
Squeezing More Instructions per Cycle
out of the Intel Sandy Bridge CPU Pipeline

Andrey Vladimirov
Stanford University

for Colfax International

July 31, 2012

Abstract

Parallelism in modern CPU architectures is supported at hardware level by multiple cores, vector registers, and
pipelines. While the utilization of the former two is a shared responsibility of the programmer and the compiler, pipelin-
ing is handled completely by the processor. It is, however, useful for the developer to know what types of workloads
optimize pipeline utilization. This paper shows one example where a specific workload improves the number of in-
structions executed per clock cycle, boosting arithmetic performance. This workload is comprised of two independent
data processing tasks, one performing the AVX addition instruction and the other — the AVX multiplication instruction.
Even though these tasks are executed sequentially on one core, alternating additions and multiplications in the code
allows the CPU to complete the task 40% faster than when a sequence of additions is followed by a sequence of multi-
plications. Such workloads are common in linear algebraic applications. Examples in the paper illustrate how improved
performance can be achieved in portable C code using the Intel C/C++ compiler. Performance benchmarking with the
Intel Vtune Parallel Amplifier is illustrated.

Contents
1 Counting Gigaflops . 2

2 Baseline: consecutive additions and multiplications . 3

3 Additions alternating with multiplications . 5

4 Conclusions . 6

Colfax International (http://www.colfax-intl.com/) is a leading provider of innovative and expertly engineered workstations,
servers, clusters, storage, and personal supercomputing solutions. Colfax International is uniquely positioned to offer the broadest
spectrum of high performance computing solutions, all of them completely customizable to meet your needs - far beyond anything
you can get from any other name brand. Ready-to-go Colfax HPC solutions deliver significant price/performance advantages, and
increased IT agility, that accelerates your business and research outcomes. Colfax International’s extensive customer base in-
cludes Fortune 1000 companies, educational institutions, and government agencies. Founded in 1987, Colfax International is
based in Sunnyvale, California and is privately held.

c© Colfax International, 2012 — http://research.colfaxinternational.com/ 1

http://www.colfax-intl.com
http://research.colfaxinternational.com/

1 COUNTING GIGAFLOPS

1 Counting Gigaflops
The Linpack score of a 2-socket Sandy Bridge E5-2690 system published by Intel1 is 348 GFLOP/s.

The system contains two CPUs, each with 8 cores clocked at 2.90 GHz and supporting AVX instructions. In
double precision, an AVX instruction performs 256/(8*sizeof(double))=4 floating point operations
at once. If one AVX instruction is issued every clock cycle, the theoretical maximum performance of this
system is

16 cores× 256 bits per AVX register/(8× sizeof(double))× 2.90 GHz = 186 GFLOP/s.

Clearly, this estimate is too low to explain the observed performance, which is almost twice greater than the
‘naive’ estimate2. The reason for this discrepancy is in the pipelining functionality of the processor.

The ability of the CPU to complete more than one instruction per cycle depends on the workload. Indeed,
recent Colfax Research publication3 reported the measurements of arithmetic performance on the E5-2680
Sandy Bridge CPU. The performance of double precision AVX addition and multiplication of this system
reported in that paper is 13-14 GFLOP/s per core, which falls short of the observed performance on 16
cores4.

The rest of this paper will illustrate that the number of floating point operations per second can be
improved if SIMD additions are alternated with SIMD multiplications. In other words, the CPU is able to
complete N additions and N multiplications faster if addition instructions are alternated with multiplication
instructions, as opposed to N consecutive addition instructions followed by N consecutive multiplication
instructions.

1http://www.intel.com/content/www/us/en/benchmarks/server/xeon-e5-hpc/xeon-e5-hpc-matrix-multiplication.html
2Note that the Sandy Bridge CPU does not support the fused multiply-add (FMA) instruction.
3http://research.colfaxinternational.com/post/2012/04/30/FLOPS.aspx
4The Linpack score of the E5-2680 system reported in that paper has been corrected. See the addendum to the article at the same

Web address.

c© Colfax International, 2012 — http://research.colfaxinternational.com/ 2

http://www.intel.com/content/www/us/en/benchmarks/server/xeon-e5-hpc/xeon-e5-hpc-matrix-multiplication.html
http://research.colfaxinternational.com/post/2012/04/30/FLOPS.aspx
http://research.colfaxinternational.com/

2 BASELINE: CONSECUTIVE ADDITIONS AND MULTIPLICATIONS

2 Baseline: consecutive additions and multiplications
The code introduced in the CIAO benchmark5 relies on loop tiling in order to increase the arithmetic

intensity of the code and reduce the effect of finite memory bandwidth on the measurement. The function
benchmarking the multiplication operation can be implemented as shown in Figure 1. In order for this
function to be compiled with AVX instructions, the compiler must be run with the argument -xAVX. In all
examples in this code, choosing NBLK=8 seems to result in the best performance. Arrays double xx[m]
and double yy[m] are aligned on a 32-byte boundary using the mm malloc() function.

1 / / R e t u r n s t h e a r i t h m e t i c per formance , i n FLOP / s , o f t h e m u l t i p l i c a t i o n o p e r a t i o n
2 double b e n c h m a r k f l o p s m u l (c o n s t i n t m, c o n s t i n t nswp ,
3 double∗ r e s t r i c t xx , double∗ r e s t r i c t yy){
4
5 c o n s t double t s t a r t = omp get wt ime () ;
6 f o r (i n t s =0 ; s<nswp ; s ++) {
7 #pragma simd
8 #pragma v e c t o r a l i g n e d
9 f o r (i n t i =0 ; i<m; i ++)

10 f o r (i n t r =0 ; r<NBLK; r ++) {
11 yy [i] ∗= xx [i] ;
12 }
13 }
14 c o n s t double t e n d = omp get wt ime () ;
15
16 re turn (double) nswp ∗ (double)m∗ (double)NBLK∗ (double)NSTR / (tend− t s t a r t) ;
17 }

Figure 1: Benchmarking the performance of the vector multiplication operation. This C code relies on the automatic vectorization
functionality of the Intel compiler to produce SIMD instructions in the executable. #pragma simd instructs the compiler
to automatically vectorize the i-loop. The constant NBLK must be known at compile time in order for the compiler to unroll
the r-loop. The return value of this function is the number of double precision floating point multiplications performed per
second.

The assembly code produced by the Intel compiler for the body of the i-loop in Figure 1 is shown in
Figure 2. It is evident that vectorization has been successful, and the CPU will issue 8 sequential AVX
multiplication instructions. But how well will this code perform?

1 vmovupd (%r14 ,% rax , 8) , %ymm7
2 vmulpd (%r12 ,% rax , 8) , %ymm7, %ymm0
3 vmulpd %ymm7, %ymm0, %ymm1
4 vmulpd %ymm7, %ymm1, %ymm2
5 vmulpd %ymm7, %ymm2, %ymm3
6 vmulpd %ymm7, %ymm3, %ymm4
7 vmulpd %ymm7, %ymm4, %ymm5
8 vmulpd %ymm7, %ymm5, %ymm6
9 vmulpd %ymm7, %ymm6, %ymm8

10 vmovupd %ymm8, (%r12 ,% rax , 8)

Figure 2: Assembly code for the body of the i-loop in line 9 of Figure 1. This code is generated by the Intel compiler using automatic
vectorization. The assembly code was multiversioned, and VTune (see below) was used to identify the assembly lines that
were used used when the benchmark was running.

Running the multiplication code (Figure 1) with parameters m=25 and nswp=226 on a single core of
the E5-2680 CPU resulted in a performance of 13.6 GFLOP/s for the AVX multiplication operation. The

5http://research.colfaxinternational.com/post/2012/04/30/FLOPS.aspx

c© Colfax International, 2012 — http://research.colfaxinternational.com/ 3

http://research.colfaxinternational.com/post/2012/04/30/FLOPS.aspx
http://research.colfaxinternational.com/

2 BASELINE: CONSECUTIVE ADDITIONS AND MULTIPLICATIONS

double precision addition operation was also benchmarked using a similar code, where the operator “*=” is
replaced with “*=”. The addition operation was clocked at 13.7 GFLOP/s.

The code was also analyzed using the Intel Vtune Parallel Amplifier in the Lightweight Hotspots mode.
This tool collects profiling information with hardware-based event sampling. In this case, let us consider
only two events: Instructions Retired and Cycles Unhalted. The ratio of the latter to the former is known as
CPI, the cycles per instruction ratio. This ratio is the inverse of IPC (instructions per cycle), and a CPI of
1.0 means that one instruction is issued in every clock cycle. CPI is often used as a cumulative performance
metric: high values of CPI indicate that the code performs sub-optimally, which may be caused by execution
stalls due to cache misses, branch mispredictions, and other undesirable effects. While a CPI of 1.0 is
generally considered adequate performance, today’s Intel CPU are able to achieve even lower values of CPI
by utilizing pipelines to issue more than one instruction per cycle.

Figure 3: Summary of the Lightweight Hotspots profile for the multiplication benchmark shown in Figure 1 with m=25 and nswp=226.
Profiling was performed in Intel VTune Amplifier XE.

The result of the Lightweight Hotspots analysis of the code in Figure fig-mul is shown in Fig-
ure 3. Note that the measured value of CPI is 0.611, and the elapsed time of the benchmark with m=25
and nswp=226 is 5.057 s. While this metric can be generally considered as good performance, Section 3
shows that with a different workload, the performance in terms of GFLOP/s and CPI can be improved.

c© Colfax International, 2012 — http://research.colfaxinternational.com/ 4

http://research.colfaxinternational.com/

3 ADDITIONS ALTERNATING WITH MULTIPLICATIONS

3 Additions alternating with multiplications
In Section 2, the performance of individual addition and multiplication SIMD instructions was bench-

marked. Section 3 considers a workload in which independent additions and multiplications are alternated.
The code representing this workload is shown in Figure 4.

1 double b e n c h m a r k f l o p s a d d m u l (c o n s t i n t m, c o n s t i n t nswp ,
2 double∗ r e s t r i c t xx1 , double∗ r e s t r i c t yy1 ,
3 double∗ r e s t r i c t xx2 , double∗ r e s t r i c t yy2){
4
5 c o n s t double t s t a r t = omp get wt ime () ;
6 f o r (i n t s =0 ; s<nswp ; s ++) {
7 #pragma simd
8 #pragma v e c t o r a l i g n e d
9 f o r (i n t i =0 ; i<m; i ++)

10 f o r (i n t r =0 ; r<NBLK; r ++) {
11 yy1 [i]+= xx1 [i] ;
12 yy2 [i]∗= xx2 [i] ;
13 }
14 }
15 c o n s t double t e n d = omp get wt ime () ;
16
17 re turn (double) nswp ∗ (double)m∗ (double)NBLK∗ 2 . 0 / (tend− t s t a r t) ;
18 }

Figure 4: Benchmarking the performance of the vector multiplication operations alternated with vector addition operations. Note the
factor 2.0 in the return value of the function, which accounts for the fact that every iteration of the r-loop performs two
independent instructions: one addition and one multiplication. See the caption of Figure 1 for more information.

The assembly code produced by the compiler for the body of the r-loop in Figure 4 is shown in Fig-
ure 5. Note how the AVX addition instruction vmulpd is alternated with the AVX multiplication instruction
vaddpd.

1 vmovupd (%r14 ,% r s i , 8) , %ymm0
2 vmovupd (%r12 ,% r s i , 8) , %ymm14
3 vmulpd (%r15 ,% r s i , 8) , %ymm0, %ymm2
4 vaddpd (%r13 ,% r s i , 8) , %ymm14 , %ymm1
5 vmulpd %ymm0, %ymm2, %ymm4
6 vaddpd %ymm14 , %ymm1, %ymm3
7 vmulpd %ymm0, %ymm4, %ymm6
8 vaddpd %ymm14 , %ymm3, %ymm5
9 vmulpd %ymm0, %ymm6, %ymm8

10 vaddpd %ymm14 , %ymm5, %ymm7
11 vmulpd %ymm0, %ymm8, %ymm10
12 vaddpd %ymm14 , %ymm7, %ymm9
13 vmulpd %ymm0, %ymm10 , %ymm12
14 vaddpd %ymm14 , %ymm9, %ymm11
15 vmulpd %ymm0, %ymm12 , %ymm1
16 vaddpd %ymm14 , %ymm11 , %ymm13
17 vmulpd %ymm0, %ymm1, %ymm0
18 vaddpd %ymm14 , %ymm13 , %ymm15
19 vmovupd %ymm0, (%r15 ,% r s i , 8)
20 vmovupd %ymm15 , (%r13 ,% r s i , 8)

Figure 5: Assembly code for the body of the i-loop in line 10 of Figure 4.

In order to benchmark the addition/multiplication code, parameter m was chosen as 24 (i.e., one half of
the value for the multiplication benchmark), and nswp was chosen as 226 (the same value as for the multi-

c© Colfax International, 2012 — http://research.colfaxinternational.com/ 5

http://research.colfaxinternational.com/

4 CONCLUSIONS

plication benchmark). With these parameters, the size of the problem and the total number of floating point
operations are the same in this benchmark and the previous one. Running the benchmark yields a perfor-
mance of 19.1 GFLOP/s, which is 40% greater than 13.6–13.7 GFLOP/s measured for individual additions
and multiplications. This means that alternating independent addition and multiplication instructions allows
the CPU to utilize the pipeline hardware more efficiently.

This result is further confirmed by the Lightweight Hotspots analysis in VTune. The result of the profil-
ing run is shown in Figure 6.

Figure 6: Summary of the Lightweight Hotspots profile for the multiplication benchmark shown in Figure 4 with m=24 and nswp=226.
Profiling was performed in Intel VTune Amplifier XE.

Notably, the number of the Instructions Retired events in the second benchmark is comparable to that
counter in the first benchmark; however, the calculation took only 3.621 s instead of 5.093 s, and a lower
(i.e., better) CPI of 0.488 was achieved.

4 Conclusions
The case presented in this paper shows here that alternating additions and multiplications are a more

favorable workload for the Sandy Bridge E5 series processor than a stream of additions or a stream of mul-
tiplications. Naturally, such a workload is highly important for linear algebraic calculations. The Linpack
score for this CPU reported in the literature would not be achievable if this pipelining functionality was not
exploited in BLAS routines.

In general, arithmetic code optimization on a multi-core system involves a number of methods for which
the developer is responsible, including: minimizing synchronization and communication in order to improve
scalability across multiple cores; implementing SIMD vectorization with unit-stride data access; maintain-
ing data locality in order to increase memory bandwidth through cache utilization, and other. However,
even when the developer produces a code that delivers a near-optimal execution environment for the CPU’s
arithmetic units, performance still depends on the inner workings of the pipeline. The developer has no
direct control over the CPU pipeline. At the same time, the developer can indirectly assist the pipelining
mechanism by designing the code in a way that delivers a favorable workload to the CPU.

Acknowledgements
I thank Prof. Torben Larsen of Aalborg University, Denmark, for a helpful email discussion that lead to

the publication of this paper.

Please visit http://research.colfaxinternational.com/ to learn more about the Colfax
Research project, comment on this article, and subscribe for updates.

c© Colfax International, 2012 — http://research.colfaxinternational.com/ 6

http://personprofil.aau.dk/101317
http://www.en.aau.dk/
http://research.colfaxinternational.com/
http://research.colfaxinternational.com/

	Counting Gigaflops
	Baseline: consecutive additions and multiplications
	Additions alternating with multiplications
	Conclusions

