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About Me:  
•  Current:  

–  Specializing in Software Modernization 
–  Future Application and Architectures (FAA)  
–  Application Performance Team (APT) 

•  Past: 
–  Post doctoral Fellow (ND) 

•  Developed crystal plasticity framework for  
  c-BN Synthesis via shockwave processing 

–  Computational Solid Mechanics(CSM) 
•  Modeling phase transformation in solids 

–  Computational Fluid Dynamics (CFD) 
•  Turbulence modeling (real/spectral space) 
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Gratitude: 
•  DoE 
•  LANL Institutional Computing 
•  Additional Contributions: 
–  Cray(Hackaton/Boot-Camp) 
–  Intel(Hackaton/Boot-Camp) 

•  LANL Folks: 
–  CoMD Development Team 
–  Colleagues 
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This Talk I: 
Performance Lingo 
Pre Software Modernization 
•  In thinking about software modernization 
•  Tools – “The Necessary Evil” 
•  A Modernization Mindset - The Cutting 
Rod Approach 

•  Roofline Analysis – In a Nutshell 
•  Roofline Analysis – The Outcome 
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This Talk II: 
Software Modernization Case Study 2 – CoMD 
CoMD: 

–  Algorithm Description 
–  Driver Blue Print 
–  Time Marching  
–  Force Kernels 
–  Modernization Goals 
–  L-J Force Kernel Optimization 
–  EAM Force Kernel Optimization 

Post Software Modernization: 
–  Comparing: HSW vs. KNL, How? 
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Performance Lingo: 
•  TDP – Thermal Design Power 
•  HSW – Haswell (Intel processor) 

•  KNL – Knights Landing (Intel Xeon Phi 2nd Generation) 

•  SNB – Sandy Bridge (Intel processor) 

•  IVY – IVY Bridge (Intel processor) 

•  BWD – Broadwell Bridge (Intel processor) 

•  SIMD – Single Instruction Multiple Data 

•  MPI – Message Passing Interface  

•  OpenMP – Open Multi-Processing (Thread Parallel Paradigm) 

•  Vectorization – Vector representation of similar  

                   scalar operations (Data Parallelization) 

•  Directive/Primitive -  
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PRE  
SOFTWARE MODERNIZATION  

This Section discusses … 
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In Thinking about Software 
Modernization: 
•  Why? Hardware is a rate quantity:  

–  H’=f(Technology) 
•  Hiding Communication Primitives 

–  c++: communication classes 
–  c: communication source files 
–  Fortran: communication modules 

•  Hiding Threading Primitives 
–  Pragmas&/Directives 
–  Challenging! 

•  Hiding Vectorization Primitives 
–  Pragmas&/Directives 
–  Challenging! 

•  Hiding Alignment/Allocation Primitives 
–  aligned malloc:  

•  __aligned__malloc(,) 
•  posix_align(,) (still in dev.) 

–  align compiler hint: __mm__aligned(,) 
–  align size: #ifdef <MachineType> ALIGNMENT_SIZE 64 
 

8 

Modern code graphic – colfax research <https://colfaxresearch.com/> 



Tools –  
The Necessary Evil: 
•  Understand 
•  Intel® Advisor 
– Analysis kernels 
– Roofline 

•  Intel® Vtune™ Amplifier 
– Analysis kernels 

•  Allinea(ddt/map) 
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A Modernization Mindset -   
The Cutting Rod Approach: 
•  Goal: 

–  Determine optimal substructure. 
–  Combined optimal substructures will 
   probably be global optimum. 
 

•  Software modernization is: 
–  Iterative (pick your poison) 
–  Exhaustive(work smart): 

•  Use Proxy/Mini App (~20K lines) 
•  Try Multiples approaches 

•  Note: 
–  Optimal code for KNL does not  
  translate to optimal code either HSW/SNB/BWD 
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Roofline Analysis  
– In a Nutshell: 
 

Family of functions  
Axis: 

•  Abscissa:  

–  Flops/DRAM-Byte 
–  Relative CPU to Memory utilization. 

•  Ordinate:  
•  Flops/s 
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roofline model graphic – colfax research <https://colfaxresearch.com/> 



Roofline Analysis –  
The Outcome: 
Roofline results:  
•  Arithmetic Intensity (AI) 

–  What is thread affinity for  
   max performance? 
–  What is max number of threads  
   for max performance? 
–  Do you need to incorporate:  

•  Vectorization (Relative Quality/Quantity)? 
•  Prefetching (primitives/compiler flags)…? 
•  Data Contiguity…? 

•  Does your code need:  
–  Re-timing? 
–  Dynamic thread affinity? 

•  Does your code need heavy rewrite to change the AI? 
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CASE STUDY: CoMD  
SOFTWARE MODERNIZATION  

This Section discusses … 
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CoMD – Algorithm Description: 
•  CoMD Open-Source Molecular Dynamics Proxy Application: 

–  Molecular dynamics is a low level “higher resolution” material modeling 
approach. 

–  https://github.com/exmatex/CoMD 
•  Types of Force Kernels: 

–  Lenard Jones (L-J) 
–  Embedded Atom Model (EAM) 

•  Code Branches: 
–  Serial (focus for data-parallel) 
–  OpenMP (focus for data & thread parallel) 

•  Loop level implementation  
–  MPI / MPI+OpenMP 

•  Problem Type: 
–  N-Body 

•  Decomposition Type: 
–  Cartesian 

•  Complexity: 
–  O(~n2) 
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CoMD –  
Example Application: 
•  An approach to computationally fabricating c-BN via shock-wave 

processing will require modeling a material domain at impact. 
•  Upon impact, the material domain will categorically contain 

multiple activity regions:  
–  Shock Zone – Higher activity region 
–  Transition Zone – Mid activity region 
–  Inert Zone – Low activity region 

•  (chemically/mechanically relatively inactive) 
•  Molecular dynamics is a theoretically feasible approach to 

capturing the underlying physics (the essence) in the 
material’s shock zone. 
–  A relatively higher level mid resolution may be sufficient! 

•  i.e. Crystal plasticity 
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CoMD –  
Driver Blue-Print 

Understand View: 
• Infinite call depth: 

• Connectivity of the code 
• Blue-square imply:  

• Subroutines/function/headers 
• Gray-hexagon imply: 

• c-libs 
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CoMD - Time Marching: 

Understand View: 
• Infinite call depth 
• Blue Square imply:  

• subroutines/function 
• Gray-hexagon imply: 

• c-libs 
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CoMD - Force Kernels: 
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Force kernels: 
• EAM: 

• 3-passes 
• LJ: 

• 1-pass 



CoMD – Modernization 
•  Modernization Mindset:  

–  “Cutting Rod Approach” 
–  Optimal substructures 

•  Machine Choice (KNL/64-68cores/4-HT): 
§  Based on Baseline runs 

§  NUMA decomposition(SNC4/SNC2/QUAD) 
§  Memory hierarchy(Flat/Cache) 

•  Modernization Exercise Goals: 
–  Improve Vectorization 
–  Improve Threading 
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App Runtime Comparison -   
KNL vs. HSW: 
How?: 

–  TDP is a “useful” metric 
–  It is “Not” an exact science! 
–  Given:  

•  Single-Node KNL  
•  ~200W CPU TDP  

–  Choose HSW with comparable TDP:  
•  Single-Node, Dual-Socket HSW 
•  2x(Intel® Xeon® processor E5-2697v3)  
•  ~2x(145W CPU TDP) 

–  Intel Processor Specs:  
•  ark.intel.com  
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CoMD Simulation Details: 
 
KNL: 
§  Intel® Xeon Phi™ Processor 

7210 
§  CoMD on Node performance 
§  Multiple MPI Ranks 
§  Complementary OpenMP Threads 
§  Best Results: 

§  QUAD-Cache 
§  2-Threads 
§  32-Ranks 

§  Comparable Results: 
§  QUAD-Cache 
§  1TH-64R 
§  4TH-16R 

CoMD – Baseline Runs I 
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CoMD – Baseline Runs II 
CoMD Simulation Details: 
 
KNL: 
§  Intel® Xeon Phi™ Processor 

7210 
§  CoMD on Node performance 
§  MPI Ranks (16/32/64) 
§  Complementary OpenMP Threads 
§  Best Results: 

§  64-Ranks 
§  32-Ranks 

§  Comparable Results: 
§  QUAD-Cache 
§  1TH-64R 
§  4TH-16R 



CoMD – Baseline Runs III 
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CoMD Simulation Details: 
 
KNL: 
§  Intel® Xeon Phi™ Processor 

7210 
HSW - Dual Socket: 
§  Intel® Xeon® Processor 

E5-2697v3  
§  CoMD on Node performance 
§  MPI Ranks  
§  Complementary OpenMP Threads 
§  Best Results: 

§  32-Ranks/2TH 
§  Note: 

§  Oversubscribing 
§  HSW > 2TH 
§  KNL > 4TH 



CoMD – Hotspots  
Intel® Vtune™ Amplifier:  
§ hotspots analysis 

Summary: L-J Force  EAM Force 

% Runtime Per Region Serial: ~ 2% Serial: ~ 1% 

Parallel: ~ 98% Parallel: ~ 99% 

% Per Subroutine Runtime Lenard-
Jones: 

~ 93% EAM: ~ 94% 

Others:  ~ 7% Others:  ~ 6% 
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CoMD Performance Profiling: 
 
Intel® Vtune™ Amplifier: 
§  Hotspots kernel 
 
§  Summary: 
CoMD with LJ Force: 
1.  LJ-Force(,,) 
2.  putAtomInBox(,,) 

CoMD with EAM Force: 
1.  EAM-Force(,,) 
2.  sortAtomInCell(,,) 



Build Information: 

Output: 

V&V Information: 

L-J Force –  
Simulation Output: 
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CoMD Problem Definition: 
Force Kernel:  
§  Lennard – Jones 
Number of Atoms: 
§  32000 
Number of TimeSteps: 
§  100  
Parallelization: 
§  MPI 
§  OpenMP 



Source Code: CoMD 

LJ-Force Kernel  
Initialization Step  
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L-J Force – Baseline: 

Source Code: 
Optimization Report Summary: 
Initialization Step of Baseline Code:  
1.  No vectorization 
2.  Function call in loop:  

•  Line: 160 
•  Function: ”zeroReal3”  

3.  Remainder loop 
4.  Assumed dependence 
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Optimization Reports: 
Compiler: 
 
§  Intel 17/up1 



L-J Force:  
Summary of Fix List:  
1.  No vectorization 
2.  Remainder loop 
3.  Assumed dependence 
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Fixing Item 1 - “No vectorization”: 
Add:  
“#pragma omp simd” 
Or Add: 
“#pragma omp parallel for simd” 
Why Not?: 
“#pragma simd” 



Source Code After: 

L-J Force:  
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Source Code Before: 



Optimization Reports: 

L-J Force:  
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Optimization Report Summary: 
“Relative Quality” of Vectorization: 
•  scalar cost   ~16 
•  vector cost   ~10.250 

•  Est. Speed-Up ~1.320 (low) 
Necessary fixes: 

1.  Non-SIMD-Enabled function - “zeroReal3” 

2.  Unaligned access:  
•  “s->atom->U” structure 
•  “s->atom->f” structure  

3.  Non-unit (3) stride store: “s->atom->f” 



L-J Force: 
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Fixing Item 1 - “Function call in loop”: 
 
•  Convert “zeroReal3” function: 

§  SIMD-Enabled function 
§  Part 1: Declaration 
§  Part 2: Definition 

OR: 
§  SIMD-Enabled omp function 

§  Part 1: Declaration  
§  Part 2: Definition: 

§  Add “notinbranch” clause 
§  “omp declare simd” directive 

Source Code Before: 

Source Code After: 



L-J Force: 
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Aligned Allocation & Free: “memUtils.h”:  

Fixing Item 2 - “Unaligned access”: 
§  Unaligned access:  

–  “s->atom->U” structure 

–  “s->atom->f” structure 

•  How to Align: 

–  Part 1: “_mm_malloc” 

–  Part 2: “_mm_free” 

–  Part 3: “inform compiler” 

•  Before use 



L-j Force: 

Source Code After: 
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Fixing Item 3 - “Non-unit stride store - 3”:  
§  Convert So(AoA) to: 

§  SoA_0, SoA_1, SoA_2  

Source Code Before: 



Final Optimization Report: 
1.  All Aligned Access 
2.  No Peel/Remainder Loops 
3.  Relative Vectorization Quality (up ~90%) 

L-J Force: 
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Source Code: CoMD 

L-J Force Kernel  
Force Calculation Step  
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L-J Force: 
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Source Code Summary: 
§  Force Calculation Step: 

§  4 Nested Loops 
§  “omp reduction” on: 

§  “ePot”  
§  Imperfect nested loops  

§  Loop @Line 195 
§  Loop @Line 180-182 

§  2 perfectly nested loops: 
§  Loop @Line 187 
§  Loop @Line 191 

Showing 4 Nested Loops: 



L-J Force: 
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Source Code Summary: 
§  Force Calculation Step: 

§  Inner most loop constains: 
§  Sub-Loops @Line 195 
§  Sub-Loops @Line 214  

§  Omp reduction on variable 
§  “ePot”  

Innermost Loop : 



L-J Force: 
Optimization Report Summary: 
1.  No vectorization:  

§  4 Nested-Loops 
2.  Imperfect loop nest 
3.  Assumed flow dependence: 

§  Loop @187 
§  Loop @191 
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Optimization Reports: 



L-J Force: 
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Optimization Reports: 

1.  Fixing Item 1 – “No vectorization”:  

§  Add “simd” directive to innermost loop 
§  Sub-Loops: 196, 215 get unrolled 

§  Note: 
§  There are 4 nested loops 

Optimization Reports: 



L-J Force: 
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Summary of Todo: 
 
1. Align Data & Hint Compiler: 

§  “s->atoms->r” 
§  “s->atoms->f” …done! 

2.  Convert So(AoA) to multiple SoA: 
“s->atoms->r” 
“s->atoms->f” …done! 

 
3. Convert reduction in inner loop on:  

§  “s->atoms->r” to “simd reduction” 
§  “s->atoms->f” to “simd reduction” 
§  Hint: 

§  Introduce summation variable  
§  “sum_R” 
§  “sum_F” 



L-J Force: 
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Source Code  
Before: 

Source Code  
After: 



New Output: 

L-J Force – Optimized  

Old Output: 
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Performance Report”: 
§  ~40% Speedup in Force Calculation 
§  ~10% Speedup overall 



Source Code After Revision I: 

L-J Force –  
Revision:  
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Source Code Before: 

Source Code After Revision II: 



New Output: 

L-J Force – Optimized  

Old Output: 
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Revised Performance Report”: 
§  Revised Initialization Step 
§  ~51% Speedup in Force Calculation 
§  ~10% Speedup overall 



Source Code: CoMD 

EAM-Force Kernel  
Force Calculation Step  
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EAM Force – Baseline  
Simulation Output: 
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Output: 

Problem Definitions: 
• 1Million Particles 
• 100 Time-steps 
• Mpi + OpenMP 

V&V Information: 



EAM Force: 
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Summary of Todo List I: 
 
1. Align Data & Hint Compiler: 

§  pot->phi 
§  pot->rho   
§  s->atoms->U 
§  pot->dfEmbed 
§  pot->rhobar 
§  “s->atoms->r” 
§  “s->atoms->f” …done! 

2.  Convert So(AoA) to multiple SoA: 
§  “s->atoms->r” 
§  “s->atoms->f” …done! 

3. Convert reduction in inner loop on:  
§  “s->atoms->r” to “simd reduction” 
§  “s->atoms->f” to “simd reduction” 
§  Hint: 

§  Introduce summation variable  
§  “sum_R” 
§  “sum_F” 



EAM Force: 
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Summary of Todo II: 
1.  Convert “interpolate” subroutine to: 
§  SIMD-Enabled function 

§  Part 1: Declaration 

§  Part 2: Definition 

Or: 

§  “omp” SIMD-Enabled function  

§  Part 1: Declaration 

§  Part 2: Definition 

§  “omp declare simd” 
§  “align clause” 
§  “inbranch clause” 



EAM Force: 
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Summary of Todo III: 
Hint compiler on alignment “eam.c”: 

1.  “table->values” variable: 
§  @Function  

§  InterpolationObject* 
initInterpolationObject 

1.  “buf” variable: 
§  @Function  

§  void eamReadSetfl  
§  void eamReadFuncfl 



EAM Force: 
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Modifications - Initialization step: 
•  Aligned memory allocation 

•  Part 1: “__mm_malloc” 
•  Part 2: “hint compiler” 

•  1X(SoA(oA)) => 3X(SoA) 

Source Code Before: Source Code After: 



EAM Force 
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Modifications – Force Calculation Pass I: 
§  Simd reduction 

§  s->atom->U 
§  s->atom->F_(all) 
§  pot->rhobar Source Code Before: 



EAM Force: 
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Source Code Before: Source Code After: 

Modifications – Force Calculation Pass II: 
§  Added “pragma simd”  directive 

§  s->atom->U 



EAM Force: 
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Source Code Before: 

Source Code After: 

Modifications – Force Calculation Pass III: 
§  Simd reduction: “s->atoms->f(All)” 



 
EAM Force – Optimized:  
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New Output: 

Performance Report”: 
§  ~27% Speedup in EAM Force kernel 
§  ~28% Speedup overall 

Old Output: 



L-J Force –  
Revision:  
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Source Code Before: 

Source Code After Revision II: 



EAM Force – Optimized  
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Revised Performance Report”: 
§  Revised Initialization Step 
§  ~40% Speedup in EAM Force Kernel 
§  ~32% Speedup overall 

Old Output: 

New Output: 



Questions & Comments 
?/! 
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