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Abstract

One of the features of Intel’s Sandy Bridge-E processor released this month is the support for the Advanced Vector
Extensions (AVX) instruction set. Codes suitable for efficient auto-vectorization by the compiler will be able to take
advantage of AVX without any code modification, with only re-compilation.

This paper explains the guidelines for code design suitable for auto-vectorization by the compiler (elimination
of vector dependence, implementation of unit-stride data access and proper address alignment) and walks the reader
through a practical example of code development with auto-vectorization. The resulting code is compiled and executed
on two computer systems: a Westmere CPU-based system with SSE 4.2 support, and a Sandy Bridge-based system with
AVX support. The benefit of vectorization is more significant in the AVX version, if the code is designed efficiently. An
‘elegant’, but inefficient solution is also provided and discussed.

In addition, the paper provides a comparative benchmark of the Sandy Bridge and Westmere systems, based on
the discussed algorithm. Implications of auto-vectorization methods for Intel’s future Many Integrated Core technology
based on the Knights Corner chip are discussed at the end.
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1 INTRODUCTION

1 Introduction

1.1 Single Instruction Multiple Data (SIMD) Instructions
Most CPU architectures today include Single Instruction Multiple Data (SIMD) parallelism in the form

of a vector instruction set. Serial codes (i.e., running with a single thread), as well as instruction-parallel cal-
culations (running with several threads) can take advantage of SIMD instructions and significantly increase
the performance of some computations. Each CPU core performs SIMD operations on several numbers (in-
tegers, single or double precision floating-point numbers) simultaneously, when these variables are loaded
into the processor’s vector registers, and a vector instruction is applied to them. SIMD instructions include
common arithmetic operations (addition, subtraction, multiplication and division), as well as comparisons,
reduction and bit-masked operations (see, e.g., the list of SSE 2 intrinsics). Libraries such as the Intel Math
Library provide SIMD implementations of common transcendental functions, and other libraries provide
vectorized higher-level operations for linear algebra, signal analysis, statistics, etc.

SIMD instructions can be illustrated with the following pseudocode:

Scalar Loop SIMD Loop
f o r ( i =0 ; i<n ; i ++)

A[ i ]=A[ i ]+B[ i ] ;
f o r ( i =0 ; i<n ; i +=4)

A[ i : ( i +4) ]=A[ i : ( i +4) ]+B[ i : ( i + 4 ) ] ;

The SIMD loop above performs 1/4 the number of iterations of the regular loop, and each addition operator
acts on 4 numbers at a time. Such operations can be called by the code via the respective intrinsic function,
representing a SIMD addition operator.

One of the most important factors determining the theoretical maximum speedup of a vector instruction
set is the width of vector registers. While the first SIMD-capable CPUs in the market featured 64-bit MMX
registers, most modern CPUs have 128-bit registers, and newer architectures (AMD’s Bulldozer and Intel’s
Sandy Bridge) have 256-bit AVX registers. The wider the registers, the more numbers of a given type can
fit into the register, and thus, the greater the potential speedup. Section 2.4 of this paper shows that the
speedup due to vectorization in the latest Sandy Bridge CPU approaches a factor of 8, which is consistent
with 256/32=8 single precision floats packed into an AVX vector register.

1.2 Ways to Employ Vectorization
There are several practical ways to incorporate vector instructions into a calculation:

1. Using highly optimized mathematical libraries with vector instruction support. This is the easiest,
usually the most efficient, portable way to use the SIMD capabilities of a system. For common math-
ematical operations, the Intel Developer tools offer libraries such as the Math Kernel Library (Intel
MKL) or Intel’s Integrated Performance Primitives (Intel IPP). A number of third-party libraries for
mathematics employ vector extensions; however, they should be compiled specifically for the archi-
tecture (i.e., SIMD instruction set) of the system running the code.

2. When a particular algorithm cannot be represented in the form of standard mathematical operations
available in libraries, the programmer can implement vector operations in custom code by

(a) Explicitly calling SIMD operations functions via intrinsic function calls or inline assembly code,
(b) Using the Intel C++ Class Libraries to work with data in the form of short vectors, or
(c) Instructing the compiler to automatically implement vectorization where possible.

Most modern compilers are able to auto-vectorize regular C, C++ or Fortran code. Auto-vectorization
has tremendous advantages over explicit calls to SIMD intrinsics. First, it greatly reduces the effort required
to write vectorized code. Second, it makes the code more readable. And last, but not least, it makes the code
forwards-compatible with future generations of CPUs and SIMD instruction sets.

This paper focuses on auto-vectorization (i.e., case 2(c)). We will illustrate, using the Intel C++ com-
piler, that it is easy to facilitate auto-vectorization in suitable calculations. Good performance and forward-
compatibility of auto-vectorized code can be achieved by following well-defined vectorization guidelines.
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2 PRACTICAL EXAMPLE: COULOMB’S LAW CALCULATION

2 Practical Example: Coulomb’s Law Calculation
While Coulomb’s law strictly applies only to the electric interaction of two charged particles, algorithms

computationally similar to Coulomb’s law are applied in other fields. For example, the N-body calculation
uses the same mathematical form for the gravitational interaction of point masses. And the concept of par-
ticles, the combination vector algebra and transcendental functions, and the all-to-all nature of interactions
used in this example are staple in mechanical problems, visualization, etc.

The essence of Coulomb’s law in the electric potential formulation is as follows. Suppose there are
m point charges, carrying electric charges qi and located at coordinates specified by position vectors ~ri.
Then the electric potential, Φ, at a point in space specified by the vector ~R ≡ (Rx, Ry, Rz) is given by the
expression

Φ(~R) = −
m∑
i=1

qi

|~ri − ~R|
, (1)

where | | denote the magnitude (i.e., length) of a vector:

|~ri − ~R| =
√

(ri,x −Rx)2 + (ri,y −Ry)2 + (ri,z −Rz)2. (2)

Figure 1 is a visual illustration of the problem. In the left panel, m = 512 charges are distributed in a
lattice-like pattern. Each of these particles contributes to the electric potential at every point in space. The
right panel of the figure shows the electric potential at 128× 128 points in the xy plane at z = 0, calculated
using Coulomb’s law.
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Figure 1: Left panel: a set of charged particles. Right panel: the electric potential Φ in the z = 0 plane produced by charged particles
shown in the left panel. For every point in the xy-plane, equation (1) was applied to calculate Φ(~R), where the summation
from i = 1 to i = m is taken over the m charged particles.

The rest of this section discusses the construction of an efficient C++ code for calculating the electric
potential given by equation (1) on a grid.
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2 PRACTICAL EXAMPLE: COULOMB’S LAW CALCULATION

2.1 Elegant, but Inefficient Solution
As a physicist, I am used to treating particles as the basis of physical models, and therefore I would be

tempted to start designing a C++ code by defining the particle class in this way1:

1 c l a s s Charge { / / E l egan t , b u t i n e f f e c t i v e da ta l a y o u t
2 p u b l i c :
3 f l o a t x , y , z , q ; / / C o o r d i n a t e s and v a l u e o f t h i s charge
4 c h a r g e ( ) ;
5 ˜ c h a r g e ( ) ;
6 } ;
7 / / The f o l l o w i n g l i n e d e c l a r e s a s e t o f m p o i n t c h a r g e s :
8 c h a r g e ∗Q = new Charge [m] ;

Figure 2

This is an elegant and natural solution; however, as we will see later, it is inefficient when it comes to
using this charge distribution to calculate the electric potential using Coulomb’s law. The negative impact of
this inefficiency is especially noticeable in an AVX-capable CPU. However, in order to demonstrate this, let
us proceed by introducing the calculation of the electric potential Φ in the z = 0 plane using the array Q:

1 / / T h i s v e r s i o n p e r f o r m s poor l y , because da ta l a y o u t o f c l a s s Charge
2 / / does n o t a l l o w e f f i c i e n t v e c t o r i z a t i o n
3 void c a l c u l a t e e l e c t r i c p o t e n t i a l (
4 c o n s t i n t m, / / Number o f c h a r g e s
5 c o n s t i n t n , / / Number o f p o i n t s i n xy−p l a n e i n each d i m e n s i o n
6 c o n s t Charge∗ chg , / / Charge d i s t r i b u t i o n ( a r r a y o f c l a s s e s )
7 f l o a t ∗ c o n s t phi , / / Ou tpu t : e l e c t r i c p o t e n t i a l
8 c o n s t f l o a t ds / / S p a t i a l g r i d s p a c i n g
9 ) {

10 f o r ( i n t c =0; c<n∗n ; c ++) {
11 c o n s t f l o a t Rx=ds ∗ ( f l o a t ) ( c / n ) ; / / x−c o o r d i n a t e o f o b s e r v a t i o n p o i n t
12 c o n s t f l o a t Ry=ds ∗ ( f l o a t ) ( c%n ) ; / / y−c o o r d i n a t e
13 c o n s t f l o a t Rz=ds ∗ ( f l o a t ) ( 0 ) ; / / o b s e r v a t i o n s i n z=0 p l a n e
14 f o r ( i n t i =0 ; i<m; i ++) { / / T h i s loop w i l l be auto−v e c t o r i z e d
15 / / Non−u n i t s t r i d e : (&chg [ i +1] . x − &chg [ i ] . x ) != s i z e o f ( f l o a t )
16 c o n s t f l o a t dx=chg [ i ] . x − Rx ;
17 c o n s t f l o a t dy=chg [ i ] . y − Ry ;
18 c o n s t f l o a t dz=chg [ i ] . z − Rz ;
19 p h i [ c ] −= chg [ i ] . q / s q r t f ( dx∗dx+dy∗dy+dz∗dz ) ; / / Coulomb ’ s law
20 }
21 }
22 }

Figure 3

When the code is compiled with arguments -O2 and -xAVX, and run on the Sandy Bridge E5-2680 CPU
(System 1 in Section 3) with m = n = 211, the calculation takes 11.2 seconds. This is reflected in Figure 6
in the ‘Inefficient Vectorization’ case for the ‘Sandy Bridge: 256-bit AVX’ system.

In order to understand why this result can be improved, consider the inner for-loop in line 14 of Fig-
ure 3. The variable chg[i].x in the i-th iteration is 4*sizeof(float)=64 bytes away in memory
from chg[i+1].x used in the next iteration. This corresponds to a stride of 64/sizeof(float)=4
instead of 1, which will incur a performance hit when the data are loaded into the processor’s vector regis-
ters. The same goes for members y, z and q of class Charge. In addition, we made no effort to ensure
proper alignment of data in memory, which may further degrade performance.

1Of course, declaring key members of a class as public is not a good example of object-oriented programming, and neither
is passing class arrays as function arguments in future examples. However, the intent of this paper is to provide guidelines for the
facilitation of auto-vectorization, and the methods shown here will be applicable in C++ as well as in C and, to some degree, Fortran 90.
To maintain simplicity and compatibility, programming style will sometimes be compromised.
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2 PRACTICAL EXAMPLE: COULOMB’S LAW CALCULATION

2.2 Optimization: Unit-stride Data Access
In order to achieve unit-stride data access in the inner loop of function calc electric potential,

the structure of data needs to be re-organized. Instead of the inefficient class Charge, let us declare a
class that contains the properties of charges as arrays:

1 c l a s s C h a r g e D i s t r i b u t i o n {
2 / / T h i s da ta l a y o u t p e r m i t s e f f e c t i v e v e c t o r i z a t i o n o f Coulomb ’ s law a p p l i c a t i o n
3 p u b l i c :
4 c o n s t i n t m; / / Number o f c h a r g e s
5 f l o a t ∗ x ; / / Array o f x−c o o r d i n a t e s o f c h a r g e s
6 f l o a t ∗ y ; / / . . . y−c o o r d i n a t e s . . .
7 f l o a t ∗ z ; / / . . . e t c .
8 f l o a t ∗ q ; / / These a r r a y s are a l l o c a t e d i n t h e c o n s t r u c t o r
9

10 C h a r g e D i s t r i b u t i o n ( c o n s t i n t M) ;
11 ˜ C h a r g e D i s t r i b u t i o n ( ) ;
12 } ;

Figure 4

With this new class, the function calculating the electric potential takes on the following form:

1 void c a l c p o t e n t i a l (
2 c o n s t i n t m, / / Number o f c h a r g e s
3 c o n s t i n t n , / / Number o f p o i n t s i n xy−p l a n e i n each d i m e n s i o n
4 c o n s t C h a r g e D i s t r i b u t i o n & chg , / / Charge d i s t r i b u t i o n ( a r r a y s o f p r o p e r t i e s )
5 f l o a t ∗ c o n s t phi , / / Ou tpu t : e l e c t r i c p o t e n t i a l
6 c o n s t f l o a t ds / / S p a t i a l g r i d s p a c i n g
7 ) {
8 / / T h i s v e r s i o n v e c t o r i z e s w e l l t h a n k s t o u n i t−s t r i d e , a l i g n e d da ta a c c e s s
9 f o r ( i n t c =0; c<n∗n ; c ++) {

10 c o n s t f l o a t Rx=ds ∗ ( f l o a t ) ( c / n ) ;
11 c o n s t f l o a t Ry=ds ∗ ( f l o a t ) ( c%n ) ;
12 c o n s t f l o a t Rz=ds ∗ ( f l o a t ) ( 0 ) ;
13 f o r ( i n t i =0 ; i<m; i ++) {
14 / / Un i t s t r i d e : (&chg . x [ i +1] − &chg . x [ i ] ) == s i z e o f ( f l o a t )
15 c o n s t f l o a t dx=chg . x [ i ] − Rx ;
16 c o n s t f l o a t dy=chg . y [ i ] − Ry ;
17 c o n s t f l o a t dz=chg . z [ i ] − Rz ;
18 p h i [ c ] −= chg . q [ i ] / s q r t f ( dx∗dx+dy∗dy+dz∗dz ) ;
19 }
20 }
21 }

Figure 5

Clearly, the inner for-loop in line 13 of Figure 5 has unit-stride data access, as chg.x[i] is imme-
diately followed by chg.x[i+1] in memory, and the same goes for all other quantities accessed via the
array iterator i.

The new code successfully compiles, but does it improve performance? In fact, the time to run the
function calc potential is now 30.3 seconds. Even though we expected an improvement, this result is
worse than in the previous case! This is, of course, a planned failure, staged only to provide motivation for
the discussion in the next two subsections.

In fact, Section 2.3 will show that this function performs poorly because vectorization was not imple-
mented by the compiler at all due to a lack of information from the programmer. This case is represented by
the ‘No Vectorization’ group of bars in Figure 6.

However, the optimization made in this section is correct, and only a minor adjustment is necessary to
permit auto-vectorization and achieve much better performance. Read on to learn how.
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2 PRACTICAL EXAMPLE: COULOMB’S LAW CALCULATION

2.3 Optimization: Eliminating Assumed Vector Dependence
In order to understand why the function in Section 2.2 performs worse than the function in Section 2.1

(even though it should perform better), let us take a look at the vectorization report. In order to do that, one
needs to recompile the code with the compiler argument -vec-report3. The output reads (line numbers
match those in Figure 5):

e n g i n e . cc ( 1 3 ) : ( c o l . 5 ) remark : l oop was n o t v e c t o r i z e d : e x i s t e n c e o f v e c t o r dependence .
e n g i n e . cc ( 1 8 ) : ( c o l . 7 ) remark : v e c t o r dependence : assumed FLOW dependence between p h i l i n e 18 and chg l i n e 1 7 .
e n g i n e . cc ( 1 7 ) : ( c o l . 32) remark : v e c t o r dependence : assumed ANTI dependence between chg l i n e 17 and p h i l i n e 1 8 .
e n g i n e . cc ( 1 8 ) : ( c o l . 7 ) remark : v e c t o r dependence : assumed FLOW dependence between p h i l i n e 18 and chg l i n e 1 7 .
e n g i n e . cc ( 1 7 ) : ( c o l . 32) remark : v e c t o r dependence : assumed ANTI dependence between chg l i n e 17 and p h i l i n e 1 8 .
e n g i n e . cc ( 1 8 ) : ( c o l . 7 ) remark : v e c t o r dependence : assumed FLOW dependence between p h i l i n e 18 and chg l i n e 1 7 .
e n g i n e . cc ( 1 7 ) : ( c o l . 32) remark : v e c t o r dependence : assumed ANTI dependence between chg l i n e 17 and p h i l i n e 1 8 .
e n g i n e . cc ( 1 8 ) : ( c o l . 7 ) remark : v e c t o r dependence : assumed FLOW dependence between p h i l i n e 18 and chg l i n e 1 7 .
e n g i n e . cc ( 1 7 ) : ( c o l . 32) remark : v e c t o r dependence : assumed ANTI dependence between chg l i n e 17 and p h i l i n e 1 8 .
e n g i n e . cc ( 1 8 ) : ( c o l . 7 ) remark : v e c t o r dependence : assumed FLOW dependence between p h i l i n e 18 and chg l i n e 1 8 .
. . .

Evidently, the compiler has refused to vectorize the inner loop, suspecting that it may contain unvector-
izable vector dependences. This suspicion arose because the compiled function was placed in a separate file,
and the compiler could not detect whether the pointer phi is pointing to one of the members of the variable
chi, or not. In order to overcome this limitation, the programmer must indicate to the compiler that phi is
indeed independent from chi. There are two ways to achieve that:

1. The restrict keyword can be placed in the declaration of the argument phi of this function:

void c a l c p o t e n t i a l (
/ / . . .

f l o a t ∗ r e s t r i c t c o n s t phi , / / Ou tpu t : e l e c t r i c p o t e n t i a l
/ / . . .

and the code should be compiled with the compiler argument -restrict. This tells the compiler
that during the life of that pointer, no other pointer accesses the data referenced by phi.

2. Alternatively, #pragma ivdep, a hint recognized by the Intel compiler, can be placed before the
loop:

#pragma i v d e p
f o r ( i n t i =0 ; i<m; i ++) {

/ / . . .
}

This pragma instructs the compiler to ignore possible vector dependences in the loop.

Note that in both cases, the programmer promises to the compiler that there is no true vector dependence
in the code. That is, that the i-th iteration is independent of the result of the (i-k)-th iteration (‘flow
dependence’) or (i+k)-th iteration (‘anti dependence’) for k>0. If the above methods of dismissing the
compiler’s assumptions are used to hide a true vector dependence, the code will crash or produce incorrect
results.

With the either of the modifications described above (I chose the restrict keyword), the code com-
piles, and the vectorization report reads:

e n g i n e . cc ( 1 3 ) : ( c o l . 5 ) remark : LOOP WAS VECTORIZED .

This is what we want. The execution time is now 4.33 seconds, which is 2.6 times better than for the poorly
performing code Section 2.1, and 7.0 times faster than the unvectorized code (Section 2.2). In Figure 6, this
case is represented by the group called ‘Optimal Vectorization: Unit Stride Access’.

Even though it is a good result, there is still room for improvement with very little programming effort
involved. The final optimization for this code is described in Section 2.4.
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2 PRACTICAL EXAMPLE: COULOMB’S LAW CALCULATION

2.4 Optimization: Data Alignment
Loading data into vector registers is most efficient when the beginning of the data is aligned on a 16- (for

128-bit SSE registers) or 32-byte boundary (for 256-bit AVX registers). Alignment on a 32-byte boundary
means that the memory address of the first byte of the array is a multiple of 32. With Intel compilers, aligned
arrays can be allocated with the mm malloc and mm free intrinsics instead of the malloc and free
calls. In order to properly align the members of the Charge Distribution class, its constructor and
destructor must perform the following:

C h a r g e D i s t r i b u t i o n : : C h a r g e D i s t r i b u t i o n ( c o n s t i n t M) : m(M) {
x =( f l o a t ∗ ) mm malloc (m∗ s i z e o f ( f l o a t ) , 3 2 ) ; y =( f l o a t ∗ ) mm malloc (m∗ s i z e o f ( f l o a t ) , 3 2 ) ;
z =( f l o a t ∗ ) mm malloc (m∗ s i z e o f ( f l o a t ) , 3 2 ) ; q =( f l o a t ∗ ) mm malloc (m∗ s i z e o f ( f l o a t ) , 3 2 ) ;

}
C h a r g e D i s t r i b u t i o n : : ˜ C h a r g e D i s t r i b u t i o n ( ){

mm free ( x ) ; mm free ( y ) ; mm free ( z ) ; mm free ( q ) ;
}

and a similar aligned allocation must be made for the array phi.
An alternative way to achieve alignment is to use the malloc call to allocate a block of memory slightly

larger than needed, and then point a new pointer to an aligned address within that block:

char ∗ foo = ma l lo c ( b y t e s +32−1); / / Not g u a r a n t e e d t o be a l i g n e d
s i z e t o f f s e t =(32−(( s i z e t ) (∗ foo ))%32)%32; / / From &f o o [ 0 ] t o n e a r e s t a l i g n e d a d d r e s s
f l o a t ∗ p t r =( f l o a t ∗ ) ( ( char ∗ ) ( foo ) + o f f s e t ) ; / / p t r [ 0 ] i s a l i g n e d on a 32−b y t e boundary

Note that in this case, the pointer ptr should be used to access data, but memory must be free-d via foo.
In C++, the operator new does not guarantee alignment. In order to align a C++ class on a boundary, the

programmer can allocate an aligned block of memory using one of the methods shown above, and then use
the placement version of the operator new (note that ‘#include <new>’ may be necessary):

void ∗ buf = mm malloc ( s i z e o f ( myClass ) , 3 2 ) ; / / b u f [ 0 ] i s a l i g n e d on a 32−b y t e boundary
myClass∗ p t r = new ( buf ) myClass ; / / p l a c i n g myClass w i t h o u t a l l o c a t i n g new memory

When alignment of data on the stack is necessary, the declspec(align) qualifier can be used:

d e c l s p e c ( a l i g n ( 3 2 ) ) f l o a t A[ n ] ;

allocates a stack array A with 32-byte alignment.
In addition to ensuring proper data alignment for vectorization, the programmer can instruct the com-

piler to disable runtime checks for data alignment. This will reduce the loop set-up time and benefit the
performance of auto-vectorized loops. This can be done in one of the following two ways:

1. The statement ‘#pragma vector aligned’ can be placed before the vectorized loop:

#pragma v e c t o r a l i g n e d
f o r ( i n t i =0 ; i<m; i ++) {

/ / . . . The c o m p i l e r w i l l n o t imp lemen t r u n t i m e c h e c k s f o r a l i g n m e n t
}

This pragma can be used in combination with the ivdep pragma mentioned above.
2. The assume aligned pragma can be used: the statement

a s s u m e a l i g n e d (A, 3 2 ) ;

can be placed before the vectorized loop to indicate that A[0] is aligned on a 32-byte boundary.

In the absence of the above hints of alignment, the program will check array alignment at runtime and, if
needed, peel off a few iterations in order to run the rest of the loop with fast aligned instructions.

With both modifications described above: data alignment and a hint to the compiler that the data are
aligned, the code compiles and runs in 4.01 seconds (group ”Optimal Vectorization + Data Alignment” in
Figure 6). This is a significant improvement compared to all previous cases: 2.8 times faster than the code
without unit stride (Section 2.1), 7.6 times faster than the unvectorized code (Section 2.2) and 1.08 times
faster than the code without alignment optimizations (Section 2.3).
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2 PRACTICAL EXAMPLE: COULOMB’S LAW CALCULATION

2.5 Final Optimized Serial Code
The optimizations outlined in Sections 2.2, 2.3 and 2.4 result in the following code:

1 c l a s s C h a r g e D i s t r i b u t i o n { / / c l a s s o f a r r a y s i s more e f f i c i e n t t han a r r a y o f c l a s s e s
2 p u b l i c :
3 c o n s t i n t m; / / Number o f c h a r g e s
4 f l o a t ∗x , ∗y , ∗z ; / / Ar ray s o f c o o r d i n a t e s o f c h a r g e s
5 f l o a t ∗q ; / / Array o f charge v a l u e s
6
7 C h a r g e D i s t r i b u t i o n ( c o n s t i n t M) : m(M) {
8 x =( f l o a t ∗ ) mm malloc (m∗ s i z e o f ( f l o a t ) , 3 2 ) ; y =( f l o a t ∗ ) mm malloc (m∗ s i z e o f ( f l o a t ) , 3 2 ) ;
9 z =( f l o a t ∗ ) mm malloc (m∗ s i z e o f ( f l o a t ) , 3 2 ) ; q =( f l o a t ∗ ) mm malloc (m∗ s i z e o f ( f l o a t ) , 3 2 ) ;

10 }
11 ˜ C h a r g e D i s t r i b u t i o n ( ){
12 mm free ( x ) ; mm free ( y ) ; mm free ( z ) ; mm free ( q ) ;
13 }
14 } ;
15
16 void c a l c p o t e n t i a l (
17 c o n s t i n t m, / / Number o f c h a r g e s
18 c o n s t i n t n , / / Number o f p o i n t s i n xy−p l a n e i n each d i m e n s i o n
19 c o n s t C h a r g e D i s t r i b u t i o n & chg , / / Charge d i s t r i b u t i o n
20 f l o a t ∗ r e s t r i c t c o n s t phi , / / Ou tpu t : e l e c t r i c p o t e n t i a l
21 c o n s t f l o a t ds / / S p a t i a l g r i d s p a c i n g
22 ) {
23 f o r ( i n t c =0; c<n∗n ; c ++) { / / Uni t−s t r i d e , a l i g n e d da ta a c c e s s i n loop
24 c o n s t f l o a t Rx=ds ∗ ( f l o a t ) ( c / n ) ;
25 c o n s t f l o a t Ry=ds ∗ ( f l o a t ) ( c%n ) ;
26 c o n s t f l o a t Rz=ds ∗ ( f l o a t ) ( 0 ) ;
27 #pragma v e c t o r a l i g n e d
28 f o r ( i n t i =0 ; i<m; i ++) {
29 c o n s t f l o a t dx=chg . x [ i ] − Rx ;
30 c o n s t f l o a t dy=chg . y [ i ] − Ry ;
31 c o n s t f l o a t dz=chg . z [ i ] − Rz ;
32 p h i [ c ] −= chg . q [ i ] / s q r t f ( dx∗dx+dy∗dy+dz∗dz ) ;
33 }
34 }
35 }
36
37 / / . . .
38 f l o a t ∗ p h i =( f l o a t ∗ ) mm malloc ( n∗n∗ s i z e o f ( f l o a t ) , 3 2 ) ;
39 c h a r g e d i s t r i b u t i o n ∗ CD=new c h a r g e d i s t r i b u t i o n (m) ;
40 i n i t c h a r g e a r r a y (m, ∗CD ) ; / / t h i s f u n c t i o n i s d e f i n e d e l s e w h e r e
41 t i m i n g s t a r t ( ) ; / / t i m i n g f u n c t i o n s d e f i n e d e l s e w h e r e
42 c a l c p o t e n t i a l (m, n , ∗CD, phi , 1 . 0 f / ( f l o a t ) ( n−1) ) ; / / C a l c u l a t i o n i s run here
43 t i m i n g e n d ( ) ;

This code must be compiled with the compiler argument -xAVX to produce auto-vectorized code with
AVX instructions, or with -xSSE4.2 to produce SSE 4.2 code. Auto-vectorization is enabled with the
optimization argument -O2. In order to enable the restrict keyword, the compiler must be given the
argument -restrict.

Refer to Figure 6 for benchmark results.
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2 PRACTICAL EXAMPLE: COULOMB’S LAW CALCULATION

2.6 Other Vectorization Considerations

Non-standard Loops

Generally, the only type of loops that the compiler will auto-vectorize is a for-loop, with the number of
iterations run known at runtime before the start of the loop. Memory access in the loop must have a regular
pattern, ideally with unit stride (i.e., contiguous access from iteration to iteration).

Non-standard loops that cannot be auto-vectorized include: loops with irregular memory access pattern,
calculations with vector dependence, while-loops or for-loops in which the number of iterations cannot
be determined at the start of the loop, outer loops, loops with complex branches (i.e., if-conditions), and
anything else that cannot be, or is very difficult to vectorize. Refer to the Programming Guidelines for
Vectorization for more information.

Branches in Vectorized Loops

In architectures that have bit-masked vector instructions, loops with simple branches can be vectorized.
For example, this loop can be auto-vectorized:

1 f o r ( i =0 ; i<n ; i ++)
2 i f ( a [ i ]>0) b [ i ]+= c [ i ] ;

The compiler will produce a code that runs the loop twice. The first run evaluates all branch conditions and
creates bit masks, which have the bits for taken branches set to 1, and for not taken branches – to 0. The
second run will perform the bit-masked ‘add’ operation for all elements of b[i] and c[i], which will
modify only those b[i], for which the respective bit in the mask is set to 1.

Note that sometimes it may be cheaper to leave a loop with branches unvectorized. For example, suppose
that the branch is almost never taken, and the branches that are taken are fairly expensive. The vectorized
version will have to perform all the expensive operations, which will be bit-masked away and wasted. On
the other hand, a scalar (i.e., non-vectorized) calculation will zoom through the loop, only evaluating branch
conditions and occasionally stopping to take branches. Use #pragma novector to avoid vectorization
in these cases (see below).

Vectorization-Related Compiler Hints and Arguments

The following list contains some compiler pragmas and command line arguments that may be useful
for tuning vectorized code performance. The list pertains to Intel’s C++ compiler on Linux. Details can be
found in the Intel C++ compiler reference2. In the PDF version of this article, the keywords below contain
hyperlinks to the respective pages of the Intel C++ compiler reference.

• #pragma simd

• #pragma vector always

• #pragma vector aligned | unaligned

• #pragma vector nontemporal | temporal

• #pragma novector

• #pragma ivdep

• #pragma loop count

• mm malloc(), mm free()

• declspec(align) and assume aligned keywords
• restrict qualifier and -restrict command-line argument
• -vec-report[n]

• -O[n]

• -x[code]

2http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/cpp/lin/index.htm
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3 Sandy Bridge vs Westmere: Performance Benchmark
In order to put the performance of Coulomb’s law calculation on the Sandy Bridge system in perspective,

this section presents benchmarks of various versions of the code on two hardware systems:

System 1 has two Intel Xeon E5-2680 (Sandy Bridge) CPUs at 2.70 GHz. Each CPU has 8 cores, and hyper-
threading is enabled.

System 2 has two Intel Xeon X5690 (Westmere) CPUs X5690 at 3.47 GHz. Each CPU has 6 cores, and hyper-
threading is enabled.

Both systems were running CentOS 6.2 with the Linux kernel 2.6.32-220.el6.x86 64. The code was com-
piled using the Intel C++ compiler version 12.1.3 with arguments ‘-O2 -restrict -xSSE4.2’ and
‘-O2 -restrict -xAVX’ for SSE 4.2 and AVX versions, respectively.

3.1 Code Parallelization
The calculation of the electric potential on a grid using Coulomb’s law is an embarrassingly parallel

problem. It is, therefore, trivial to distribute the work of the outer loop (line 23 in the listing in Section 2.5)
across all available hyper-threads in the system (32 threads for System 1 and 24 for System 2). Note that
the data-level parallelism (i.e., vectorization) will be present in each thread. We used the OpenMP library to
parallelize the calculation, and only 3 modifications had to be made to the code in order to parallelize it:

1. Including the OpenMP header file (at the beginning of the code):

# i n c l u d e <omp . h>

2. Adding the following pragma before the outer loop (line 25 in the listing above):

#pragma omp p a r a l l e l f o r s c h e d u l e ( gu id ed )

3. Compiling the code with an additional argument -openmp.

In our 2-way NUMA system, an embarrassingly parallel algorithm may benefit from an additional opti-
mization. That is, in order to take advantage of the low latency of CPU-local memory, the affinity of threads
and memory accessed by them can be fixed. This, however, is beyond the scope of this study, and even
without this optimization, we get adequate parallel scalability.

3.2 Results of Comparison
System 1 (Sandy Bridge) was benchmarked with the SSE 4.2 and the AVX version of the code. System 2

(Westmere) was benchmarked with SSE 4.2 version only, because Westmere CPUs do not support AVX. In
addition, in order to evaluate the performance of scalar arithmetics, the code was compiled in the form
presented in Section 2.2, which failed to vectorize.

The results are shown in Figure 7. The labels above bars show the measured execution time of function
calc potential, and the height of the bars is the ratio of the baseline time to the time of a particular
benchmark. The timing accuracy was estimated by running the serial code 10 times and the parallel code 40
times. In all cases, the standard deviation of the computation time did not exceed 3%.

The most striking result of Figure 7 is that for the optimized code, the Sandy Bridge system performs
1.6-1.7 times faster than the Westmere system. At the same time, the scalar (non-vectorized) version of
the code did not benefit from running on the Sandy Bridge CPU (i.e., speedup≈1.0), and neither did the
version compiled with SSE 4.2 vector instructions. It clearly indicates that the Sandy Bridge chip owes its
performance edge in single precision to the 256-bit AVX vector registers.
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5 Auto-vectorization and the Intel MIC
According to Intel’s latest public disclosure about their future product known as Many Integrated Core

(MIC) co-processor based on a 22-nm Knights Corner (KNC) chip, ”KNC is an optimized, highly parallel
co-processor. Unlike traditional accelerators that run portions of programs, Knights Corner is able to run
full operating systems and run complex Linux programs”. The KNC chip will provide more than 1 TFLOP
performance in double precision. Intel has not publicly released any information about the instruction set
of the MIC product; however, two statements of Intel’s representatives allow one to judge the importance of
the approach discussed in this paper.

1. Justin Rattner, Intel’s CTO, at Intel Developer Forum (IDF) 20113:

. . . you’d think you’d have to be some kind of freak to actually program these machines. Or, as we like to say
in the labs, you’d have to be a ninja programmer. . . . our goal at Intel is really to banish ninja programmers
forever.

2. Question and Answer session in the Intel webinar on vectorization with Intel’s specialists
Shannon Cepeda and Wendy Doerner4 revealed:

Q: Intel MIC will have many cores - 50 cores - Will it have such vectorize extensions/ hardware each core? Or
the vectorization will be done across different cores?
A: Your code that uses the high level extensions we covered today on Xeon will scale forward to registers/in-
structions on the Intel Many Integrated Core (Intel MIC) architecture.

This leaves no doubt that in order to harness the full potential of the MIC product, vectorization is
necessary, and that Intel is emphasizing the importance of automated approach to this optimization (i.e.,
‘high level extensions’), as presented in this paper.

Conclusions
Auto-vectorization of arithmetically intensive loops with compiler directives is a simple and forward-

compatible way to greatly improve the performance of a calculation when library functions are not available
for the task. The example considered in this paper illustrates how a code can be migrated from the SSE 4.2
instruction set to the next generation architecture, the AVX instruction set, by simply re-compiling it. We
have also observed that neglecting to use the new architecture results in a loss of performance, which is
a serious argument for using auto-vectorization as opposed to explicit calls to intrinsic functions in CPU
codes. Code design that allows for auto-vectorization may also play an important role in the adoption of
Intel’s Knights Corner-based coprocessors.

Please visit http://research.colfaxinternational.com/ to learn more about the Colfax
Research project, comment on this article, and subscribe for updates.

3http://download.intel.com/newsroom/kits/idf/2011 fall/pdfs/IDF 2011 Transcript Justin Rattner.pdf
4http://software.intel.com/en-us/articles/future-proof-your-applications-performance-with-vectorization/
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