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Abstract

Statically-linked libraries are used in business and academia for security, encapsulation, and convenience rea-
sons. Static libraries with functions offloadable to Intel Xeon Phi coprocessors must contain executable code for
both the host and the coprocessor architecture. Furthermore, for library functions used in data-parallel contexts,
vectorized versions of the functions must be produced at the compilation stage.

This white paper shows how to design and build statically-linked libraries with functions offloadable to Intel
Xeon Phi coprocessors. In addition, it illustrates how special functions with scalar syntax

(
e.g., y = f(x)

)
can be

implemented in such a way that user applications can use them in thread- and data-parallel contexts. The second part
of the paper demonstrates some optimization methods that improve the performance of functions with scalar syntax
on the multi-core and the many-core platforms: precision control, strength reduction, and algorithmic optimizations.
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1 INTRODUCTION

1 Introduction
For highly parallel applications, Intel Xeon Phi coprocessors yield better performance and energy

efficiency than the latest generation Intel Xeon CPUs with similar energy consumption. Intel Xeon
Phi coprocessors are based on the Many Integrated Core (MIC) architecture featuring over 50 cores
with four-way hyper-threading and 512-bit wide vector registers. A theoretical peak performance of
1 TFLOP/s in double precision can be achieved in applications for Intel Xeon Phi coprocessors if both
thread parallelism data parallelism in the form of SIMD (Single Instruction for Multiple Data) operations
are utilized in the application.

A large subset of applications that can benefit from the MIC architecture are problems in which a
significant amount of computing time is spent on the evaluation of the values of special functions of one
or several variables:

y = f(x, y, z, . . . ), (1)

where the function must be computed for an array of argument values:

yi = f(xi, yi, zi, . . . ), i ∈ 0 . . . N. (2)

Routines of this type are used in grid-based and Monte Carlo calculations in which the values of quanti-
ties on the grid or in the random set of points are expressed via

a) special mathematical functions, such as exponential integrals, gamma functions, Bessel functions,
hypergeometric functions, and other,

b) analytical fits to experimental trends: particle reaction cross sections, radiation spectra, statistical
distributions, empirical laws etc.,

c) solutions of differential equations (for example, the Black-Scholes formula [1]), or

d) approximations of complex functional dependencies (e.g., asymptotic expansions).

In applications that apply these routines to calculate multiple scalar arguments in an array, the developer
can take advantage of a parallel framework such as OpenMP and of the automatic vectorization capability
of the Intel compiler to parallelize the calculation across all available resources as outlined in Listing 1.

1 // Declaration, implementation and usage of SomeFunction() are all in the same source file
2 float SomeFunction(const float arg) {
3 // ...
4 }
5

6 float* x= ...
7 float* y= ...
8

9 // This loop may be automatically vectorized by the compiler,
10 // because the compiler sees the code of the body of SomeFunction()
11 #pragma omp parallel for
12 #pragma simd
13 for (int i = 0; i < N; i++)
14 y[i] = SomeFunction(x[i]);

Listing 1: Layered thread and data parallelism in the calculation of SomeFunction() for an array of arguments x[]. This code
can be automatically vectorized by the Intel compiler.

In Listing 1, the loop that calls SomeFunction() on an array of arguments is automatically dis-
tributed across multiple threads as requested by #pragma omp. Additionally, #pragma simd re-
quests automatic vectorization, i.e., that the compiler packs multiple consecutive values of the array ele-
ments into a SIMD register, and simultaneously runs all SIMD vector lanes through SomeFunction(),
thus layering data parallelism with thread parallelism. Automatic vectorization may or may not work,
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1 INTRODUCTION

depending on the operations in the the function. However, the very possibility of automatic vectorization
in this case relies on the visibility of the code of this function to the compiler.

In some cases, for convenience or security reasons, or for commercial distribution, the developer may
wish to place SomeFunction() into a statically-linked library. In this scenario, the application that
calls SomeFunction() (the user application) is implemented in a separate file. As a consequence,
the compiler will refuse to vectorize the loop in the user application, because the source code of the
library function is not visible in this case. The failure of vectorization may penalize the application
performance by up to a factor of 16x on the MIC architecture and by up to 8x on a multi-core processor.
However, special measures can be taken in order to forewarn the compiler of the possibility of automatic
vectorization of SomeFunction() at the time that the library is compiled. This may allow to vectorize
the function call in the user application.

Additionally, if the library is used in applications running on a Intel Xeon Phi coprocessor in the
offload mode, the library archive must contain functions compiled for the MIC architecture. Otherwise,
when the offload point is reached, the user application will fail with a runtime error.

This white paper demonstrates step-by-step the process of creation of a static library with two re-
quirements:

a) Library functions must be executable from user applications running on an Intel Xeon Phi copro-
cessor in the offload mode, and

b) Automatic vectorization must succeed in user applications that execute library functions with
scalar syntax on an array of arguments.

This process is demonstrated in Section 2. After that, in Section 3, we demonstrate some of the opti-
mization practices for functions with scalar syntax designed for the Intel Xeon family processors. Our
optimizations enable the library function that we implemented as an educational example to perform
on par with the highly optimized Intel’s implementation. This leads to a discussion in Section 4 of
programming in a high level language compared to the usage of inline assembly or intrinsics.
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2 BUILDING AND USING A STATIC LIBRARY WITH OFFLOADABLE FUNCTIONS

2 Building and using a static library with offloadable functions

2.1 Example: the Gauss error function
The objective of this paper is to show how to create static libraries of special functions of one or

several scalar variables, which can be used in the offload model for calculations on Intel Xeon Phi co-
processors. To illustrate the process, we will create a library implementation of the Gauss error function,
which is a function of one variable. We chose this function because a highly optimized implementation
of the error function is provided in the Intel Math Library. Therefore, it is convenient to use Intel’s im-
plementation erff() to estimate the accuracy of our implementation and to compare its performance
to a highly optimized implementation.

The definition of the Gauss error function [2], commonly denoted as erf(x), is defined by Equa-
tion (3). It is a special (i.e., non-elementary) function occurring in probability, statistics, and partial
differential equations:

erf(x) =
2√
π

∫ x

0

e−t2 dt. (3)

To calculate the value of the Gauss error function for argument x, our library implementation uses a
rational approximation given by Abramowitz and Stegun [4]:

erf(x) ≈ 1−
(
a1t+ a2t

2 + a3t
3 + a4t

4 + a5t
5
)
e−x2

,

where t =
1

1 + px
,

p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736,
a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429.

(4)

This approximation accurately
(
with a maximum error ε ≤ 1.5×10−7

)
represents the non-negative part

of the Gauss error function. And since the error function is an odd function, the following property is
used to calculate erf(x) for negative values of the argument:

erf(−x) = −erf(x). (5)

The plots of the Gauss error function defined by Equation (3) and the rational approximation without
the correction of negative side defined by Equation (4) are shown in Figure 1.
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Figure 1: The Gauss error function (solid red line) and the rational approximation (4) (dashed blue line).
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2 BUILDING AND USING A STATIC LIBRARY WITH OFFLOADABLE FUNCTIONS

The implementation of the Gauss error function via a rational approximation is discussed in detail
in Section 2.2. At the moment we assume that a scalar version of this function MyErfScalar() is
already implemented in a library and can be called from the user application Driver.cpp. Listing 2
demonstrates how the values of the Gauss error function can be calculated for arguments from the array
fIn[] in a parallel OpenMP environment:

1 #pragma omp parallel for
2 for ( int i = 0; i<lTotal; i++)
3 fOut[i] = MyErfScalar(fIn[i]);

Listing 2: Schematic code illustrating the usage of MyErfScalar(), a rational approximation of the Gauss error function.

In order to offload the execution of this loop to the Intel Xeon Phi coprocessors we need to specify
additional pragmas, as discussed in the next section.

2.2 Offloading functions to a coprocessor
The library that we are constructing consists of two files: MyLib.h, which contains the declaration

of the only function in the library (the Gauss error function), and MyLib.cpp, which contains the
implementation of the function.

We intend to use this library in the offload mode, i.e., the application is launched on the host, but
at some point it transfers some data and code to the coprocessor and uses the MIC architecture to per-
form a part of the calculation. Because the instruction sets for the host CPU and for Intel Xeon Phi
coprocessors are different, the compiler must compile the code of the offloaded function twice: once
for the host, and another time for the coprocessor. In order to instruct the compiler to do so, two
lines should be used: #pragma offload attribute(push, target(mic)) and #pragma
offload attribute(pop). These two lines should enclose the implementation and the declaration
of the function as shown in Figures 3 and 4.

1 #pragma offload_attribute(push, target(mic))
2

3 #include <math.h>
4

5 float MyErfScalar(const float inx){
6

7 const float x = fabs(inx);
8

9 const float p = 0.3275911;
10 const float t = 1/(1+p*x);
11 const float t2 = pow(t, 2);
12 const float t3 = pow(t, 3);
13 const float t4 = pow(t, 4);
14 const float t5 = pow(t, 5);
15

16 const float res = 1.0 - (0.254829592*t - 0.284496736*t2 + 1.421413741*t3 -
17 1.453152027*t4 + 1.061405429*t5) * exp(-x*x);
18

19 return copysign(res, inx);
20 }
21

22 #pragma offload_attribute(pop)

Listing 3: Unoptimized source code file MyLib.cpp with the implementation of the function MyErfScalar().
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1 #ifndef _MYLIB_H_
2 #define _MYLIB_H_
3

4 #pragma offload_attribute(push, target(mic))
5 float MyErfScalar(const float inx);
6 #pragma offload_attribute(pop)
7

8 #endif

Listing 4: Unoptimized header file MyLib.h with the declaration of the Gauss error function MyErfScalar().

The function implementation in Figure 3 has a number of flaws that prevent it from achieving good
performance. These flaws are corrected in Section 3. However, at this point, the code in Figure 3 is a
straightforward translation of Equation (4).

The function MyErfScalar() can be used in a user application running on the host and in an
application running on the coprocessor in the offload mode as shown in Listing 5. In order to offload the
calculation to a coprocessor, #pragma offload should be used.

1 #include "MyLib.h"
2

3 void RunOnHost(){
4 float* fIn = ... // Allocation and initialization of data
5 float* fOut = ...
6 #pragma omp parallel for
7 for ( int i = 0; i<lTotal; i++ )
8 fOut[i] = MyErfScalar(fIn[i]);
9 }

10

11 void RunOnCoprocessor(){
12 #pragma offload target(mic:0)
13 {
14 float* fIn = ... // Allocation and initialization of data
15 float* fOut = ...
16 #pragma omp parallel for
17 for ( int i = 0; i<lTotal; i++ )
18 fOut[i] = MyErfScalar(fIn[i]);
19 }
20 }
21

22 int main() {
23 ...
24 }

Listing 5: User application Driver.cpp, which calls the Gauss error function MyErfScalar() declared in MyLib.h.

The line #pragma offload target(mic:0) indicates that at runtime, the code following
it should be offloaded to the first Intel Xeon Phi coprocessor (zero-based numbering system). If the
coprocessor number is not specified, and several Intel Xeon Phi coprocessors are installed in the system,
then the runtime offload library may choose any coprocessor for the offload execution. If no coprocessors
are present, the code in the scope of #pragma offload is still executed, but the application runs on
the host. This is another reason why the compiler must compile the code twice when the offload attribute
is applied to a function.

In this example, we allocate and initialize the data used by the function on the coprocessor. In cases
when some data must be transferred between the host and the coprocessor, the data transfer pattern must
be included in the clauses of this pragma as described in the Intel C++ Compiler XE 13.1 User and
Reference Guide [3].
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2 BUILDING AND USING A STATIC LIBRARY WITH OFFLOADABLE FUNCTIONS

2.3 Building a static library with offloadable code
Libraries with offloadable code are built similarly to libraries with host-only code. First, all source

codes should be compiled into object files as shown in Listing 6.

vadim@skynet% icpc -c -o MyLib.o MyLib.cpp
vadim@skynet% ls
MyLib.cpp MyLib.h MyLibMIC.o MyLib.o

Listing 6: Using the Intel C++ compiler to create object file MyLib.o for the host architecture and MyLibMIC.o for the MIC
architecture. The latter file is created automatically when some of the objects in the source code are marked with the
offload attribute.

After the compilation of MyLib.cpp, two additional files appear: MyLib.o, which is the object
file with the host code, and MyLibMIC.o, which is the object file with the coprocessor code. The
latter file was created because the function in MyLib.cpp is marked with the offload attribute (see
Section 2.2).

When a static library is built, both the host and the coprocessor code must be packed into the library
archive. The tool xiar, which comes with Intel C++ Composer XE, should be used to achieve this. The
syntax of xiar’s command line arguments is similar to the syntax of the standard tool ar commonly
used to create static libraries in Linux. Namely, common ar tool options can be used to d (Delete), r
(Replace), m (Move), and x (Extract) static library components. However, to add the offloadable code,
the argument -qoffload-build should be added (this argument is not supported by ar). It tells
xiar to create both versions of static library: libMyLib.a for the host CPU, and the corresponding
libMyLibMIC.a with offloadable code. For all manipulations with the static library, only the original
name of the library should be provided. xiar automatically manipulates the corresponding coprocessor
library and member filenames.

The process of library creation is shown in Listing 7. In our case, the library contains only one object
file. For libraries with multiple object files, the names of the files should be listed at the end of xiar’s
arguments, separated by spaces.

vadim@skynet% icpc -c -o MyLib.o MyLib.cpp
...

vadim@skynet% xiar cru -qoffload-build libMyLib.a MyLib.o
xiar: executing ’ar’
xiar: executing ’ar’
vadim@skynet% ls lib*
libMyLib.a libMyLibMIC.a

Listing 7: Using the Intel C++ compiler to create the object file and xiar to archive it into a static library libMyLib.a.

2.4 Using the library functions
Now with the source code file of the library MyLib.cpp compiled and archived into a static li-

brary libMyLib.a, we can call the Gauss error function from Driver.cpp as shown in Listing 5.
When linking a static archive that contains offloadable code, the standard linker options -L<path> and
-l<libname> should be used to provide the information about the library location and its name. The
compiler automatically incorporates the corresponding coprocessor library (libMyLibMIC.a) at the
linking phase. Listing 8 shows the procedure for the compilation of the application and linking it with
the static library libMyLib.a that we have just created.
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2 BUILDING AND USING A STATIC LIBRARY WITH OFFLOADABLE FUNCTIONS

vadim@skynet% icpc -c -openmp -vec-report6 -o Driver.o Driver.cpp
Driver.cpp(8): (col. 17) remark: vectorization support: call to function _Z11MyErfScalarf
cannot be vectorized.
Driver.cpp(7): (col. 5) remark: loop was not vectorized: existence of vector dependence.
Driver.cpp(18): (col. 12) remark: vectorization support: call to function _Z11MyErfScalarf
cannot be vectorized.
Driver.cpp(17): (col. 7) remark: loop was not vectorized: existence of vector dependence.
Driver.cpp(18): (col. 12) remark: *MIC* vectorization support: call to function
_Z11MyErfScalarf cannot be vectorized.
Driver.cpp(17): (col. 7) remark: *MIC* loop was not vectorized: existence of vector
dependence.
vadim@skynet% icpc -o runme -openmp Driver.o -lMyLib -L.

Listing 8: Compilation of Driver.cpp and linking the object file with the library program with the static library libMyLib.a.
The resulting executable is not vectorized, as seen from the report generated by -vec-report6 flag.

When the program Driver.cpp is compiled and linked with the library libMyLib.a, the result-
ing executable uses the offloadable function MyErfScalar() on an Intel Xeon Phi coprocessor in a
parallel OpenMP context. However, according to the compilation report requested by the compiler flag
-vec-report6, this code is not automatically vectorized.

Vectorization is crucial for computationally expensive calculations, especially on Intel Xeon Phi co-
processors. The loops in lines 7 and 17 of Listing 5 are not vectorized, because the library MyLib.cpp
and the user application Driver.cpp are compiled separately. Vectorized form of the function is not
produced during the compilation of MyLib.cpp, and the code of the function is not visible to the com-
piler when it processes the loops in Driver.cpp. In the next section we demonstrate how to enable
automatic vectorization through the use of a language construct known as elemental functions.

2.5 Vectorization and elemental functions
Any C/C++ scalar function of one variable, which describes operations only on a singe data ele-

ment, or several independent scalar elements, which have no interdependencies, can be declared as an
elemental function using the qualifier attribute ((vector)):

1 __attribute__((vector)) float MyElementalFunction(const float x, ...);

An elemental function can be called as a regular function to operate on a single scalar element:

1 float y = MyElementalFunction(x, ...);

or used in a loop that expresses a data-parallel computation:

1 float x[n], y[n];
2 for (int i = 0; i < n; i++)
3 y[i] = MyElementalFunction(x[i], ...);

or it can be used with array notation supported by the Intel C++ compiler:

1 float x[n], y[n];
2 y[0:n] = MyElementalFunction(x[0:n], ...);

The benefit of using an elemental function in these cases that the compiler may be able to automatically
vectorize the loop or the expression with elemental notation, even though the source code of the function
is not visible at the time of compilation. The resulting vectorized code uses SIMD operations. That
means that several consecutive values from array x[] are loaded into a vector register, and all opera-
tions in the function MyElementalFunction are performed on each element of that vector register
concurrently. The Intel C++ compiler can generate a short vector form of elemental function using AVX
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vector operations (256-bit wide) for Intel Xeon processors and IMCI vector operations (512-bit wide)
for Intel Xeon Phi coprocessors.

The vector attribute accepts clauses in the format attribute ((vector(clauses))) [5]
in order to clarify the pattern of the usage of the function arguments in a parallel context. The clauses of
the vector attribute take the following values:

– processor(cpuid) requests compilation for a specific processor architecture;

– vectorlength(n) specifies the SIMD vector length, which should be equal to a power of 2;

– vectorlengthfor(datatype) provides information about the data type used (datatype
should be one of the built-in types: int, float, double, etc.);

– linear(scalar:inc) helps the compiler to optimize consecutive increase/decrease of vari-
able scalar by value inc at every step;

– uniform(param) indicates that the same value of param is used across the parallel context;

– [no]mask generates a [non-]masked vector version of the routine.

Using these clauses, the compiler may be able to optimize the executable code more efficiently.
In order to enable automatic vectorization in the library libMyLib.a, the error function must be

declared as elemental. This must be done in the function implementation in file MyLib.cpp, as well as
in the header file MyLib.h, as shown in Listings 9 and 10.

1 #ifndef _MYLIB_H_
2 #define _MYLIB_H_
3

4 #pragma offload_attribute(push, target(mic))
5 __attribute__((vector)) float MyErfElemental(const float inx);
6 #pragma offload_attribute(pop)
7

8 #endif

Listing 9: Optimized header file MyLib.h with the declaration of the Gauss error function implementation as an elemental func-
tion MyErfElemental(). Compare to Listing 4.

1 __attribute__((vector)) float MyErfElemental(const float inx){
2

3 const float x = fabs(inx);
4

5 const float p = 0.3275911;
6 const float t = 1/(1+p*x);
7 const float t2 = pow(t, 2);
8 const float t3 = pow(t, 3);
9 const float t4 = pow(t, 4);

10 const float t5 = pow(t, 5);
11

12 const float res = 1.0 - (0.254829592*t - 0.284496736*t2 + 1.421413741*t3 -
13 1.453152027*t4 + 1.061405429*t5) * exp(-x*x);
14

15 return copysign(res, inx);
16 }

Listing 10: Optimized source code file MyLib.cpp uses the vector attribute to declare an elemental implementation of the Gauss
error function. Compare to Listing 3.

To use the vectorized form within the user application (Driver.cpp), special #pragma simd
should be applied after #pragma omp parallel for, indicating that the for-loop iterations should
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be vectorized within parallel OpenMP context, as shown in Listing 11. The static OpenMP scheduling
mode is the only mode currently supported for layered thread and data parallelism. For other scheduling
modes, strip-mining must be applied to the loop (see, e.g., [9]).

1 #include "MyLib.h"
2

3 void RunOnHost(){
4 float* fIn = ... // Allocation and initialization of data
5 float* fOut = ...
6 #pragma omp parallel for schedule(static)
7 #pragma simd
8 for ( int i = 0; i<lTotal; i++)
9 fOut[i] = MyErfScalar(fIn[i]);

10 }
11

12 void RunOnCoprocessor(){
13 #pragma offload target(mic:0)
14 {
15 float* fIn = ... // Allocation and initialization of data
16 float* fOut = ...
17 #pragma omp parallel for schedule(static)
18 #pragma simd
19 for ( int i = 0; i<lTotal; i++)
20 fOut[i] = MyErfScalar(fIn[i]);
21 }
22 }
23

24 int main() {
25 ...
26 }

Listing 11: Improved user application Driver.cpp calls the elemental function MyErfElemental() declared in MyLib.h.
Compare to Listing 5.

When the library and the user application Driver.cpp are re-compiled, the vectorization report
indicates successful automatic vectorization both in the host code and in the coprocessor code, as shown
in Listing 12.

vadim@skynet% icpc -c -xAVX -vec-report3 -openmp -O3 -o MyLib.o MyLib.cpp
MyLib.cpp(4): (col. 59) remark: FUNCTION WAS VECTORIZED.
MyLib.cpp(4): (col. 59) remark: *MIC* FUNCTION WAS VECTORIZED.
vadim@skynet% xiar cru -qoffload-build libMyLib.a MyLib.o
xiar: executing ’ar’
xiar: executing ’ar’
vadim@skynet% icpc -c -xAVX -vec-report3 -openmp -O3 -o Driver.o Driver.cpp
Driver.cpp(8): (col. 5) remark: SIMD LOOP WAS VECTORIZED.
Driver.cpp(19): (col. 7) remark: SIMD LOOP WAS VECTORIZED.
Driver.cpp(19): (col. 7) remark: *MIC* SIMD LOOP WAS VECTORIZED.
Driver.cpp(19): (col. 7) remark: *MIC* PEEL LOOP WAS VECTORIZED.
Driver.cpp(19): (col. 7) remark: *MIC* REMAINDER LOOP WAS VECTORIZED.

Listing 12: Compiling the offload library MyLib.cpp with elemental functions and linking it with the application Driver.cpp
that requests automatic loop vectorization using #pragma simd. Compare to Listing 8.
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3 Optimization
At this point in the discussion, we have a working example of a static library libMyLib.a with

offloadable elemental functions. As mentioned in Section 2.2, the Gauss error function implementation
in Listing 3 has a number of flaws. In this section, we optimize the code of the function for better
performance. We will use the following steps of optimization:

• Consistency of the precision of functions and constants. We ensure that all functions and numerical
constants used in arithmetic expressions are in single precision.

• Strength reduction. Using an algebraic transformation, we express an expensive transcendental
arithmetic operation (the natural base exponential) two less expensive operations (the base 2 expo-
nential function combined with multiplication).

• Algorithm optimization. Using a recurrence relation, we re-write the polynomial expression used
in the approximation in such a way that the calculation of the powers of the argument t becomes
unnecessary. This reduces the amount of calculation that the function performs.

As a preview of our results, we show the performance of the code at several optimization steps in
Figure 2. The performance is measured in the number of function evaluations per second. In order to
place the results of optimization in perspective, the last set of bars in Figure 2 shows the performance of
the function erff() from the Intel Math Library.
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Host system
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Figure 2: Performance of the library function evaluating the Gauss error function approximation. Green and blue bars show,
respectively, the performance measured on the host system with two Intel Xeon E5 series processors, and on an Intel
Xeon Phi coprocessor. The performance at each step of the optimization process is compared to the performance of
erff() from the Intel Math Library. All calculations are parallelized and vectorized, and performed on an array of
n= 229 single precision floating-point arguments.

3.1 Performance benchmark setup
This section describes the hardware, runtime environment and measurement methodology used for

benchmarking the error function implemented in our library.

Computing System

In this paper, all tests are run on a CX2265i-XP5 server [6] with the following specifications:
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• Host system: two eight-core Intel Xeon E5-2680 processors with two-way hyper-threading, 64 GB
of DDR3 RAM at 1,333 MHz, running the Cent OS 6.4 Linux operating system. Intel C++ Com-
poser XE 13.1.1 is used to compile the code;

• Coprocessor: one 60-core Intel Xeon Phi coprocessor SKU B1QS-5110P with 8 GB of GDDR5
RAM, running MPSS (MIC Platform Software Stack, the driver suite for Intel Xeon Phi coproces-
sors) version 2.1.5889-16. This is a pre-production sample of the coprocessor, and the results on
the production version may be different.

We compare the performance of a single coprocessor to the performance of the two-socket host
system, because the nominal power consumption in both platforms is roughly the same.

Environment Variables

OpenMP threads can be bound to physical processing units (processor sockets, physical or logical
cores) by setting a thread affinity mask. With the Intel OpenMP library, thread affinity is controlled via
the environment variable KMP AFFINITY [7]. The KMP AFFINITY environment variable accepts the
following general syntax:

export KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

For all measurements, we use the compact affinity type, binding the OpenMP threads to logical
cores. This type of affinity improves the performance of high arithmetic intensity applications such as
our benchmark of the Gauss error function. The importance of thread affinity is demonstrated below:

vadim@skynet% KMP_AFFINITY="" ./runme # Affinity mask not set
Average: 0.354 +- 0.030 sec; trials 2-10 included

vadim@skynet% KMP_AFFINITY=compact,granularity=fine ./runme # Compact affinity
Average: 0.207 +- 0.000 sec; trials 2-10 included

Compiler Arguments

OpenMP parallelism in the application is enabled with the compiler argument -openmp. In order to
achieve the best performance, we use the highest optimization level set by the argument -O3. In addition
to it, several fine-tuning flags are used as discussed below.

Applications compiled with the Intel C++ compiler can be tuned to the target hardware architecture
using the -x flag, which tells the compiler to generate code for a specific set of vector instructions. The
-x flag takes a mandatory option, which can be one of the following: AVX (i.e. -xAVX), SSE4.2,
SSE4.1, SSE3, SSE2, etc. We use -xAVX for the host system with Intel Xeon E5 processors.
Code offloaded to Intel Xeon Phi coprocessors uses IMCI vector instructions automatically.

The handling of special domains of floating-point numbers (extremes, NaNs, infinities and de-
normal numbers) by the functions of the Intel Math Library can be disabled [8]. This improves the
performance of the exponential function used in our implementation. We use the compiler argument
-fimf-domain-exclusion=15 for that.

During the development process, in order to diagnose the success of vectorization, we used the com-
piler flags -vec-report[0-6]. This flag controls the verbosity level of the automatic vectorization
report. -vec-report0 disables diagnostics, and -vec-report6 provides the most detailed output,
reporting which loops were optimized, which loops were skipped, and why. This output can be useful to
identify possible strategies to get a loop to vectorize.

Performance Measurement

The setup of the workload that we use for performance measurement is shown in Listing 11. The
Gauss error function implementation is vectorized and runs in a parallel OpenMP environment on Intel
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Xeon processors or on an Intel Xeon Phi coprocessor in the offload mode. For the offloaded code, the
input and output arrays are initialized on the coprocessor. We do not include into the benchmark the time
of offload initialization, data transfer, or memory allocation. In this sense, our results pertain to the cases
when the data is already on the coprocessor.

The Gauss error function is calculated on an array of 229 arguments. This number corresponds to
the maximum size of two arrays fIn[] and fOut[] that can fit into the memory of the Intel Xeon Phi
coprocessor that we used. Out of 10 trials for each optimization step, only the last 8 are included in the
calculation of the average execution time.

The accuracy of our library function at all optimization steps was controlled by comparing the result
of our implementation to the result of Intel’s double precision implementation of the error function,
erf(). Details on the accuracy of our implementation are reported in Section 3.6.

All the optimizations covered in the subsequent sections are made in the library source code file
MyLib.cpp. The user application Driver.cpp is not changed between the optimization steps.

3.2 Consistency of precision: functions
Most of the common mathematical functions in the Intel Math Library (automatically linked when the

header file math.h is included) have double precision and single precision versions. The names of the
single precision versions are obtained from the double precision function names by adding the suffix -f.
For example, exp() is a double precision function, which takes an argument of type double, returns
an argument of type double, and maintains the accuracy required for double precision. However,
expf() is a single precision function, which takes an argument of type float and returns a value of
type float. Similarly, sinf(), copysignf(), fabsf() are all single precision functions.

In the Intel Math Library, single precision functions are always faster than their double precision
counterparts. This aspect of programming is sometimes ignored by users familiar with the GNU family
compilers. Indeed, in older versions of the GNU math library, single precision functions do not provide
better performance than double precision functions, or sometimes perform even worse than the double
precision functions.

Because our Gauss error function implementation relies on an approximation with an accuracy of
1.5 · 10−7, single precision is sufficient for all calculations. Therefore, our implementation can benefit
from using single precision functions. With this optimization, the implementation takes on the form
shown in Listing 13 (only the modified part of the code is shown).

3 const float x = fabsf(inx); // was fabs(inx) before optimization
4

5 const float p = 0.3275911;
6 const float t = 1/(1+p*x);
7 const float t2 = powf(t, 2); // was pow(t, 2) before optimization
8 const float t3 = powf(t, 3); // was pow(t, 3) before optimization
9 const float t4 = powf(t, 4); // was pow(t, 4) before optimization

10 const float t5 = powf(t, 5); // was pow(t, 5) before optimization
11

12 // this expression contained exp(-x*x) before optimization
13 const float res = 1.0 - (0.254829592*t - 0.284496736*t2 + 1.421413741*t3 -
14 1.453152027*t4 + 1.061405429*t5) * expf(-x*x);
15

16 return copysignf(res, inx); // was copysignf(res, inx) before optimization

Listing 13: Error function implementation in MyLib.cpp optimized by using single precision functions. Compare to Listing 10.

As shown in Figure 2, this optimization increases the performance on the host by 25% and on the
coprocessor by 75%.
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3.3 Consistency of precision: constants
Another convention of arithmetics in the C/C++ languages that is sometimes overlooked is the default

type of floating-point literal constants. By default, floating-point literal constants in C and C++ codes are
assumed by the compiler to be of type double. For example, 0.25 is assumed to be a double precision
constant. Constants that do not have a decimal point are assumed to be of type int. For example, 1 is
assumed to be a 32-bit signed integer. Literal constants of type float must be marked with the suffix
-f and contain a decimal point. Otherwise, implicit type conversion operation are used to convert the
values between double precision and single precision or between integers and floating-point values.

With the above considerations, we further improve the implementation of our Gauss error function,
by marking floating-point literals as single precision constants. Listing 14 demonstrates the changes.

5 const float p = 0.3275911f; // was 0.3275911 before optimization
6 const float t = 1.0f/(1.0f+p*x); // was 1/(1+p*x) before optimization
7 const float t2 = powf(t, 2.0f); // was powf(t, 2) before optimization
8 const float t3 = powf(t, 3.0f); // Note: the powf function recognizes
9 const float t4 = powf(t, 4.0f); // that the exponent is an integer

10 const float t5 = powf(t, 5.0f); // and optimizes the calculation accordingly.
11

12 // this expression did not have the suffix -f in constants before optimization
13 const float res = 1.0f - (0.254829592f*t - 0.284496736f*t2 + 1.421413741f*t3 -
14 1.453152027f*t4 + 1.061405429f*t5) * expf(-x*x);

Listing 14: Error function implementation in MyLib.cpp further optimized by using single precision constants.

The performance gain of this optimization (see Figure 2) is additional 50% on Intel Xeon processors
and 110% on Intel Xeon Phi coprocessors.

3.4 Strength reduction
In the Intel Math Library, the exponential and logarithmic functions with base 2 (exp2f() and

log2f()) are faster than their natural base counterparts (expf() and logf()). The base 2 functions
are optimized using the architecture specifics of floating-point number representation. If possible, the
Intel Math Library may use hardware instructions for the calculation of the base 2 exponential and
logarithm.

We can modify our implementation to use the base 2 exponential function instead of the natural base
exponential function. This can be done by applying the following transformation:

ex = 2x log2 e, (6)

where log2 e ≈ 1.442695040 is a constant. We need a single precision value of this constant, and so the
suffix -f is used in the code (Listing 15).

12 const float l2e = 1.442695040f;
13 const float res = 1.0f - ( 0.254829592f*t1 - 0.284496736f*t2 + 1.421413741f*t3 -
14 1.453152027f*t4 + 1.061405429f*t5 ) * exp2f(-x*x*l2e);

Listing 15: Error function implementation in MyLib.cpp optimized with strength reduction: using a base 2 exponential function
instead of the natural base exponential function. Compare the usage of the exponential function to Listing 14.

This optimization is known as strength reduction. Strength reduction is the replacement of a com-
putationally expensive operation with one or more less expensive operations. In this case, we replace
the natural base exponential with the base 2 exponential combined with a floating-point multiplication.
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Another commonly used strength reduction operation is the replacement of division (a = b/c) with
multiplication by the reciprocal value (r = 1.0/c; a = b*r). This optimization relies on the fact
that floating-point multiplication in most architectures is significantly faster than floating-point division.
If the reciprocal value is used multiple times, this optimization improves performance. In some cases,
the compiler may implement this optimization automatically — it depends on the optimization level and
the floating-point model.

Compared to the previous optimization step, strength reduction improves the performance of our
Gauss error function implementation by additional 10% on the host processor and by 3% on the copro-
cessor. This is reflected in Figure 2.

3.5 Algorithm optimization: recurrence relation
For the final touch, we will use an optimization of the algorithm that reduces the number of arithmetic

operations by using a recurrence relation.
Recurrence relations express a value in a mathematical sequence via previous values in that sequence.

In our case, we have a polynomial expression in Equation (4). In order to evaluate this expression, we
compute the powers of the argument t and then use them in the explicit evaluation of the polynomial.
We can optimize this procedure by using the recurrence relation

a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 ≡ t (a1 + t (a2 + t (a3 + t (a4 + ta5)))) . (7)

Comparing the expressions in the left-hand side and the right-hand side of Equation (7), it is easy to
see that both of them have 9 arithmetic operations: 4 additions and 5 multiplications. However, the
expression in the right-hand side only uses the values of t, and therefore, it is not necessary to compute
the powers t2, t3, t4 and t5 in order to use that expression. Taking advantage of this transformation, we
arrive at the last implementation of the Gauss error function approximation shown in Listing 16.

1 __attribute__((vector)) float MyErfElemental(const float inx){
2 const float x = fabsf(inx);
3

4 const float p = 0.3275911f;
5 const float t = 1.0f/(1.0f+p*x);
6 const float l2e = 1.442695040f; // log2f(expf(1.0f))
7 const float e = exp2f(-x*x*l2e);
8 float res = -1.453152027f + 1.061405429f*t;
9 res = 1.421413741f + t*res;

10 res =-0.284496736f + t*res;
11 res = 0.254829592f + t*res;
12 res *= e;
13 res = 1.0f - t*res;
14

15 return copysignf(res, inx);
16 }

Listing 16: Error function implementation in MyLib.cpp optimized by performing a recurrent evaluation of the polynomial
expression. This is the final optimized version of the function. Compare to the unoptimized function in Listing 10.

With this optimization, the performance further increases by 5% on the host and remains unchanged
on the coprocessor (see Figure 2).

The final result of our optimization produces performance very close to that of the Intel Math Library
implementation erff(). Our implementation is some 5% slower than erff() on the host, and 5%
faster than erff() on the coprocessor. The two implementations, however, produce different accuracy
(see Section 3.6). The coprocessor performs our implementation 3.1x faster than two host processors.
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3.6 Accuracy
We estimated the accuracy of our implementation MyErfElemental() and of the Intel Math

Library implementation erff() by comparing their results to the values calculated by the double pre-
cision Intel Math Library implementation erf() in the range of values −3 < x < 3. The results are
summarized in the table below.

Two accuracy metrics are reported: the maximum absolute error and the root mean square error.

Implementation MyErfElemental() erff()
Max. error (host) 9.2 · 10−7 7.5 · 10−8

Max. error (coprocessor) 5.7 · 10−7 7.5 · 10−8

Root mean square error (host) 1.1 · 10−7 2.3 · 10−8

Root mean square error (coprocessor) 1.1 · 10−7 2.3 · 10−7

Table 1: Accuracy of our implementation MyErfElemental() and of the Intel Math Library implementation erff() in the
argument range −3 < x < 3.

The maximum error of our calculation is greater than the accuracy of the approximation (4) because
of the accumulated numerical error and the finite precision of the exponential function exp2f().

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 16

http://research.colfaxinternational.com/


4 SUMMARY

4 Summary
To fully exploit computational resources of Intel Xeon processors and Intel Xeon Phi coprocessors,

applications must utilize both thread and data parallelism. For parallel applications that apply scalar
functions to an array of values, these special functions can be implemented as elemental functions and
packaged in the form of a statically-linked library. This approach works for applications running on
common CPUs as well as for applications that offload computation to Intel Xeon Phi coprocessors. We
provided a step-by-step demonstration of how such libraries can be created, and how elemental functions
from a static library can be offloaded to a coprocessor and used in a thread-parallel OpenMP context
layered with data-parallel SIMD processing.

4.1 Recap: producing a static offload library
The roadmap to the development of a statically-linked special function library for Intel Xeon Phi

coprocessors is:

1) Write the header files and the source code files with library function and implementations;

2) Mark the declarations and implementations of functions with the offload attribute using #pragma
offload attribute in order to request the compilation of offload versions of the functions;

3) For functions with scalar syntax that may be used in SIMD contexts, mark them as elemental using
attribute ((vector)) in order to compile vectorized forms of these functions;

4) Compile the source codes into object files using the Intel C++ compiler;

5) Archive the object files into a static library using the Intel tool xiar with the command line
argument -qoffload-build in order to create the MIC architecture version of the library;

6) In user applications:

a) the library header files must be included to access the functions;
b) the library must be linked as usual with the linker argument -l;
c) in data-parallel loops, #pragma simd should be used to employ vector versions of the

elemental library functions, and
d) #pragma offload can be used to offload calculations to an Intel Xeon Phi coprocessor;

7) Object files with suffixes MIC.o and library files with suffixes MIC.a contain the code offloadable
to the coprocessor. These files do not have to be specified during the compilation and linking
phases; however, the lib*MIC.a file but must be available to the users linking their applications
with the library.

The optimization of functions with scalar syntax for Intel Xeon Phi coprocessors is based on the
same principles as the optimization process for Intel Xeon processors. Consistency of precision must be
maintained in the calls to other functions and in the specifications of constants; type conversions must be
avoided. Strength reduction may be used whenever it is profitable (replacing division with multiplication
by the reciprocal value and using highly optimized or hardware-supported transcendental functions).
Algorithm optimizations that reduce the amount of arithmetics in a function must be considered.

When an elemental function is developed with the intent to use it in a data-parallel contexts, the best
way to think of vectorization is that the operations in the function are applied independently to each
SIMD vector lane. That said, an elemental function with scalar syntax must be expressed as a scalar
function, and the compiler will take care of vectorization when it is requested by the user application.
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4.2 High-level language or “ninja programming”?
Libraries expressed in a high-level programming language can be built for multi-core and many-core

systems with a single compilation command. That said, it is not necessary to develop separately the host
and the coprocessor versions of the library. Furthermore, few or no code modifications are necessary in
order to port the code of the library to computer architectures of the past or of the future, because the
compiler takes care of using the respective processor instructions.

On the other hand, some developers prefer to fine-tune their performance-critical functions using
inline assembly or compiler intrinsics. That approach gives the developer more control in tuning the
code. However, portability is out of the question for programs expressed with assembly instructions or
intrinsic functions. In this approach, separate versions of the code must be developed and maintained for
the host and for the coprocessor, and instruction-coded programs may not run efficiently (or at all) on
future generations of processors and coprocessors.

However, when the function performance is more important than the amount of effort required for
porting, the choice of the programming method boils down to the question: how good is the compiler at
optimization and automatic vectorization?

The example demonstrated in this paper uses a high-level language and relies on the automatic vector-
ization capability of the Intel C++ compiler. Nevertheless, our library function that calculates a rational
approximation for the Gauss error function performs on par with the highly optimized Intel Math Library
implementation of this calculation erff() in terms of speed and accuracy.

Evidently, the efficiency of the Intel C++ compiler in the automatic implementation of SIMD par-
allelism for Intel Xeon processors and Intel Xeon Phi coprocessors is very high. With that in mind,
the high-level language approach is an appealing programming methodology for the Intel Xeon family
products.
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