFINITY

4 Optimizing for Memory Bandwidth with Thread Affinity
In his white paper ‘An NUMA API for Linux’8, A. Kleen states that with NUMA memory architecture,

To get more bandwidth the memory controllers of multiple nodes can be used in parallel. This is similar to how
RAID can improve disk IO performance spreading IO operations over multiple hard disks.

At the same time, he notes:

Most programs seem to prefer lower latency, but there are a few exceptions that want bandwidth. Using node
local memory has the best latency.

We do not investigate memory latency in this paper. However, for applications that require high bandwidth,
and in which the pattern of memory access is regular, it is easy instruct the OpenMP library to optimize the
thread affinity policy for memory bandwidth.

Intel’s OpenMP library supports thread affinity control via the environment variable KMP AFFINITY9.
In particular, the scatter type of affinity distributes threads in a round-robin pattern across the packages
(i.e., CPUs). This results in highly parallel access to memory, utilizing all available memory controllers.

To test this approach, I added the following command line to the shell script executing the benchmark:

export KMP AFFINITY= s c a t t e r

The result is illustrated in Figure 5, where the data before and after the optimization are plotted.

10.0

100.0

 1 10 100

M
em

or
y

Ba
nd

w
id

th
, G

B/
s

Number of Threads

STREAM benchmark: ADD

Min/Max: standard
optimized

Mean/StDev: standard
optimized

10.0

100.0

 1 10 100

M
em

or
y

Ba
nd

w
id

th
, G

B/
s

Number of Threads

STREAM benchmark: COPY

Min/Max: standard
optimized

Mean/StDev: standard
optimized

10.0

100.0

 1 10 100

M
em

or
y

Ba
nd

w
id

th
, G

B/
s

Number of Threads

STREAM benchmark: SCALE

Min/Max: standard
optimized

Mean/StDev: standard
optimized

10.0

100.0

 1 10 100

M
em

or
y

Ba
nd

w
id

th
, G

B/
s

Number of Threads

STREAM benchmark: TRIAD

Min/Max: standard
optimized

Mean/StDev: standard
optimized

Figure 5: STREAM benchmark results with and without bandwidth optimization

It is evident that with KMP AFFINITY=scatter, the variation of bandwidth from run to run is con-
siderably smaller, and the value of bandwidth is consistently higher than in the unoptimized case.

Figures 6 and 7 show the histograms of binned frequencies of bandwidth measurements before and after
the thread affinity optimization. In all cases except the ‘Copy’ test with 40 threads, the measurements with
optimization are concentrated in the high-bandwidth mode.

I do not show the results of a benchmark with KMP AFFINITY=compact, in which threads are dis-
tributed compactly on the minimal possible number of CPUs. In this case, the system will try to allocate
memory on the local node, and memory latency should be optimized. However, I notice for the record that
in this case, the bandwidth with 20 threads drops to ≈20 GB/s.

This concludes the exploratory part of this paper, but read on for a list of helpful resources.

8http://halobates.de/numaapi3.pdf
9http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/cpp/lin/optaps/common/optaps openmp thread affinity.htm

c© Colfax International, January 2012 — http://research.colfaxinternational.com/ 5

http://halobates.de/numaapi3.pdf
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/cpp/lin/optaps/common/optaps_openmp_thread_affinity.htm
http://halobates.de/numaapi3.pdf
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/cpp/lin/optaps/common/optaps_openmp_thread_affinity.htm
http://research.colfaxinternational.com/

5 ADDITIONAL RESOURCES AND CLOSING WORDS

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: ADD, 40 threads

Standard
Optimized

0

50

100

150

200

250

 40 50 60 70 80 90
N

um
be

r o
f T

ria
ls

 (o
ut

 o
f 1

00
0)

Memory Bandwidth, GB/s

STREAM benchmark: COPY, 40 threads

Standard
Optimized

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: SCALE, 40 threads

Standard
Optimized

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: TRIAD, 40 threads

Standard
Optimized

Figure 6: Distribution of memory bandwidth measurements with 40 threads

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: ADD, 20 threads

Standard
Optimized

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: COPY, 20 threads

Standard
Optimized

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: SCALE, 20 threads

Standard
Optimized

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: TRIAD, 20 threads

Standard
Optimized

Figure 7: Distribution of memory bandwidth measurements with 20 threads

5 Additional resources and closing words
In addition to the control that the KMP AFFINITY variable gives over thread affinity, programmers can

take advantage of Linux system calls in NUMA-aware kernels: mbind10, mmap11, set mempolicy12,
and related calls listed in the documentation. These calls allow fine-grained NUMA policy control.

Another tool that may be useful for fine-tuning memory intensive application performance is the li-
brary numactl13, which implements a simple NUMA policy support. Command-line tools included with
numactl allow to set NUMA scheduling or policy memory placement policy for a process.

Stay tuned for upcoming posts, where I describe how we are using these machines to perform very
large Fourier transforms for astrophysical calculations, and argue for the utility of these systems as compute
nodes in HPC clusters. Please visit http://research.colfaxinternational.com/ to learn
more about the Colfax Research project, comment on this article, and subscribe for updates.

Special thanks to Troy Porter14 of Stanford University for a productive discussion of this project.

10http://www.kernel.org/doc/man-pages/online/pages/man2/mbind.2.html
11http://www.kernel.org/doc/man-pages/online/pages/man2/mmap.2.html
12http://www.kernel.org/doc/man-pages/online/pages/man2/set mempolicy.2.html
13http://linux.die.net/man/8/numactl and http://oss.sgi.com/projects/libnuma/
14http://www.stanford.edu/˜tporter/

c© Colfax International, January 2012 — http://research.colfaxinternational.com/ 6

http://www.kernel.org/doc/man-pages/online/pages/man2/mbind.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/mmap.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/set_mempolicy.2.html
http://linux.die.net/man/8/numactl
http://research.colfaxinternational.com/
http://www.stanford.edu/~tporter/
http://www.kernel.org/doc/man-pages/online/pages/man2/mbind.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/mmap.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/set_mempolicy.2.html
http://linux.die.net/man/8/numactl
http://oss.sgi.com/projects/libnuma/
http://www.stanford.edu/~tporter/
http://research.colfaxinternational.com/

	Very Large Memory Servers
	Bandwidth vs Number of Threads
	Distribution of bandwidth measurements
	Optimizing for Memory Bandwidth with Thread Affinity
	Additional resources and closing words

