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Abstract

This paper presents the results of a Fast Fourier Transform (FFT) benchmark of the FFTW 3.3 library on Colfax’s
4-CPU, large memory servers. Unlike other published benchmarks of this library, we study two distinct cases of FFT
usage: sequential and concurrent computation of multithreaded transforms. In addition, this paper provides results for
very large (up to N = 231) and massively parallel (up to 80 threads) shared memory transforms, which have not yet
been reported elsewhere.

The FFT calculation is discussed: parallelization techniques and hardware-specific implementations; motivation for
a specific astrophysical research is given. Results presented here include: dependence of performance on the transform
size and on the number of threads, memory usage of multithreaded 1D FFTs, estimates of the FFT planning time. The
paper shows how to optimize the performance of concurrent independent calculations on these large memory systems by
setting an efficient NUMA policy. This policy partitions the machine’s resources, reducing the average memory latency.
Such optimization is not specific to FFT algorithms, and can be useful for a variety of applications in large memory
NUMA systems. Our conclusion is that the FFTW implementation of multithreaded one-dimensional FFTs scales very
well with the number of threads for large transforms, but worse for small transforms. Having a large amount of shared
memory in the system is beneficial for the performance of large concurrent FFTs, as it allows to reduce instruction-level
parallelism in favor of task-level parallelism.
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1 INTRODUCTION

1 Introduction

1.1 Fast Fourier Transform Parallelization
A ubiquitous mathematical operation in data processing and simulations, the Fourier Transform, is usu-

ally numerically performed using one of the Fast Fourier Transform (FFT) algorithms, such as the common
Cooley-Tukey method. The FFT algorithm needs to be parallelized in applications that require high perfor-
mance and/or a large amount of operating memory. The parallelization of one-dimensional FFTs is different
from multi-dimensional FFTs, and distributed-memory parallelization is harder than shared-memory paral-
lelization. The following paragraph outlines two important cases:

• Case 1. Shared memory parallelization is possible if the problem fits in the operating memory of a
node. In this case,

a) multi-dimensional FFTs are parallelized by dividing them into a number of one-dimensional
FFTs. These one-dimensional transforms are distributed across available cores, where they are
computed serially;

b) one-dimensional FFTs are parallelized by distributing the calls of the recursive Cooley-Tukey
algorithm across cores.

Parallelization in shared-memory architectures is a well studied subject, and efficient implementations
exist for CPU-based, as well as GPU-based parallel FFT calculations. Popular solutions for serial and
shared-memory parallel FFT on CPUs include the FFTW library1 and the Intel MKL2. On GPUs, the
CUFFT library3for CUDA-capable hardware provides good performance. For OpenCL, only sample
code exists (e.g., project OpenCL FFT4 based on research by Volkov and Kazian5), along with white
papers and presentations of independent groups6.

• Case 2. Distributed memory parallelization is necessary when the problem does not fit in the operating
memory of a node. This case is much harder to parallelize, because FFT algorithms, in general, require
all-to-all communication.

a) multi-dimensional parallel transforms with distributed memory are well studied, and efficient
MPI-based implementations exist for CPU clusters (e.g., in the FFTW library and the Intel MKL)
and GPU clusters (see, e.g., project DiGPUFFT7; and research by Chen et al. 20108).

b) one-dimensional transforms in distributed memory systems are severely limited by interprocessor
communication speed and are, in general, less efficient than in-core transforms. For CPU cluster
transform tests see, e.g., this paper on the Intel MKL benchmark9). At the same time, there seem
to be no efficient implementations out there for one-dimensional distributed-memory FFTs on
GPU clusters.

This paper demonstrates results for Case 1a, shared-memory 1D transforms on CPUs, and covers the
relatively unexplored area of large transforms. ‘Large’ in this study means that the transform exceed the size
of the L2 CPU cache in the system, but one or several transforms fit in the operating memory of the system
(up to N = 231 in this research).

1‘Fastest Fourier Transform in the West’, a portable open source library: http://www.fftw.org/
2Intel Math Kernel Library: http://software.intel.com/en-us/articles/intel-mkl/
3http://developer.nvidia.com/cufft
4http://developer.apple.com/library/mac/#samplecode/OpenCL FFT/Introduction/Intro.html
5http://www.cs.berkeley.edu/˜kubitron/courses/cs258-S08/projects/reports/project6 report.pdf
6see, for example, http://developer.amd.com/documentation/articles/pages/OpenCLOptimizationCaseStudy-PartI.aspx and

http://developer.amd.com/afds/assets/presentations/2913 3 final.pdf
7http://code.google.com/p/digpufft/
8http://dx.doi.org/10.1145/1810085.1810128 or http://sei.pku.edu.cn/˜cyf/ics10.pdf
9http://software.intel.com/en-us/articles/mkl-fft-performance-using-local-and-distributed-implementation/
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1.2 Sequential vs Concurrent Multithreaded Transforms in Shared Memory 1 INTRODUCTION

1.2 Sequential vs Concurrent Multithreaded Transforms in Shared Memory
In most cases, applications need to compute multiple FFTs in one of the following situations.
Sequential Multithreaded Computations: If data dependency between transforms exists, or if only one

transform fits in the operating memory, then only one FFT process will run on the system at any given time.
It may be a multithreaded process, but there will be only one. In this case, the optimization strategy is to
find a regime (the number of threads, Q), in which one transform performs the fastest. Intuitively, for large
transforms, using the maximum number of threads should yield the best results in this case.

Concurrent Multithreaded Computations: When more than one FFT fits in memory, and the transforms
are independent from one another, they can be computed concurrently. Intuitively, the optimization strategy
in this case should be the opposite to the sequential case. That is, one should use as few threads per process,
Q, as possible, but run a large number of concurrent processes, P . Ideally, serial transforms should be used
(Q = 1), if the machine’s RAM can fit as many transforms as there are thread contexts in the system.
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Figure 1: Sequential calculations are necessary when inter-process dependency exists, or only P = 1 process fits in memory. Large
number of threads Q typically benefits sequential calculations, as long as the problem size is large enough to justify the
overhead of multithreading.
Concurrent calculations are possible when more than one process fits in memory, and processes are independent of one
another. Each of the P concurrent processes may be multi-threaded with Q threads. A system with K hardware threads is
fully utilized when P × Q = K. For concurrent calculations, low Q and correspondingly large P = K/Q should benefit
performance. Ideally, Q = 1 and P = K should be used, if the amount of available RAM permits.

Typically, benchmarks of FFTs focus on sequential transforms situation, with one process running on
the system. However, when one’s task is to compute many independent transforms, these results are irrele-
vant, because in concurrent transforms, the system is under full load, and resources are utilized differently.
Therefore, a separate benchmark must be made for concurrent transforms.

Benchmarks for both sequential and concurrent multithreaded calculations are presented in this paper;
however, the concurrent calculation result is applicable to the astrophysical calculation that motivates this
research (see Section 1.3).
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1.3 Motivation of research: large 1D FFTs and gamma-ray pulsars 2 SYSTEM CONFIGURATION

1.3 Motivation of research: large 1D FFTs and gamma-ray pulsars
This study was motivated by an astrophysical project, blind search for short-period, radio-quiet gamma-

ray pulsars in the data of the Fermi Gamma-Ray Space Telescope. The blind search method, outlined in a
paper by Atwood et al., 200610, relies on FFT to detect periodicity in the differences between photon arrival
times. Details of the project will be discussed elsewhere; however, an important aspect of the problem is that
for each candidate source, it requires a calculation of a large number (105-106) of one-dimensional Fourier
transforms ranging from N = 1029 to 1033 in size.

In single precision, N = 1033 translates into 32 GB of data in each transform, which exceeds the onboard
memory capacity of today’s frontline GPUs. Due to lack of efficient distributed-memory implementations
of 1D FFTs on GPU clusters (see Section 1.1), the calculation must be run on CPU-based systems.

Even for CPUs, such large arrays pose a significant problem, as blades with more than 32 GB of RAM
are still hard to come by in many of today’s HPC clusters available to the academia. This is why we turned
to Colfax’s large memory servers featuring up to 1 TB of RAM and 4 Intel Xeon CPUs in a shared-memory
system (see Section 2). These machines allow us to do the transforms in shared memory, and even run
several concurrent FFT calculations.

One should note that the lack of efficient distributed-memory implementations of 1D FFTs is at least
partially due to the fact that this is not a common operation. Indeed, if the transformed data are a signal
evolving in time, then the accuracy of timing should less than one part in N . For example, if N = 233,
the timing accuracy should be better than 2−33 ≈ 10−10. While such accuracy is not beyond reach, it
remains the domain of high precision scientific experiments rather than commonplace industrial operations.
Another interesting indication of the unusually large size of this transforms is that the FFTW library has to
be used with special 64-bit interface functions in order to specify FFTs of size N = 231 and greater. The
documentation of the FFTW library candidly notes11:

We expect that few users will require transforms larger than this, but, for those who do, we provide a 64-bit
version of the guru interface. . .

That said, this study enters the uncharted territory of very large 1D FFT transforms in shared memory.

2 System configuration
The hardware system used in this benchmark is one of Colfax’s large memory servers12 with 1 TB

of RAM shared between four Intel Xeon E7-4870 Westmere CPU13. Each CPU has 10 cores with two-
way hyper-threading (a total of 80 hyper-threads in the system). An earlier Colfax Research publication14

provides more information about these machines.
Access to the RAM in these machines is non-uniform in the sense that the memory local to the CPU

accessing it has lower latency than remote memory, which needs to be fetched via a bus. This configuration
is known as the NUMA (Non-Uniform Memory Access) architecture15 The complex memory hierarchy is
hidden from the user. That is, from the application’s perspective, the machine appears to have a 1 TB of
operating memory, all of which can be allocated using standard programming tools, and no message passing
between CPUs is required.

The system was running 64-bit CentOS Linux 6.016 with kernel version 2.6.32-71.el6.x86 64. The
FFTW 3.3 library1 was compiled with flags

--enable-openmp --enable-sse2 --enable-float CFLAGS=’-m64 -O3’
using the Intel Parallel Studio XE 12.0.4 compilers.

10http://dx.doi.org/10.1086/510018
11http://www.fftw.org/doc/64 002dbit-Guru-Interface.html
12http://www.colfax-intl.com/jlrid/SpotLight more Acc.asp?L=122&S=45&B=2329
13http://ark.intel.com/products/53579/Intel-Xeon-Processor-E7-4870-(30M-Cache-2 40-GHz-6 40-GTs-Intel-QPI)
14http://research.colfaxinternational.com/post/2012/01/04/Terabyte-RAM-Servers-Memory-Bandwidth-Benchmark.aspx
15http://software.intel.com/en-us/articles/optimizing-software-applications-for-numa/
16http://www.centos.org/
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3 RESULTS

3 Results
This section reports the results of several measurements: performance (Section 3.1), memory usage

(Section 3.2) and FFTW planning time in the MEASURE mode (Section 3.4) for single precision, real-to-real
transforms of kind FFTW R2HC. All results were obtained optimized NUMA policy (see Section 3.3). In all
cases where concurrent transforms are discussed, the number of concurrent transforms, P , is equal to K/Q,
where K = 80 is the number of hyper-threads in the system, and Q is the number of threads per process.

3.1 Performance of Sequential and Concurrent Multithreaded FFTs
Figure 2 shows the measured performance of the system for multithreaded FFTs with transform sizes

from N = 29 to N = 231 and the number of threads per process, Q, from Q = 1 to Q = 80. The
performance metric, T1000, used here is the time to calculate 1000 FFTs. For sequential transforms, T1000

equals the mean time of 1 transform times 1000. With concurrent transforms, T1000 is the mean time of 1
transform measured with the machine under full load with P concurrent Q-threaded transforms, multiplied
by 1000 and divided by P . Note that this measurement includes only the transform time; initialization,
planning and output are excluded from T1000.

1. In the case of sequential calculations benchmark (top panel of Figure 2), the optimal number of
threads, Q, depends on the size of the transform. For small transforms (N < 213), the overhead of
multithreading does not pay off, and Q = 1 provides the best performance. For larger transforms, the
parallel scalability improves, and for N & 217, choosing Q = 40 provides better results than Q = 1.
For the largest transforms we studied, N ≥ 227, Q = 80 is the optimal number of threads.

2. For concurrent multithreaded calculations (bottom panel of Figure 2), single-threaded transforms
(Q = 1 and P = 80) get the job done in the shortest time. However, choosing the optimal Q
for large transforms involves another consideration: does the system have enough RAM to perform
P = 80 transforms at once? If not, then for larger transforms one must resort to using more and more
threads per process, Q, until P concurrent processes do fit in memory. Luckily, for large transforms
(N ≥ 221), the curves in the bottom panel of Figure 2 are nearly flat up to Q = 20. This means that
the penalty for high parallelism in concurrent transforms is small, and, in fact, the FFTW has good
parallel scaling in the situation when the system is under full load.

Figure 3 shows the same performance data as Figure 2 but plotted as a function of the array size, N , and
expressed in GFLOP/s. This figure is provided to simplify comparison with other benchmarks. The FLOP
count was estimated as 2.5N log2 N . This is not the actual operations count, but a convenient estimate17.

Note: There is no data point for Q = 1 and N = 231 in the concurrent calculation benchmark, because
there is not enough memory in our system to fit P = 80 processes of this size in memory. Memory
requirements of sequential and concurrent multithreaded FFTs are presented in Section 3.2.

3.2 Memory requirements of multithreaded 1D FFTs
The measured memory requirement of FFTs sized from N = 221 (8 MB of data in single precision) to

N = 231 (8 GB of data) is shown in Figure 4.
For both sequential and concurrent calculation setups, the best performing parallelization scheme re-

quires the most memory. That is, for sequential calculations, Q = 80 is the most memory-hungry regime,
and for concurrent calculations, the optimal Q = 1 requires the most memory for N ≥ 224.

Peak memory usage for a single process was obtained by monitoring the quantity VmPeak in the re-
source /proc/$FFT PID/statuswith a sampling rate of 1000 Hz. The environment variable $FFT PID
contains the FFT process ID. For concurrent runs, the memory requirement was estimated as that for a single
process times the number of concurrent calculations P . Note that P is proportional to K, and for systems
with fewer CPUs, the memory requirement for concurrent runs (and, correspondingly, the performance) is
lower. For example, a system with 2 instead of 4 CPUs needs half the amount of RAM shown in Figure 4
for a run with a given number of threads per process Q.

17http://www.fftw.org/speed/method.html
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Figure 2: Performance of one Q-threaded FFT (top panel) or P concurrent FFT instances with Q threads each (bottom panel), as
a function of the number of threads Q. Transforms are in-place, 1-dimensional, in single precision, of real-to-real kind
FFTW R2HC. Performance values in the bottom panel (concurrent transforms) are not inferred from the measurements in
the top panel (sequential transforms); they are measured in a separate test with P concurrent processes fully utilizing the
machine (P ×Q = K). For performance measured in GFLOP/s, see Figure 3. See Section 3.1 for discussion.
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Figure 3: Performance of one Q-threaded FFT (top panel) or P concurrent FFT instances with Q threads each (bottom panel), as
a function of the the transform size N . Transforms are in-place, 1-dimensional, in single precision, of real-to-real kind
FFTW R2HC. Performance values in the bottom panel (concurrent transforms) are not inferred from the measurements in the
top panel (sequential transforms); they are measured in a separate test with P concurrent processes fully utilizing the machine
(P ×Q = K). This is an alternative graphical representation of the data shown in Figure 2. FLOP count is estimated as
2.5N log2 N . See Section 3.1 for discussion.
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Figure 4: Top: multi-threaded sequential transforms incur additional memory overhead.
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All transforms are performed in-place. Values in the bottom panel (concurrent transforms) are obtained from the measure-
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for discussion.
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3.3 Optimizing NUMA policy to partition resources
NUMA policy aware Linux kernel allows the user to control which CPUs a processes will run on, and

where the data will be placed in physical memory.
The default NUMA policy is to allow the operating system to choose at run time where to place the

threads and memory of the process. The operating system may also migrate software threads and data to
other hardware threads and memory banks when the process is running.

This policy can be modified to partition the machine between processes, so that each process uses only
its local, low-latency memory. The FFT requires frequent memory accesses with a complex access pattern,
and low latency memory access is beneficial for the FFT performance. In order to optimize the NUMA
policy in this way, this benchmark used the numactl18 library. Each shell command launching an FFT
instance was prepended with the following call to the numactl tool:

numac t l - -membind=$CPUSET - -cpunodeb ind =$CPUSET

Here the environment variable $CPUSET is the number of the CPU that the process is to be run on. The
value of this variable is calculated in the loop that starts the concurrent processes. For example, for Q = 10
and P = 8, processes 1 through 8 had the following values of $CPUSET, respectively: 0, 0, 1, 1, 2, 2, 3, 3.
This puts processes 1 and 2 on CPU 0, processes 2 and 3 on CPU 1, etc.

The impact of this optimization is illustrated in Figure 5, where performance before and after the opti-
mization is plotted for N = 227. Note for Q = 4, Q = 10 and Q = 20 the optimization works particularly
well, because the number of hyper-threads per CPU, 20, divides evenly into 4, 10 and 20.

A similar result could be achieved by setting the appropriate tread affinity. Intel’s OpenMP library
supports thread affinity control via the environment variable KMP AFFINITY19. In our case, we could run
the following commands before launching each FFT instance:

l e t KOFFSET=(PNUM−1)∗OMP NUM THREADS
export KMP AFFINITY=compact , 0 , $KOFFSET

Here $KOFFSET is the offset of the current process from thread 0, variable $PNUM is the number of the
process (1 through P ), and $OMP NUM THREADS is the number of threads per process, Q. This is a more
fine-grained control of thread affinity, as it binds the process to specific hardware threads rather than to
specific CPUs.

In tests performed for the present research, the NUMA policy optimization yielded marginally better
results than the thread affinity optimization.

Note that this variation of the NUMA policy (or thread affinity) optimizes memory traffic for latency,
which is the opposite to what was demonstrated in the white paper on memory bandwidth benchmark14,
where the affinity of type scatter was used to optimize for bandwidth.

3.4 FFTW planning time in the MEASURE mode
The performance of the FFTW library can be significantly improved by planning the transform in the

MEASURE or PATIENT mode. In the course of planning, the library tunes the parameters of the algorithm
to adapt it to the machine’s architecture (memory bandwidth and latency, cache size, etc.). In our case,
planning in the MEASURE more improved performance by more than a factor of 10 compared to the faster
ESTIMATE mode (not shown here). However, the time it takes to plan a transform can be quite long.

Figure 6 shows the time it took to complete planning in the MEASURE mode. Planning was done just
once, and the FFTW wisdom was saved in files that were re-used in subsequent runs. All benchmarks
obtained here used the ‘wisdom’ (i.e., results of planning) generated in the MEASURE mode.

18http://linux.die.net/man/8/numactl and http://oss.sgi.com/projects/libnuma/
19http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/cpp/lin/optaps/common/optaps openmp thread affinity.htm
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4 CONCLUSIONS

4 Conclusions
At this time, CPU-based systems are the only efficient solution for computing large 1-D FFTs that

exceed the memory of existing GPU devices. And systems with a large amount of memory per core have a
significant advantage over lower-RAM alternatives. Consider the following example: computing 1000 FFTs
of size N = 231 with concurrent processing. Refer to the bottom panels of Figures 2 and 4 to verify the
following numbers:

1. In our system with 1 TB of RAM, we can run with P = 40 concurrent processes Q = 2 threads per
process. This setup uses 650 GB of RAM, and 1000 FFTs are computed in T1000 = 3× 103 s.

2. If our system had 64 GB of RAM installed, then we could afford to run just two processes (P = 2)
with Q = 40 threads per core, which would require T1000 = 6× 103 s.

3. With 32 GB of RAM, the only possibility is P = 1, Q = 80 and T1000 = 9× 103.

4. With 16 GB, regardless of the number of CPUs, a calculation with N = 231 would not fit in memory,
and each transform would have to be computed in distributed memory, further losing efficiency.

And considering that the scientific project motivating this research may require up to 106 of transforms
N = 233 in size, a system with the amount of RAM as large as as this one (1 TB) is an indispensable tool.

Modern computing clusters could tremendously benefit from including very large memory compute
nodes in the grid. These nodes serve several purposes:

1. For problems that do not require the whole amount of the onboard RAM, the node can be used to run
several concurrent smaller-memory tasks. Efficiency of resource sharing can be boosted by optimizing
the NUMA policy or thread affinity setting. Large amount of memory per core allows the user to
reduce instruction-level parallelism in favor of task-level parallelism, which improves performance,
especially for poorly scalable algorithms. One of possible applications of these systems to concurrent
processing (1D FFTs) was demonstrated in this paper.

2. Similarly, for problems that are memory-bound and executed in distributed memory, a large amount of
RAM decreases the required number of compute nodes. This also boosts the efficiency of calculations
by reducing inter-node communication overhead.

3. For memory-bound problems that cannot be or have not been efficiently parallelized, the utility of very
large memory nodes is apparent.
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