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Abstract

Intel R© Xeon Phi
TM

coprocessors are capable of delivering more performance and better energy efficiency than
Intel R© Xeon R© processors for certain parallel applications1. In this paper, we investigate the porting and optimization of
a test problem for the Intel Xeon Phi coprocessor. The test problem is a basic N-body simulation, which is the foundation
of a number of applications in computational astrophysics and biophysics. Using common code in the C language for
the host processor and for the coprocessor, we benchmark the N-body simulation. The simulation runs 2.3x to 5.4x times
faster on a single Intel Xeon Phi coprocessor than on two Intel Xeon E5 series processors. The performance depends on
the accuracy settings for transcendental arithmetics. We also study the assembly code produced by the compiler from the
C code. This allows us to pinpoint some strategies for designing C/C++ programs that result in efficient automatically
vectorized applications for Intel Xeon family devices.
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1 WHAT INTEL XEON PHI COPROCESSORS BRING TO THE TABLE

1 What Intel Xeon Phi coprocessors bring to the table
Intel Xeon Phi coprocessor is a symmetric multiprocessor in the form factor of a PCI express device.

Intel’s James Reinders has defined the purpose of Intel Xeon Phi coprocessors in the following way2: “Intel
Xeon Phi coprocessors are designed to extend the reach of applications that have demonstrated the ability
to fully utilize the scaling capabilities of Intel Xeon processor-based systems and fully exploit available
processor vector capabilities or memory bandwidth.” It cannot be used as a stand-alone processor. However,
up to eight Intel Xeon Phi coprocessors can be used in a single chassis3. Each coprocessor features more
than 50 cores clocked at 1 GHz or more, supporting 64-bit x86 instructions. The exact number of cores
depends on the model and the generation of the product. These in-order cores support four-way hyper-
threading, resulting in more than 200 logical cores. Cores of Intel Xeon Phi coprocessors are interconnected
by a high-speed bidirectional ring, which unites L2 caches of the cores into a large coherent aggregate cache
over 25 MB in size. The coprocessor also has over 6 GB of onboard GDDR5 memory. The speed and energy
efficiency of Intel Xeon Phi coprocessors comes from its vector units. Each core contains a vector arithmetics
unit with 512-bit SIMD vectors supporting a new instruction set called Intel Initial Many-Core Instructions
(Intel IMCI). The Intel IMCI include, among other instructions, the fused multiply-add, reciprocal, square
root, power and exponent operations, commonly used in physical modeling and statistical analysis. The
theoretical peak performance of an Intel Xeon Phi coprocessor is 1 TFLOP/s in double precision. This
performance is achieved at the same power consumption as in two Intel Xeon processors, which yield up to
300 GFLOP/s.

In order to completely utilize the full power of Intel Xeon Phi coprocessors (as well as Intel Xeon-based
systems), applications must utilize several levels of parallelism:

1. task parallelism in distributed memory to scale an application across multiple coprocessors or multiple
compute nodes,

2. task parallelism in shared memory to utilize more than 200 logical cores,

3. and at last, but definitely not the least, — data parallelism to employ the 512-bit vector units.

The novelty of developer experience in Intel Xeon Phi coprocessor is the continuity of the programming
model between Xeon processor and Xeon Phi coprocessor programming:

1. The same C, C++ or Fortran code can be compiled into applications for Intel Xeon processors and
Intel Xeon Phi coprocessors. Cross-platform porting is possible with only code re-compilation;

2. The same parallel frameworks are supported by the Intel Xeon and Intel Xeon Phi architectures. MPI
can be used to scale in distributed or shared memory with Intel Xeon Phi coprocessors acting as in-
dividual cluster nodes. OpenMP, Intel Cilk Plus, Intel Threading Building Blocks, and other shared
memory frameworks can be used to split the work homogeneously between the processor or copro-
cessor cores. The Intel Math Kernel Library provides highly optimized standard functions for both
platforms.

3. The same software development tools can be used for both platforms: Intel compilers, Intel VTune
Parallel Amplifier XE to profile and optimize the applications, Intel Debugger and Intel Inspector to
diagnose critical and logical issues.

4. Similar optimization methods benefit applications on both platforms.

We were fortunate to have early access to Intel Xeon Phi coprocessors. Porting scientific applications to
the new architecture has taught us that, even though there are some differences in the architecture of Intel
Xeon processors and Intel Xeon Phi coprocessors, it is a general rule that similar methods of optimization
benefit both architectures. In this paper, we will share some of the optimization practices that we found
effective, and demonstrate their impact on the performance of both architectures. Our starting point is an
unoptimized parallel implementation of the general N-body problem. Then we use unit-stride vectorization
in order to improve performance. Finally, we relax the floating point arithmetics accuracy control and gain
additional speed-up, without sacrificing the code simplicity.

2http://software.intel.com/sites/default/files/blog/337861/reindersxeonandxeonphi-v20121112a.pdf
3http://www.prweb.com/releases/2012/11/prweb10124930.htm
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2 N-BODY SIMULATION: BASIC ALGORITHM

2 N-body simulation: basic algorithm
The N-body simulation refers to the computational problem of solving the equations of motion of grav-

itationally or electrostatically interacting particles. These problems are used in astrophysics to model the
motion of self-gravitating systems, such as planetary systems, galaxies and cosmological structures, and in
molecular physics to model the dynamics of complex molecules and atomic structures.

The general form of particle-particle interaction in N-body problems is given by Equation (1):

~Fi = KCi

∑

j 6=i

Cj

~Rj − ~Ri

|~Rj − ~Ri|3
. (1)

Here ~Ri are the position vectors of particles. This equation expresses ~Fi, the force on particle i exerted
by all other particles. The interaction has inverse-square dependence on distance, i.e., the magnitude of the
force exerted by particle j on particle i is inversely proportional to the square of the distance between these
particles, |~Rj − ~Ri|. For the gravitational N-body problem, the coupling K is given by the gravitational
constant G ≈ 6.674 · 10−11 m3 kg−1 s−2, and the individual terms Ci and Cj are the mass, in kilograms,
for the i-th and j-th particle, respectively. For electrostatical problems K is the Coulomb constant ke ≈
8.988 · 109 N m2 C−2 (in the International System of Units, or SI) and the individual terms Ci and Cj are
the i-th and j-th charges in Coulombs, respectively.

We assume that all particle masses or charges have the same value: Ci = Cj . It is trivial to extend
our analysis to the case when C differs from particle to particle. Without loss of generality, we can assume
K = 1 and Ci = 1. Indeed, it is always possible to choose a system of units in which this is true. In the
following expressions, ~R, ~V and t are scaled quantities in this special system of units, rather than in SI.

Using the forward Euler method for the integration of differential equations, we can express the compo-
nents of particle velocity ~vi at the end of the simulation time step ∆t as

vx, i(t + ∆t) = vx, i(t) + ∆t
∑

j 6=i

(xj − xi)

[(xj − xi)2 + (yj − yi)2 + (zj − zi)2]
3
2

, (2)

vy, i(t + ∆t) = vy, i(t) + ∆t
∑

j 6=i

(yj − yi)

[(xj − xi)2 + (yj − yi)2 + (zj − zi)2]
3
2

, (3)

vz, i(t + ∆t) = vz, i(t) + ∆t
∑

j 6=i

(zj − zi)

[(xj − xi)2 + (yj − yi)2 + (zj − zi)2]
3
2

, (4)

and the coordinates at the end of the time step as

xi(t + ∆t) = xi(t) + vx, i(t + ∆t)∆t, (5)
yi(t + ∆t) = yi(t) + vy, i(t + ∆t)∆t, (6)
zi(t + ∆t) = zi(t) + vz, i(t + ∆t)∆t. (7)

The quantities shown here are the particle coordinates and the components of particle velocities, i.e., the

position vector ~Ri ≡ (xi, yi, zi) and the velocity vector ~̇Ri = ~Vi ≡ (vx, i, vy, i, vz, i).
Algorithm (2)–(7) may be familiar to some readers from applications other than astrophysics or bio-

physics: this algorithm is used as a test workload in some software development kits. Note that this algo-
rithm is not particularly efficient nor accurate enough for practical large-scale simulations. This algorithm
has a computational complexity of O

(
N2
)

and employs the forward Euler scheme, which is only first-order
accurate in time, and unstable for large time steps. In practical scientific applications, the calculation of grav-
itational force on each particle is usually performed with tree algorithms, such as the Barnes-Hut method.
Tree algorithms can reduce the computational complexity to O (N logN). In order to solve the equations of
motion, explicit or implicit Runge-Kutta methods may be used instead of the forward Euler scheme. These
methods can improve the accuracy to fourth order in time and greatly expand the algorithm stability range.
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3 UNOPTIMIZED N-BODY SIMULATION IN THE C LANGUAGE

Figure 1: Snapshot of the N-body simulation visualization. The full video is available on Colfax’s YouTube channel at the following
URL: http://www.youtube.com/embed/KxaSEcmkGTo?rel=0.

In this paper, do not discuss advanced algorithms, so as not to distract the reader from the main focus of
this study: the exploration of performance optimization on Intel Xeon Phi coprocessors. However, the code
design and optimization methods discussed in this paper also apply to advanced algorithms used in practice.
For instance, in the Barnes-Hut method, the space is split into zones, and in order to calculate the force on
particle i, distant zones are approximated as a single massive particle, while interactions in the local zone
are calculated using the O(N2) algorithm discussed here.

3 Unoptimized N-body simulation in the C language
We implemented algorithm (2)–(7) as a code in the C language. The code nbody-1.c is shown in

Listing 1. This listing is full in the sense that it compiles, runs, and produces the benchmark information.
However, it uses a trivial setup for initial condition, has no output facilities, does not perform visualization,
and is limited to only one shared-memory compute device. These limitations are necessary to fit the code
on one page and make it easily readable.

The code is parallelized in shared memory using the OpenMP framework. The outer for-loop over
index i calculates the force acting on each particle and changes the particle momentum in response to that
force. The iteration space of this loop is distributed across multiple threads by #pragma omp.

The inner for-loop over index j calculates the force acting on particle i. This loop is not parallelized
across multiple threads, however, it uses parallelism on another level. At the default optimization level, the
compiler will attempt to automatically vectorize this loop in order to use SIMD parallelism. The opportunity
for SIMD (single instruction, multiple data) parallelism is obvious here: for every set of x, y and z, the
calculation of variables dx, dy, dz, drSquared and drPowerN32 can be performed independently
using the same sequence of operations. The compiler indeed vectorizes the j-loop in nbody-1.c, which
can be verified by using the compiler argument -vec-report3.
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3 UNOPTIMIZED N-BODY SIMULATION IN THE C LANGUAGE

1 #include <math.h>
2 #include <mkl_vsl.h>
3 #include <omp.h>
4 #include <stdio.h>
5

6 struct ParticleType { float x, y, z, vx, vy, vz; };
7

8 int main(const int argc, const char** argv) {
9 const int nParticles = 30000, nSteps = 10; // Simulation parameters

10 const float dt = 0.01f; // Particle propagation time step
11 // Particle data stored as an array of structures
12 ParticleType* particle = (ParticleType*) malloc(nParticles*sizeof(ParticleType));
13

14 // Initialize particles
15 VSLStreamStatePtr rnStream; vslNewStream( &rnStream, VSL_BRNG_MT19937, 1 );
16 vsRngUniform(VSL_RNG_METHOD_UNIFORM_STD, rnStream, 6*nParticles, (float*)particle, -1.0f, 1.0f);
17

18 // Propagate particles
19 printf("Propagating particles using %d threads...\n", omp_get_max_threads());
20 double rate = 0.0, dRate = 0.0; // Benchmarking data
21 const int skipSteps = 1; // Skip first iteration is warm-up on Xeon Phi coprocessor
22 for (int step = 1; step <= nSteps; step++) {
23 const double tStart = omp_get_wtime(); // Start timing
24

25 #pragma omp parallel for schedule(dynamic)
26 for (int i = 0; i < nParticles; i++) { // Parallel loop over particles that experience force
27 float Fx = 0.0f; float Fy = 0.0f; float Fz = 0.0f; // Components of force on particle i
28

29 for (int j = 0; j < nParticles; j++) { // Vectorized loop over particles that exert force
30 if (j != i) {
31 // Newton’s law of universal gravity calculation.
32 const float dx = particle[j].x - particle[i].x;
33 const float dy = particle[j].y - particle[i].y;
34 const float dz = particle[j].z - particle[i].z;
35 const float drSquared = dx*dx + dy*dy + dz*dz;
36 const float drPowerN32 = 1.0f/(drSquared*sqrtf(drSquared));
37

38 // Reduction to calculate the net force
39 Fx += dx * drPowerN32; Fy += dy * drPowerN32; Fz += dz * drPowerN32;
40 }
41 }
42 // Move particles in response to the gravitational force
43 particle[i].vx += dt*Fx; particle[i].vy += dt*Fy; particle[i].vz += dt*Fz;
44 }
45 for (int i = 0 ; i < nParticles; i++) { // Not much work, serial loop
46 particle[i].x += particle[i].vx*dt;
47 particle[i].y += particle[i].vy*dt;
48 particle[i].z += particle[i].vz*dt;
49 }
50

51 const double tEnd = omp_get_wtime(); // End timing
52 if (step > skipSteps) // Collect statistics
53 { rate += 1.0/(tEnd - tStart); dRate += 1.0/((tEnd - tStart)*(tEnd-tStart)); }
54 printf("Step %d: %.3f seconds\n", step, (tEnd-tStart));
55 }
56 rate/=(double)(nSteps-skipSteps); dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
57 printf("Average rate for iterations %d through %d: %.3f +- %.3f steps per second.\n",
58 skipSteps+1, nSteps, rate, dRate);
59 free(particle);
60 }

Listing 1: Unoptimized N-body simulation, nbody-1.c, discussed in Section 4.
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3 UNOPTIMIZED N-BODY SIMULATION IN THE C LANGUAGE

We must also point out the data structure chosen for the code. Each particle is represented by an object
of derived type ParticleType. This type is a structure containing the coordinates of the particle and its
velocity components. This kind of data structure is not the best representation for optimization purposes, as
we will see below. However, we demonstrate the results with this data layout because we have seen similar
configurations in real-world codes written with the object-oriented paradigm in mind.

The procedure for compiling and running this code using the Intel software development tools is shown
in Listing 2. We use the compiler argument -std=c99 in order to enable some abbreviated C syntax,
-openmp to enable pragma-directed parallelization in OpenMP, and -mkl to link the Intel Math Kernel
Library (Intel MKL) for random number generation. This listing also demonstrates the performance result.
The performance is measured on the Colfax CX2265i-XP5 server4 with two eight-core Intel Xeon E5-2680
(Sandy Bridge) processors clocked at 2.7 GHz (3.5 GHz Turbo frequency). We set the number of particles
N = 30000 for benchmarks in this paper. The performance metric for N = 30000 is T = 0.122 seconds
per step (8.2 steps per second).

andrey@dublin$ icc -std=c99 -openmp -mkl -o nbody-1 nbody-1.c
andrey@dublin$ ./nbody-1
Propagating particles using 32 threads...
Step 1: 0.136 seconds
Step 2: 0.124 seconds
Step 3: 0.122 seconds
Step 4: 0.122 seconds
Step 5: 0.122 seconds
Step 6: 0.122 seconds
Step 7: 0.122 seconds
Step 8: 0.122 seconds
Step 9: 0.122 seconds
Step 10: 0.123 seconds
Average rate for iterations 2 through 10: 8.178 +- 0.049 steps per second.
andrey@dublin$

Listing 2: Compiling and running nbody-1.c (Listing 1) on the host system.

In order to estimate the efficiency of this code, we compare the number of arithmetic operations to
the number of CPU clock cycles elapsed in the course of one simulation step. The number of arithmetic
operations per iteration of the j-loop can be estimated by counting the arithmetic operations in the loop
body, and this number is no less than A = 15 (counting multiply-add as two operations). At least one of
these operations is transcendental: the square root. The number of CPU clock cycles issued by two E5-2680
processors per second is no greater than C = 2×8×3.5 ·109 = 5.6 ·1010. Here 8 is the number of physical
cores per processor, and 3.5 ·109 Hz is the Turbo clock frequency of the processor. We use the upper limit of
the clock frequency in order to estimate the maximum number of clock cycles. Therefore, our conservative
estimate for the minimum efficiency (the number of operations per cycle) is

OPC & A ·N2

C · T =
15 · (30000)2

5.6 · 1010 · 0.122
= 1.98. (8)

There are two reasons why this number greater than 1, even though one of the operations is a long-latency
transcendental instruction. First, Intel Xeon processors are able to issue up to two instructions per cycle
thanks to their deep instruction pipeline. Second, they use SIMD instructions in order to perform some
arithmetic operations on multiple numbers at once. The latter is possible due to the automatic vectorization
functionality of the Intel C compiler.

4http://www.colfax-intl.com/xeonphi/CX2265i-XP5.html

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 6



4 N-BODY SIMULATION AS A NATIVE INTEL XEON PHI APPLICATION

4 N-body simulation as a native Intel Xeon Phi application
Intel Xeon Phi coprocessors run a Linux operating system and can execute native applications. Native

applications for Intel Xeon Phi coprocessors are not binary compatible with Intel Xeon processors. Native
execution is not the only method to employ the coprocessor. Offload models and hybrid MPI jobs may
be more suitable for more complex applications. However, because our interest here is the evaluation of
performance and optimization methods, we restrict the discussion to native execution.

In order to produce an executable for the coprocessor, the code must be compiled with the flag -mmic.
After compilation, in order to run the application on the Intel Xeon Phi coprocessor, the executable must be
copied to the coprocessor file system. Sometimes, additional libraries must be copied to the coprocessor or
NFS-shared with it. In the case of the N-body simulation nbody-1.c, some Intel MKL and Intel OpenMP
library files must be transferred to the coprocessor. We do not show the file transfer process, because it is
trivially performed using the secure copy Linux tool scp.

The procedure for compiling and running the N-body simulation on the Intel Xeon Phi coprocessor is
shown in Listing 3. Note that it is possible to simplify and shorten the procedure (for example, using the tool
micnativeloadex); however, we use a longer procedure in order to demonstrate the Linux functionality
of Intel Xeon Phi coprocessors. Indeed, we transfer the file using the secure copy tool scp, log in to the
coprocessor system using ssh, and run commands on the coprocessor from the shell.

andrey@dublin$ icc -std=c99 -openmp -mkl -mmic -o nbody-1-mic nbody-1.c
andrey@dublin$ scp nbody-1-mic mic0:˜/
nbody-1-mic 100% 217KB 217.2KB/s 00:00
andrey@dublin$ ssh mic0
andrey@dublin-mic$ ./nbody-1-mic
Propagating particles using 228 threads...
Step 1: 0.349 seconds
Step 2: 0.117 seconds
Step 3: 0.116 seconds
Step 4: 0.117 seconds
Step 5: 0.117 seconds
Step 6: 0.117 seconds
Step 7: 0.117 seconds
Step 8: 0.117 seconds
Step 9: 0.116 seconds
Step 10: 0.117 seconds
Average rate for iterations 2 through 10: 8.568 +- 0.021 steps per second.
andrey@dublin-mic$ exit
andrey@dublin$

Listing 3: Compiling and running nbody-1.c (Listing 1) on the Intel Xeon Phi coprocessor.

Benchmark shows that we gain some performance by simply recompiling the code and running it on
the coprocessor: the simulation takes T = 0.117 seconds per step (8.6 steps per second). However, the
performance gain is only of order 5%. Before discussing why the speedup using the simple recompilation is
not higher, we estimate the number of instructions per cycle achieved on the coprocessor.

We were using an engineering sample of the Intel Xeon Phi coprocessor, SKU B1QS-3115A. It has 57
active cores clocked at 1.1 GHz. They issue a total of 57 × 1.1 · 109 = 6.3 · 1010 instructions per second.
Therefore, the number of arithmetic operations per cycle achieved on the coprocessor is

OPC & A ·N2

C · T =
15 · (30000)2

6.3 · 1010 · 0.117
= 1.22. (9)

The coprocessor uses SIMD parallelism as well. However, this application is less efficient on the coprocessor
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5 OPTIMIZATION: UNIT-STRIDE VECTORIZATION

than on the host processor, especially considering that SIMD vector registers on Intel Xeon Phi coprocessors
are 512 bits wide, compared to the 256-bit AVX registers on Xeon E5 processors. The reason that we not
achieve significantly better performance on the Intel Xeon Phi coprocessor is discussed in Section 5.

5 Optimization: unit-stride vectorization
The key to unlocking the performance of Intel Xeon Phi coprocessors is exploiting thread parallelism

in combination with data parallelism. We recompiled a thread-parallel N-body simulation for Intel Xeon
Phi coprocessors. However, the performance gain was unimpressive, even though vectorization was au-
tomatically implemented by the compiler. Because the thread parallel portion of the application is trivial
(it involves no synchronization), we must inspect what we are doing with the data parallel portion of the
application.

A close inspection of the inner j-loop in Listing 1 shows that the data access pattern is lacking a
very important property. This property is unit-stride data access. Indeed, consider using the quantity
particle[j].x. Suppose that a processor core or a coprocessor core is trying to perform a data-parallel
computation for iterations j=0 through j=15. In order to apply a vector instruction to the operation dx
= particle[j].x - particle[i].x, the core must load particle[0].x, particle[1].x,
. . . , particle[15].x into a vector register, which is a 512-byte contiguous region of the register file.
However, the loaded data are not contiguous in the application memory space! The distance between
particle[0].x and particle[1].x is equal to sizeof(ParticleType)=24 bytes. This data
access pattern is inefficient. In each memory access, the core loads not one byte, but a whole cache line,
which is 64 bytes wide. In order to load the x-coordinate for iterations j=0 and j=1, the core must either
load the same cache line twice, or load two different cache lines. This incurs unnecessary instructions, cache
misses, and breaks down the streamlined data access pattern. A much more convenient data access pattern
is unit-stride access, where scalars from consecutive iterations are contiguous in memory. This allows the
core to load a whole 64 bytes of data from memory (or cache) into the vector register in a single instruction.
This corresponds to loading particle[0].x through particle[15].x in just one memory access.

In order to have unit-stride access in the N-body simulation, the data storage structure must be re-
designed. As a rule of thumb, programmers should use structures of arrays instead of array of structures in
order to achieve unit-stride access. This often is in conflict with the interests of abstraction or object-oriented
programming. However, failure to provide a good data layout to a multi-core or a many-core parallel pro-
cessor may result in a very significant performance loss.

Listing 4 shows an optimized implementation of the N-body simulation. In this new code, we store
all x-, y- and z-components of particle coordinates and velocities as arrays, and we bundle the six arrays
together as a structure of type ParticleSystemType. In the inner j-loop, data access pattern now has
unit stride. Indeed, p.x[0] and p.x[1] are contiguous in memory. If data alignment is correct, the
coprocessor core can load p.x[0] through p.x[15] into the vector register with a single memory access.
Unit-stride data layout also simplifies the task of pre-fetching particle data from memory into caches. Even
if the alignment of data does place p.x[0] at the beginning of the cache line, the compiler will implement a
code path that peels off a few iterations at the beginning of the loop, and still uses aligned memory accesses
in the bulk of the iteration space. The peeled off iterations are executed with scalar instructions (i.e., without
vectorization).

Listing 5 demonstrates the performance results on the host processors and on the Intel Xeon Phi copro-
cessor. This time, the performance on the host is 11.5 steps per second, and on the coprocessor 29.5 steps
per second. Compared to the unoptimized version, we achieved 40% greater performance on the host and
140% greater performance on the coprocessor. Furthermore, the coprocessor version performs 2.3x faster
than the host version. This is a very significant speedup, considering that two Intel Xeon processors have
roughly the same power envelope as a single Intel Xeon Phi coprocessor.

We can tap even more performance from the coprocessor by relaxing the requirements of arithmetic
accuracy. Section 6 describes this optimization.
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5 OPTIMIZATION: UNIT-STRIDE VECTORIZATION

1 #include <math.h>
2 #include <mkl_vsl.h>
3 #include <omp.h>
4 #include <stdio.h>
5

6 struct ParticleSystemType { float *x, *y, *z, *vx, *vy, *vz; };
7

8 int main(const int argc, const char** argv) {
9 const int nParticles = 30000, nSteps = 10; // Simulation parameters

10 const float dt = 0.01f; // Particle propagation time step
11 ParticleSystemType p; // Particle system stored as a structure of arrays
12 float *buf = (float*) malloc(6*nParticles*sizeof(float)); // Malloc all data
13 p.x = buf+0*nParticles; p.y = buf+1*nParticles; p.z = buf+2*nParticles;
14 p.vx = buf+3*nParticles; p.vy = buf+4*nParticles; p.vz = buf+5*nParticles;
15

16 // Initialize particles
17 VSLStreamStatePtr rnStream; vslNewStream( &rnStream, VSL_BRNG_MT19937, 1 );
18 vsRngUniform(VSL_RNG_METHOD_UNIFORM_STD, rnStream, 6*nParticles, buf, -1.0f, 1.0f);
19

20 // Propagate particles
21 printf("Propagating particles using %d threads...\n", omp_get_max_threads());
22 double rate = 0.0, dRate = 0.0; // Benchmarking data
23 const int skipSteps = 1; // Skip first iteration is warm-up on Xeon Phi coprocessor
24 for (int step = 1; step <= nSteps; step++) {
25 const double tStart = omp_get_wtime(); // Start timing
26

27 #pragma omp parallel for schedule(dynamic)
28 for (int i = 0; i < nParticles; i++) { // Parallel loop over particles that experience force
29 float Fx = 0.0f; float Fy = 0.0f; float Fz = 0.0f; // Components of force on particle i
30

31 for (int j = 0; j < nParticles; j++) { // Vectorized loop over particles that exert force
32 if (j != i) {
33 // Newton’s law of universal gravity calculation.
34 const float dx = p.x[j] - p.x[i];
35 const float dy = p.y[j] - p.y[i];
36 const float dz = p.z[j] - p.z[i];
37 const float drSquared = dx*dx + dy*dy + dz*dz;
38 const float drPowerN32 = 1.0f/(drSquared*sqrtf(drSquared));
39

40 // Reduction to calculate the net force
41 Fx += dx * drPowerN32; Fy += dy * drPowerN32; Fz += dz * drPowerN32;
42 }
43 }
44 // Move particles in response to the gravitational force
45 p.vx[i] += dt*Fx; p.vy[i] += dt*Fy; p.vz[i] += dt*Fz;
46 }
47 for (int i = 0; i < nParticles; i++) { // Not much work, serial loop
48 p.x [i] += p.vx[i]*dt; p.y [i] += p.vy[i]*dt; p.z [i] += p.vz[i]*dt;
49 }
50

51 const double tEnd = omp_get_wtime(); // End timing
52 if (step > skipSteps) // Collect statistics
53 { rate += 1.0/(tEnd - tStart); dRate += 1.0/((tEnd - tStart)*(tEnd-tStart)); }
54 printf("Step %d: %.3f seconds\n", step, (tEnd-tStart));
55 }
56 rate/=(double)(nSteps-skipSteps); dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
57 printf("Average rate for iterations %d through %d: %.3f +- %.3f steps per second.\n",
58 skipSteps+1, nSteps, rate, dRate);
59 free(buf);
60 }

Listing 4: Optimized N-body simulation with unit stride data access, nbody-2.c, discussed in Section 5.
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5 OPTIMIZATION: UNIT-STRIDE VECTORIZATION

andrey@dublin$ # First, compile and run the optimized simulation on host processors
andrey@dublin$ icpc -openmp -mkl -o nbody-2 nbody-2.c
andrey@dublin$ ./nbody-2
Propagating particles using 32 threads...
Step 1: 0.099 seconds
Step 2: 0.090 seconds
Step 3: 0.086 seconds
Step 4: 0.090 seconds
Step 5: 0.086 seconds
Step 6: 0.087 seconds
Step 7: 0.086 seconds
Step 8: 0.086 seconds
Step 9: 0.086 seconds
Step 10: 0.088 seconds
Average rate for iterations 2 through 10: 11.473 +- 0.211 steps per second.
andrey@dublin$
andrey@dublin$ # Now compile and run a native version for Xeon Phi coprocessors
andrey@dublin$ icc -std=c99 -openmp -mkl -mmic -o nbody-2-mic nbody-2.c
andrey@dublin$ scp nbody-2-mic mic0:˜/
nbody-1-mic 100% 217KB 217.2KB/s 00:00
andrey@dublin$ ssh mic0
andrey@dublin-mic$ ./nbody-2-mic
Propagating particles using 228 threads...
Step 1: 0.262 seconds
Step 2: 0.034 seconds
Step 3: 0.034 seconds
Step 4: 0.034 seconds
Step 5: 0.034 seconds
Step 6: 0.034 seconds
Step 7: 0.034 seconds
Step 8: 0.034 seconds
Step 9: 0.034 seconds
Step 10: 0.034 seconds
Average rate for iterations 2 through 10: 29.502 +- 0.260 steps per second.
andrey@dublin-mic$ exit
andrey@dublin$

Listing 5: Compiling and running nbody-2.c (Listing 4) on the host system and on the Intel Xeon Phi coprocessor.
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6 OPTIMIZATION: ACCURACY CONTROL

6 Optimization: accuracy control
The N-body simulation shown in Listing 4 is bottlenecked by the reciprocal square root transcendental

function. When the code is compiled as shown in Listing 5, the compiler invokes an Intel Short Vector
Math Library (Intel SVML) implementation of this function. It is easy to verify this using the Intel VTune
amplifier. We performed the Lightweight hotspots analysis of the N-body simulation on the coprocessor.
The simulation was running it for 1000 steps instead of 10 in order to reduce the impact of the initialization
overhead on the cumulative event counts. The result is shown in Figure 2, where the summary panel indicates
that almost a half of the CPU time is spent inside the function svml invsqrtf16.

Figure 2: Profiling results on the coprocessor of the code shown in Listing 4 with 1000 iterations.

For arithmetically intensive codes involving transcendental arithmetics such as this N-body simulation,
accuracy control may have a significant effect on the performance of Intel Xeon Phi coprocessors. The Intel
IMCI instruction set contains special implementations for certain transcendental functions. These transcen-
dental vector instructions can be used if some of the IEEE 754 floating point arithmetics requirements can be
safely ignored in the application. This results in a performance boost compared to the IEEE 754-compliant
implementations of transcendental functions in the Intel SVML.

In the case of the N-body simulation, only one additional step one is required in order to yield addi-
tional performance with non-IEEE 754 compliant arithmetics. That step is adding the compiler argument
-fimf-domain-exclusion=8. This argument declares that we are not interested in accurately pro-
cessing denormal numbers. Denormal floating point numbers represent values around zero that result in
underflow with normal numbers. In this special class of numbers, one or more leading bits of the mantissa
are zero. The result of this optimization is seen in Listing 6. This time, the host system performs 11.6 steps
per second, but the coprocessor performs 62.9 steps per second, which is 5.4x as fast.

More information about accuracy control on Intel Xeon Phi coprocessors can be found in the online
publication “Advanced Optimizations for Intel MIC Architecture, Low Precision Optimizations” by Wendy
Doerner5.

5http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture-low-precision-optimizations
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7 UNDER THE HOOD: ASSEMBLY LISTING OF AUTOMATICALLY VECTORIZED CODE

andrey@dublin$ # First, compile and run the optimized simulation on host processors
andrey@dublin$ icpc -openmp -mkl -fimf-domain-exclusion=8 -o nb-2a nbody-2.c
andrey@dublin$ ./nb-2a
Propagating particles using 32 threads...
Step 1: 0.104 seconds
Step 2: 0.097 seconds
Step 3: 0.085 seconds
Step 4: 0.085 seconds
Step 5: 0.085 seconds
Step 6: 0.085 seconds
Step 7: 0.085 seconds
Step 8: 0.085 seconds
Step 9: 0.085 seconds
Step 10: 0.085 seconds
Average rate for iterations 2 through 10: 11.604 +- 0.446 steps per second.
andrey@dublin$
andrey@dublin$ # Now compile and run a native version for Xeon Phi coprocessors
andrey@dublin$ icpc -openmp -mkl -fimf-domain-exclusion=8 -mmic -o nb-2a-mic nbody-2.c
andrey@dublin$ scp nb-2a-mic mic0:˜/
nb-2-a-mic 100% 217KB 217.2KB/s 00:00
andrey@dublin$ ssh mic0
andrey@dublin-mic$ ./nb-2a-mic
Propagating particles using 228 threads...
Step 1: 0.254 seconds
Step 2: 0.016 seconds
Step 3: 0.016 seconds
Step 4: 0.016 seconds
Step 5: 0.016 seconds
Step 6: 0.016 seconds
Step 7: 0.016 seconds
Step 8: 0.016 seconds
Step 9: 0.016 seconds
Step 10: 0.016 seconds
Average rate for iterations 2 through 10: 62.944 +- 0.963 steps per second.
andrey@dublin-mic$ exit

Listing 6: Compiling and running nbody-2.c (Listing 4) on the host system and on the Intel Xeon Phi coprocessor with relaxed
floating point arithmetics accuracy.

7 Under the hood: assembly listing of automatically vectorized code
In this section we will discuss the assembly listing produced by the compiler for the N-body simula-

tion. This discussion demonstrates the optimization methods used by Intel compilers. The knowledge of
this “under-the-hood” activity may be helpful for designing performance-critical applications in high-level
programming languages. We consider the assembly for the native Intel Xeon Phi application compiled from
the code shown Listing 4 with arithmetic precision relaxed as described in Section 6.

It is possible to produce a file with the complete assembly listing by compiling the code with the argu-
ment -S. It is usually difficult to figure out from the assembly listing alone which lines correspond to the
performance critical part of the code. This is because the compiler usually produces multiple versions of
some loops. These multiple versions handle different problem sizes N and different runtime memory align-
ment situations. For example, the compiler may produce a scalar version of the loop, which is executed if
the problem size is too small for vectorization. The compiler may also be prepared peel off several iterations
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7 UNDER THE HOOD: ASSEMBLY LISTING OF AUTOMATICALLY VECTORIZED CODE

at the beginning or end of the loop if the loop count is not a multiple of the vector register size, or if the
memory address of the first data element is not aligned on a proper boundary. However, with the help of the
Intel VTune Amplifier XE tool, it is possible to measure the number of CPU clock cycles spent executing
each line of code. This information reveals the code paths that are taken at runtime.

Figure 3 shows two screenshots from the Vtune Amplifier XE interface. These screenshots contain the
most computationally intensive part of the code, which is the body of the j-loop. The listing shown in
Figure 3 reveals a number of capabilities of the Intel C compiler:

a) There are two distinct blocks of assembly (blocks 41 and 95 in the screenshots) in which the code
spends roughly equal amounts of time. These two blocks are produced in order to deal with the branch
“if (j != i)” in the j-loop. One block executes vectorized calculation from the beginning of the
loop to some point close to the condition (j == i). The other block executes the remainder of the
loop. This allows the compiler to avoid checking for the branch condition in every iteration, and to
employ vector instructions.

b) In order to handle the “if (j != i)” condition, and also in order to enable arbitrary values of
N, the compiler implements peeling. Peeling is the separation of the first or last few iterations at the
beginning or the end of the loop. This procedure is performed in order to (a) work with a loop with the
number of iterations equal to a multiple of the vector register capacity, and (b) work with data arrays
beginning at a properly aligned memory address.

c) The compiler inserts prefetch instructions, e.g., code location 0x4031e0 uses vprefetch1. These
instructions request the transfer of data from memory into caches, or from a higher-level cache to a
lower-level cache. The prefetch distance, i.e., how many loop iterations in advance the prefetch must
be issued, is calculated by the compiler automatically.

d) Vector instructions are used by the compiler in the vectorized part of the code. For example, code loca-
tion 0x403208 shows a SIMD subtraction instruction from the Intel IMCI instruction set vsubps.

e) The compiler is capable of aggregating arithmetic expressions in order to use optimized vector instruc-
tions. For example, code location 0x403233 shows a fused multiply-add instruction vfmadd231ps
corresponding to the code line 37. Another example is code location 0x403246, where instruction
vrsqrt23ps is used. That instruction calls the SIMD calculation of the reciprocal square root of its
argument. Note that after that instruction, two multiplication instructions vmulps are issued to multi-
ply . They calculate the value of drPowerN32 = 1.0f/(drSquared*sqrtf(drSquared));.
The compiler replaced three instructions: square root, multiplication and reciprocal, with three more
efficient operations: reciprocal square root and two multiplications.

f) Reduction is implemented by the compiler in an intelligent manner. Code locations 0x403258,
0x40325e and 0x403264 show that the compiler accumulates the data for the reduction of variables
Fx, Fy and Fz in vector registers, and these vector registers are reduced into scalars at the end of the
loop calculations. Reduction to scalars is not shown in these screen shots.

All of the above optimizations indicate that the Intel compiler makes complex and effective decisions in
the process of automatic vectorization and optimization of calculations for MIC architecture. In practice, the
performance of the automatically vectorized code is very impressive. The applications for Xeon processors
and for MIC architecture compiled from a common source code do reach the limits of the capabilities of
both platforms. This fact is manifested in much better performance of the N-body calculation on Intel Xeon
Phi coprocessors compared to the host system.

However, it is the responsibility of the programmer to produce a high-level language code that the com-
piler can optimize. This involves the design of data layout that allows for unit-stride access. Data locality
in space and time is generally also helpful and can be improved by the use of tiling or cache-oblivious re-
cursive algorithms. Additionally, we find that the programmer must be careful with the types and precision
of variables, constants and functions. For example, the usage of sqrtf() instead of sqrt() is very im-
portant in the N-body simulation. The function sqrtf() calls a highly optimized single precision square
root function. Likewise, constants in single precision should be marked with the letter “f” (for example,
“1.0f”), otherwise they will be treated as double precision numbers. Variables of different types should
not be mixed in arithmetic expressions, because type casts can be expensive.
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7 UNDER THE HOOD: ASSEMBLY LISTING OF AUTOMATICALLY VECTORIZED CODE

Figure 3: Assembly listing of code nbody-2.cwith relaxed arithmetics compiled for native execution on Intel Xeon Phi coprocessors
(see Section 6 for details of the code and Section 7 for a discussion of the assembly listing).
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8 CONCLUSIONS

8 Conclusions
Figure 4 summarizes the performance results for the three cases considered in this publication:

1) Unoptimized parallel code with non-unit stride data access,

2) Optimized parallel code with unit-stride data access, and

3) Optimized parallel code with unit-stride data access and relaxed accuracy of arithmetics.

Unoptimized
Code

Unit-stride
Access

Accuracy
Control

0

10

20

30

40

50

60

S
te

p
s 

p
e
r 

se
co

n
d
 (

h
ig

h
e
r 

is
 b

e
tt

e
r)

8.2
11.5 11.6

8.6

29.5

62.9

N-body simulation performance with N=30000

Two Intel(R) Xeon(R) E5-2680 processors
One Intel(R) Xeon Phi(TM) B1QS-3115A coprocessor

Figure 4: Summary of performance measurements of the N-body simulation for cases discussed in Sections 4, 5 and 6.

Parallelism is an essential requirement for good performance on Intel Xeon Phi coprocessors. Task
parallelism must be exploited simultaneously with vector parallelism. Vector instructions can be efficiently
implemented by the compiler as long as the data structure and memory access patterns are favorable. This
includes data locality and unit-stride data access in vectorized loops.

The Intel C++ compiler can implement multiple execution paths in order to handle various data align-
ment situations in automatically vectorized codes. It is also able to deal with reduction and low-granularity
branches in vectorized loops. In the case considered in this paper, no additional code or compiler arguments
are necessary in order to enable efficient automatic vectorization. These capabilities of the compiler make it
possible to develop highly efficient applications without low-level programming.

The N-body simulation in the form presented here is a good learning case for programming models
and optimization for Intel Xeon Phi coprocessors. In addition to native execution demonstrated here, the
offload model can also be used. The offload model allows to easily scale this calculation across multiple
coprocessors. One picture is worth a thousand words. View the demonstration of the N-body simulation on
multiple coprocessors on Colfax’s YouTube channel (see also Figure 1).
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Abstract

This addendum addresses an optimization that was not included in the original paper. Using the compiler argument
-xAVX or -xhost, the performance of the simulation on the host can be accelerated by a factor of 1.7x.

Colfax International (http://www.colfax-intl.com/) is a leading provider of innovative and expertly engineered workstations,
servers, clusters, storage, and personal supercomputing solutions. Colfax International is uniquely positioned to offer the broadest
spectrum of high performance computing solutions, all of them completely customizable to meet your needs - far beyond anything
you can get from any other name brand. Ready-to-go Colfax HPC solutions deliver significant price/performance advantages, and
increased IT agility, that accelerates your business and research outcomes. Colfax International’s extensive customer base in-
cludes Fortune 1000 companies, educational institutions, and government agencies. Founded in 1987, Colfax International is
based in Sunnyvale, California and is privately held.
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Addendum
For the N-body simulation reported in the original publication1, we used Intel Xeon E5-2680 processors,

which support the AVX instruction set. This instruction set improves some of the SSE instructions by using
256-bit vector registers instead of 128-bit registers. However, in the original version of the paper, we did not
use the argument -xhost or -xAVX, and, as a result, the host code was compiled with SSE instructions
instead of AVX.

In this addendum, we report improved results obtained by using the compiler arguments -xhost and
-O3. The latter has a minor effect on performance. However, -xhost improves the speed of the host ap-
plication by a factor of 1.7x. Correspondingly, the ratio of the performance of an Intel Xeon Phi coprocessor
to the performance of two Intel Xeon E5 processors is 3.7x.

Figure 1 shows the performance metrics of the simulation on the host system and on the coprocessor.
Compared to the original version of the paper, these benchmarks use a more recent SKU of the coprocessor,
B1QS-5110P, and a more recent compiler, Intel C++ Composer XE version 13.1.1.163. The last set of bars
reflects the performance with the argument -xhost.

Figure 2 reveals the the effect of the argument -xhost on the result of compilation. The top panel shows
the analysis in the Intel VTune Parallel Amplifier XE of the code compiled without -xhost. According to
the assembly listing (shown in the right-hand side of the figure), the reciprocal square root is calculated using
the instruction rsqrtps, which is a SIMD instruction of the SSE instruction set. In contrast, the bottom
panel shows the analysis of the code compiled with -xhost. Instead of rsqrtps, the AVX instruction
vrsqrtps is used there.

Additional information on the argument -xcode can be found in the Intel C++ Compiler XE 13.1 User
and Reference Guides2 and in an earlier Colfax Research publication “Auto-Vectorization with the Intel
Compilers: is Your Code Ready for Sandy Bridge and Knights Corner?”3.

Thanks to Georg Hager4 for spotting the missing argument -xAVX5!
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Figure 1: Summary of performance measurements of the N-body simulation.

1http://research.colfaxinternational.com/post/2013/01/07/Nbody-Xeon-Phi.aspx
2http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-lin/index.htm
3http://research.colfaxinternational.com/post/2012/03/12/AVX.aspx
4http://blogs.fau.de/hager/
5http://goparallel.sourceforge.net/test-driving-intel-r-xeon-phitm-coprocessors-with-a-basic-n-body-simulation/
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Without -xhost, the SSE instruction rsqrtps is used:

With -xhost, the AVX instruction vrsqrtps is used:

Figure 2: Performance analysis in the Intel VTune Parallel Amplifier tool reveals the instructions implemented by the Intel C++ com-
piler without and with the argument -xhost.
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