
LA-UR-17-22676
Approved for public release; distribution is unlimited.

Title: A Case Study on  Software Modernization using CoMD -   A Molecular
Dynamics  Proxy Application

Author(s): Adedoyin, Adetokunbo

Intended for: colfax research webinar, 2017-04-04 (los alamos, New Mexico, United
States)

Issued: 2017-04-03



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



A Case Study on  
Software Modernization 

using CoMD -   
A Molecular Dynamics  
Proxy Application 

by 
Dr. Adedoyin  
toks@lanl.gov 

https://colfaxresearch.com/mc2-series/ 
 

1 



About Me:  
•  Current:  

–  Specializing in Software Modernization 
–  Future Application and Architectures (FAA)  
–  Application Performance Team (APT) 

•  Past: 
–  Post doctoral Fellow (ND) 

•  Developed crystal plasticity framework for  
  c-BN Synthesis via shockwave processing 

–  Computational Solid Mechanics(CSM) 
•  Modeling phase transformation in solids 

–  Computational Fluid Dynamics (CFD) 
•  Turbulence modeling (real/spectral space) 

2 



Gratitude: 
•  DoE 
•  LANL Institutional Computing 
•  Additional Contributions: 
–  Cray(Hackaton/Boot-Camp) 
–  Intel(Hackaton/Boot-Camp) 

•  LANL Folks: 
–  CoMD Development Team 
–  Colleagues 

3 



This Talk I: 
Performance Lingo 
Pre Software Modernization 
•  In thinking about software modernization 
•  Tools – “The Necessary Evil” 
•  A Modernization Mindset - The Cutting 
Rod Approach 

•  Roofline Analysis – In a Nutshell 
•  Roofline Analysis – The Outcome 

4 



This Talk II: 
Software Modernization Case Study 2 – CoMD 
CoMD: 

–  Algorithm Description 
–  Driver Blue Print 
–  Time Marching  
–  Force Kernels 
–  Modernization Goals 
–  L-J Force Kernel Optimization 
–  EAM Force Kernel Optimization 

Post Software Modernization: 
–  Comparing: HSW vs. KNL, How? 

 
 
 
 

 

 
 

5 



Performance Lingo: 
•  TDP – Thermal Design Power 
•  HSW – Haswell (Intel processor) 

•  KNL – Knights Landing (Intel Xeon Phi 2nd Generation) 

•  SNB – Sandy Bridge (Intel processor) 

•  IVY – IVY Bridge (Intel processor) 

•  BWD – Broadwell Bridge (Intel processor) 

•  SIMD – Single Instruction Multiple Data 

•  MPI – Message Passing Interface  

•  OpenMP – Open Multi-Processing (Thread Parallel Paradigm) 

•  Vectorization – Vector representation of similar  

                   scalar operations (Data Parallelization) 

•  Directive/Primitive -  

 

6 



PRE  
SOFTWARE MODERNIZATION  

This Section discusses … 

7 



In Thinking about Software 
Modernization: 
•  Why? Hardware is a rate quantity:  

–  H’=f(Technology) 
•  Hiding Communication Primitives 

–  c++: communication classes 
–  c: communication source files 
–  Fortran: communication modules 

•  Hiding Threading Primitives 
–  Pragmas&/Directives 
–  Challenging! 

•  Hiding Vectorization Primitives 
–  Pragmas&/Directives 
–  Challenging! 

•  Hiding Alignment/Allocation Primitives 
–  aligned malloc:  

•  __aligned__malloc(,) 
•  posix_align(,) (still in dev.) 

–  align compiler hint: __mm__aligned(,) 
–  align size: #ifdef <MachineType> ALIGNMENT_SIZE 64 
 

8 

Modern code graphic – colfax research <https://colfaxresearch.com/> 



Tools –  
The Necessary Evil: 
•  Understand 
•  Intel® Advisor 
– Analysis kernels 
– Roofline 

•  Intel® Vtune™ Amplifier 
– Analysis kernels 

•  Allinea(ddt/map) 
9 



A Modernization Mindset -   
The Cutting Rod Approach: 
•  Goal: 

–  Determine optimal substructure. 
–  Combined optimal substructures will 
   probably be global optimum. 
 

•  Software modernization is: 
–  Iterative (pick your poison) 
–  Exhaustive(work smart): 

•  Use Proxy/Mini App (~20K lines) 
•  Try Multiples approaches 

•  Note: 
–  Optimal code for KNL does not  
  translate to optimal code either HSW/SNB/BWD 

10 



Roofline Analysis  
– In a Nutshell: 
 

Family of functions  
Axis: 

•  Abscissa:  

–  Flops/DRAM-Byte 
–  Relative CPU to Memory utilization. 

•  Ordinate:  
•  Flops/s 

11 

roofline model graphic – colfax research <https://colfaxresearch.com/> 



Roofline Analysis –  
The Outcome: 
Roofline results:  
•  Arithmetic Intensity (AI) 

–  What is thread affinity for  
   max performance? 
–  What is max number of threads  
   for max performance? 
–  Do you need to incorporate:  

•  Vectorization (Relative Quality/Quantity)? 
•  Prefetching (primitives/compiler flags)…? 
•  Data Contiguity…? 

•  Does your code need:  
–  Re-timing? 
–  Dynamic thread affinity? 

•  Does your code need heavy rewrite to change the AI? 

12 



CASE STUDY: CoMD  
SOFTWARE MODERNIZATION  

This Section discusses … 

13 



CoMD – Algorithm Description: 
•  CoMD Open-Source Molecular Dynamics Proxy Application: 

–  Molecular dynamics is a low level “higher resolution” material modeling 
approach. 

–  https://github.com/exmatex/CoMD 
•  Types of Force Kernels: 

–  Lenard Jones (L-J) 
–  Embedded Atom Model (EAM) 

•  Code Branches: 
–  Serial (focus for data-parallel) 
–  OpenMP (focus for data & thread parallel) 

•  Loop level implementation  
–  MPI / MPI+OpenMP 

•  Problem Type: 
–  N-Body 

•  Decomposition Type: 
–  Cartesian 

•  Complexity: 
–  O(~n2) 

14 



CoMD –  
Example Application: 
•  An approach to computationally fabricating c-BN via shock-wave 

processing will require modeling a material domain at impact. 
•  Upon impact, the material domain will categorically contain 

multiple activity regions:  
–  Shock Zone – Higher activity region 
–  Transition Zone – Mid activity region 
–  Inert Zone – Low activity region 

•  (chemically/mechanically relatively inactive) 
•  Molecular dynamics is a theoretically feasible approach to 

capturing the underlying physics (the essence) in the 
material’s shock zone. 
–  A relatively higher level mid resolution may be sufficient! 

•  i.e. Crystal plasticity 

15 



CoMD –  
Driver Blue-Print 

Understand View: 
• Infinite call depth: 

• Connectivity of the code 
• Blue-square imply:  

• Subroutines/function/headers 
• Gray-hexagon imply: 

• c-libs 

16 



CoMD - Time Marching: 

Understand View: 
• Infinite call depth 
• Blue Square imply:  

• subroutines/function 
• Gray-hexagon imply: 

• c-libs 

17 



CoMD - Force Kernels: 

18 

Force kernels: 
• EAM: 

• 3-passes 
• LJ: 

• 1-pass 



CoMD – Modernization 
•  Modernization Mindset:  

–  “Cutting Rod Approach” 
–  Optimal substructures 

•  Machine Choice (KNL/64-68cores/4-HT): 
§  Based on Baseline runs 

§  NUMA decomposition(SNC4/SNC2/QUAD) 
§  Memory hierarchy(Flat/Cache) 

•  Modernization Exercise Goals: 
–  Improve Vectorization 
–  Improve Threading 

19 



App Runtime Comparison -   
KNL vs. HSW: 
How?: 

–  TDP is a “useful” metric 
–  It is “Not” an exact science! 
–  Given:  

•  Single-Node KNL  
•  ~200W CPU TDP  

–  Choose HSW with comparable TDP:  
•  Single-Node, Dual-Socket HSW 
•  2x(Intel® Xeon® processor E5-2697v3)  
•  ~2x(145W CPU TDP) 

–  Intel Processor Specs:  
•  ark.intel.com  

20 



21 

CoMD Simulation Details: 
 
KNL: 
§  Intel® Xeon Phi™ Processor 

7210 
§  CoMD on Node performance 
§  Multiple MPI Ranks 
§  Complementary OpenMP Threads 
§  Best Results: 

§  QUAD-Cache 
§  2-Threads 
§  32-Ranks 

§  Comparable Results: 
§  QUAD-Cache 
§  1TH-64R 
§  4TH-16R 

CoMD – Baseline Runs I 



22 

CoMD – Baseline Runs II 
CoMD Simulation Details: 
 
KNL: 
§  Intel® Xeon Phi™ Processor 

7210 
§  CoMD on Node performance 
§  MPI Ranks (16/32/64) 
§  Complementary OpenMP Threads 
§  Best Results: 

§  64-Ranks 
§  32-Ranks 

§  Comparable Results: 
§  QUAD-Cache 
§  1TH-64R 
§  4TH-16R 



CoMD – Baseline Runs III 

23 

CoMD Simulation Details: 
 
KNL: 
§  Intel® Xeon Phi™ Processor 

7210 
HSW - Dual Socket: 
§  Intel® Xeon® Processor 

E5-2697v3  
§  CoMD on Node performance 
§  MPI Ranks  
§  Complementary OpenMP Threads 
§  Best Results: 

§  32-Ranks/2TH 
§  Note: 

§  Oversubscribing 
§  HSW > 2TH 
§  KNL > 4TH 



CoMD – Hotspots  
Intel® Vtune™ Amplifier:  
§ hotspots analysis 

Summary: L-J Force  EAM Force 

% Runtime Per Region Serial: ~ 2% Serial: ~ 1% 

Parallel: ~ 98% Parallel: ~ 99% 

% Per Subroutine Runtime Lenard-
Jones: 

~ 93% EAM: ~ 94% 

Others:  ~ 7% Others:  ~ 6% 

24 

CoMD Performance Profiling: 
 
Intel® Vtune™ Amplifier: 
§  Hotspots kernel 
 
§  Summary: 
CoMD with LJ Force: 
1.  LJ-Force(,,) 
2.  putAtomInBox(,,) 

CoMD with EAM Force: 
1.  EAM-Force(,,) 
2.  sortAtomInCell(,,) 



Build Information: 

Output: 

V&V Information: 

L-J Force –  
Simulation Output: 

25 

CoMD Problem Definition: 
Force Kernel:  
§  Lennard – Jones 
Number of Atoms: 
§  32000 
Number of TimeSteps: 
§  100  
Parallelization: 
§  MPI 
§  OpenMP 



Source Code: CoMD 

LJ-Force Kernel  
Initialization Step  

26 



L-J Force – Baseline: 

Source Code: 
Optimization Report Summary: 
Initialization Step of Baseline Code:  
1.  No vectorization 
2.  Function call in loop:  

•  Line: 160 
•  Function: ”zeroReal3”  

3.  Remainder loop 
4.  Assumed dependence 

27 

Optimization Reports: 
Compiler: 
 
§  Intel 17/up1 



L-J Force:  
Summary of Fix List:  
1.  No vectorization 
2.  Remainder loop 
3.  Assumed dependence 

28 

Fixing Item 1 - “No vectorization”: 
Add:  
“#pragma omp simd” 
Or Add: 
“#pragma omp parallel for simd” 
Why Not?: 
“#pragma simd” 



Source Code After: 

L-J Force:  

29 

Source Code Before: 



Optimization Reports: 

L-J Force:  

30 

Optimization Report Summary: 
“Relative Quality” of Vectorization: 
•  scalar cost   ~16 
•  vector cost   ~10.250 

•  Est. Speed-Up ~1.320 (low) 
Necessary fixes: 

1.  Non-SIMD-Enabled function - “zeroReal3” 

2.  Unaligned access:  
•  “s->atom->U” structure 
•  “s->atom->f” structure  

3.  Non-unit (3) stride store: “s->atom->f” 



L-J Force: 

31 

Fixing Item 1 - “Function call in loop”: 
 
•  Convert “zeroReal3” function: 

§  SIMD-Enabled function 
§  Part 1: Declaration 
§  Part 2: Definition 

OR: 
§  SIMD-Enabled omp function 

§  Part 1: Declaration  
§  Part 2: Definition: 

§  Add “notinbranch” clause 
§  “omp declare simd” directive 

Source Code Before: 

Source Code After: 



L-J Force: 

32 

Aligned Allocation & Free: “memUtils.h”:  

Fixing Item 2 - “Unaligned access”: 
§  Unaligned access:  

–  “s->atom->U” structure 

–  “s->atom->f” structure 

•  How to Align: 

–  Part 1: “_mm_malloc” 

–  Part 2: “_mm_free” 

–  Part 3: “inform compiler” 

•  Before use 



L-j Force: 

Source Code After: 

33 

Fixing Item 3 - “Non-unit stride store - 3”:  
§  Convert So(AoA) to: 

§  SoA_0, SoA_1, SoA_2  

Source Code Before: 



Final Optimization Report: 
1.  All Aligned Access 
2.  No Peel/Remainder Loops 
3.  Relative Vectorization Quality (up ~90%) 

L-J Force: 

34 



Source Code: CoMD 

L-J Force Kernel  
Force Calculation Step  

35 



L-J Force: 

36 

Source Code Summary: 
§  Force Calculation Step: 

§  4 Nested Loops 
§  “omp reduction” on: 

§  “ePot”  
§  Imperfect nested loops  

§  Loop @Line 195 
§  Loop @Line 180-182 

§  2 perfectly nested loops: 
§  Loop @Line 187 
§  Loop @Line 191 

Showing 4 Nested Loops: 



L-J Force: 

37 

Source Code Summary: 
§  Force Calculation Step: 

§  Inner most loop constains: 
§  Sub-Loops @Line 195 
§  Sub-Loops @Line 214  

§  Omp reduction on variable 
§  “ePot”  

Innermost Loop : 



L-J Force: 
Optimization Report Summary: 
1.  No vectorization:  

§  4 Nested-Loops 
2.  Imperfect loop nest 
3.  Assumed flow dependence: 

§  Loop @187 
§  Loop @191 

38 

Optimization Reports: 



L-J Force: 

39 

Optimization Reports: 

1.  Fixing Item 1 – “No vectorization”:  

§  Add “simd” directive to innermost loop 
§  Sub-Loops: 196, 215 get unrolled 

§  Note: 
§  There are 4 nested loops 

Optimization Reports: 



L-J Force: 

40 

Summary of Todo: 
 
1. Align Data & Hint Compiler: 

§  “s->atoms->r” 
§  “s->atoms->f” …done! 

2.  Convert So(AoA) to multiple SoA: 
“s->atoms->r” 
“s->atoms->f” …done! 

 
3. Convert reduction in inner loop on:  

§  “s->atoms->r” to “simd reduction” 
§  “s->atoms->f” to “simd reduction” 
§  Hint: 

§  Introduce summation variable  
§  “sum_R” 
§  “sum_F” 



L-J Force: 

41 

Source Code  
Before: 

Source Code  
After: 



New Output: 

L-J Force – Optimized  

Old Output: 

42 

Performance Report”: 
§  ~40% Speedup in Force Calculation 
§  ~10% Speedup overall 



Source Code After Revision I: 

L-J Force –  
Revision:  

43 

Source Code Before: 

Source Code After Revision II: 



New Output: 

L-J Force – Optimized  

Old Output: 

44 

Revised Performance Report”: 
§  Revised Initialization Step 
§  ~51% Speedup in Force Calculation 
§  ~10% Speedup overall 



Source Code: CoMD 

EAM-Force Kernel  
Force Calculation Step  

45 



EAM Force – Baseline  
Simulation Output: 

46 

Output: 

Problem Definitions: 
• 1Million Particles 
• 100 Time-steps 
• Mpi + OpenMP 

V&V Information: 



EAM Force: 

47 

Summary of Todo List I: 
 
1. Align Data & Hint Compiler: 

§  pot->phi 
§  pot->rho   
§  s->atoms->U 
§  pot->dfEmbed 
§  pot->rhobar 
§  “s->atoms->r” 
§  “s->atoms->f” …done! 

2.  Convert So(AoA) to multiple SoA: 
§  “s->atoms->r” 
§  “s->atoms->f” …done! 

3. Convert reduction in inner loop on:  
§  “s->atoms->r” to “simd reduction” 
§  “s->atoms->f” to “simd reduction” 
§  Hint: 

§  Introduce summation variable  
§  “sum_R” 
§  “sum_F” 



EAM Force: 

48 

Summary of Todo II: 
1.  Convert “interpolate” subroutine to: 
§  SIMD-Enabled function 

§  Part 1: Declaration 

§  Part 2: Definition 

Or: 

§  “omp” SIMD-Enabled function  

§  Part 1: Declaration 

§  Part 2: Definition 

§  “omp declare simd” 
§  “align clause” 
§  “inbranch clause” 



EAM Force: 

49 

Summary of Todo III: 
Hint compiler on alignment “eam.c”: 

1.  “table->values” variable: 
§  @Function  

§  InterpolationObject* 
initInterpolationObject 

1.  “buf” variable: 
§  @Function  

§  void eamReadSetfl  
§  void eamReadFuncfl 



EAM Force: 

50 

Modifications - Initialization step: 
•  Aligned memory allocation 

•  Part 1: “__mm_malloc” 
•  Part 2: “hint compiler” 

•  1X(SoA(oA)) => 3X(SoA) 

Source Code Before: Source Code After: 



EAM Force 

51 

Modifications – Force Calculation Pass I: 
§  Simd reduction 

§  s->atom->U 
§  s->atom->F_(all) 
§  pot->rhobar Source Code Before: 



EAM Force: 

52 

Source Code Before: Source Code After: 

Modifications – Force Calculation Pass II: 
§  Added “pragma simd”  directive 

§  s->atom->U 



EAM Force: 

53 

Source Code Before: 

Source Code After: 

Modifications – Force Calculation Pass III: 
§  Simd reduction: “s->atoms->f(All)” 



 
EAM Force – Optimized:  
 

54 

New Output: 

Performance Report”: 
§  ~27% Speedup in EAM Force kernel 
§  ~28% Speedup overall 

Old Output: 



L-J Force –  
Revision:  

55 

Source Code Before: 

Source Code After Revision II: 



EAM Force – Optimized  

56 

Revised Performance Report”: 
§  Revised Initialization Step 
§  ~40% Speedup in EAM Force Kernel 
§  ~32% Speedup overall 

Old Output: 

New Output: 



Questions & Comments 
?/! 

57 


