

Accelerated Simulations
of Cosmic Dust Heating

Using the Intel Many Integrated Core Architecture

Andrey Vladimirov
Hansen Experimental Physics Laboratory, Stanford University

work with: Troy Porter, HEPL, Stanford

Talk given at UC Santa Cruz, Applied Mathematics and Statistics, June 6, 2013

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Interstellar Radiation Field (ISRF)

● Most energy in the infrared (IR),

optical and ultraviolet (UV)

ranges.

● Sources: stars, dust.

● Processes: elastic scattering,

absorption by dust, re-emission

Precise ISRF modeling is

necessary for the studies of:

● The interstellar medium (ISM)

● Cosmic ray (CR) propagation

● Extragalactic background light

(EBL)

● Dust-obscured objects (for

background elimination)

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

FRaNKIE Code

● “Fast RAdiative transfer Numerical

Kode for Interstellar Emission”

● Monte Carlo transport of photons

(broadband) in the Galaxy

● Physical input: distribution of stars

and dust, microscopic processes

● Output: 3D ISRF density, sky maps

+ wavelength dependence

● References: Porter et al. (2008) ApJ,

682, 400, Ackermann et al. (2012)

ApJ 750, 3

● Results used in the GALPROP code

for cosmic ray transport

2.2 µm

 Simulation:

 x=0

 y=0

 z=-20 kpc

 Simulation:

 x=8.5 kpc

 y=0

 z=0

 DIRBE data

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Interstellar Dust

● Conglomerates of atoms (H, C,

O, Si, etc.) and molecules, 0.5–

1000 nm = 101-1010 particles

● Absorbs and scatters optical &

UV light

● Optically heated dust re-emits

energy in IR

● Important for H
2
 production,

star formation

SEM images of interplanetary dust

Jessberger et al. (2001)

Size distribution of interstellar dust

Weingartner & Draine (2001)

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Interstellar Dust

● Optical depth toward Galactic center >> 1

(significant attenuation, wavelength-dependent)

● Must be included in radiative transport (RT)

simulations

● Dust heating and RT must be treated self-

consistently (local dust heating by propagated

photons + propagation of re-emitted IR photons)

Dust luminosity

computed by

the FRaNKIE code

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Stochastic Dust Grain Heating

● Large grains are heated by

photon absorption attaining

thermal equilibrium with the

heating radiation field

(characterizable by a single

temperature, easy to model)

● For very small grains (≤0.1 µm),

absorption and re-emission is

stochastic (grains undergo

“temperature” spikes,

characterized by temperature

distribution — evaluation

computationally expensive) Vi
br

at
io

na
l e

ne
rg

y
(“

gr
ai

n
te

m
pe

ra
tu

re
”) Cooling transitions (IR em
ission)

H
ea

tin
g

tra
ns

iti
o n

s (
U

V
 a

bs
or

p t
io

n)

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Matrix Formalism for Stochastic Dust
Emissivity Calculation

● Input data: incident

electromagnetic radiation field

● Intermediate: “temperature”

distribution of grains of all sizes

● Output: spectrum of re-emitted

photons

● Carbonaceous, silicate and PAH

grains (polycyclic aromatic

hydrocarbons)

● Method and absorption cross

sections: Draine et al. (2001),

ApJ, 551, 807

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Matrix Formalism for Stochastic Dust
Emissivity Calculation

● Stage 1:

Interpolate (in log

space) and convolve

the incident RF with

the photon absorption

cross sections

● Stage 2:

form and solve a quasi-

triangular system of

linear algebraic equations

for the “temperature”

distribution

● Stage 3:

convolve the

“temperature”

distribution with the

grain size distribution

and emissivity function

 transcendental operations sparse memory access dense linear algebra

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Computational Challenge

● What: Constrain the geometrical/compositional parameters of the

distribution of light sources (stars) in the Galaxy.

How: Bayesian analysis of sky survey data. The analysis fits the

results of the FRaNKIE code within a parameter space to the

observational data.

● Need of order 10^5 FRaNKIE evaluations with 10^5 cells

● Difficulty: stochastic dust heating must be computed for every

simulation cell in the Galaxy consistently with the RF.

● Bottlenecked by stochastic emissivity calculation: 60 ms per cell

on a modern 16-core Intel Xeon E5 server.

● Translates to 20 machine-years for the calculation — too much.

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

HEATCODE (HEterogeneous Architecture
library for sTochastic COsmic Dust Emissivity)

What we need:

● Optimize the stochastic

emissivity calculation to

employ available compute

resources more efficiently

● Use high performance

computing accelerators if

available

● Operate on a wide range

of computing platforms for

public distribution

Our solution:

● A new library called HEATCODE (started

from unoptimized implementation of the

Draine et al. matrix formalism)

● Optimized for Intel Xeon multi-core

architecture, suitable for any CPU

● After optimization, 100x more efficient on

the same hardware (2x Intel Xeon E5-

2680 CPUs)

● Additional 4.5x with two Intel Xeon Phi

5110P coprocessors

● Support for GPGPUs can easily be

added

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Preview of Results

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Intel MIC Architecture

■ Intel Xeon Phi coprocessor: to accelerate

applications that have reached the parallel

scaling limits of Intel Xeon processors

■PCIe v 2.0 device

■Nominal: 245-300 W, ~1 TFLOP/s in

double precision, 354 GB/s bandwidth

■60 dual-issue in-order cores @1 GHz with

4-way hyper-threading (240 logical cores)

■8 GB onboard GDDR5

■512-bit SIMD instructions

● Runs its own Linux OS

● Hosts a virtual file system

● IP-addressable

● The same languages (C, C++, Fortran), tools (compilers, profilers)

and optimization methods as general-purpose Intel CPUs

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

● Move parallel tasks to coprocessor

or
● Share work between

host and MIC

and/or
● MPI with offload

● Use coprocessor

as a compute node

or
● MIC-only MPI

or
● Heterogeneous MPI

Programming Models for the MIC Architecture

Offload Models
application runs on host,

communicates w/coprocessor

Offload Models
application runs on host,

communicates w/coprocessor
Native Model

application runs directly

on coprocessor

Native Model
application runs directly

on coprocessor

Explicit offload

(pragma-based)

Explicit offload

(pragma-based)

Virtual-shared

Memory

Virtual-shared

Memory

OpenCL
Launched May'13

OpenCL
Launched May'13

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Explicit Offload Model

● HEATCODE uses the explicit offload model

● Simplicity, compatibility with the CUDA approach, fall-back to host

#pragma offload_attribute (push, target(mic))
 void InterpolateWeightedRF(const int wlBins, float* RF, ...) {
 /* ... one implementation for both the host and the MIC */
 }
#pragma offload_attribute(pop)

void CalculateTransientEmissivity(...) {
 RF = (float*)malloc(wlBins*nSpectra*sizeof(float));
#pragma offload target(mic) inout(RF: length(wlBins*nSpectra))
 { /* run on the coprocessor if available, otherwise on host */
 InterpolateWeightedRF(wlBins, RF, ...);
 ...
 }
}

#pragma offload_attribute (push, target(mic))
 void InterpolateWeightedRF(const int wlBins, float* RF, ...) {
 /* ... one implementation for both the host and the MIC */
 }
#pragma offload_attribute(pop)

void CalculateTransientEmissivity(...) {
 RF = (float*)malloc(wlBins*nSpectra*sizeof(float));
#pragma offload target(mic) inout(RF: length(wlBins*nSpectra))
 { /* run on the coprocessor if available, otherwise on host */
 InterpolateWeightedRF(wlBins, RF, ...);
 ...
 }
}

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Threading Models for the MIC Architecture

OpenMP
v 4.0

OpenMP
v 4.0

MPI
Processes directly on MIC or

Hybrid MPI+OpenMP or

Offload to MIC + OpenMP

MPI
Processes directly on MIC or

Hybrid MPI+OpenMP or

Offload to MIC + OpenMP

Intel Cilk Plus,

TBB
“tasks, not threads”

Intel Cilk Plus,

TBB
“tasks, not threads”

Pthreads
For the fearless

Pthreads
For the fearless

● HEATCODE uses OpenMP

● Parallelization across multiple incident

radiation spectra

● Each spectrum processed serially

● Same code for host and coprocessor

● Must process >>240 spectra to be

efficient on coprocessor

#pragma offload target(mic)…
{
 #pragma omp parallel for schedule(dynamic)
 for (int iRF = 0; i < nSpectra; i++) {
 InterpolateWeightedRF(wlBins, iRF, ...);
 CalculateTemperatureDistribution(...);
 ComputeEmissivity (...);
 }
}

#pragma offload target(mic)…
{
 #pragma omp parallel for schedule(dynamic)
 for (int iRF = 0; i < nSpectra; i++) {
 InterpolateWeightedRF(wlBins, iRF, ...);
 CalculateTemperatureDistribution(...);
 ComputeEmissivity (...);
 }
}

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Threading Optimization for the MIC
Architecture

Qualitatively, MIC requires the same

optimizations as multi-core CPUs:

● Avoid synchronization

● Eliminate false sharing

● Choose optimal scheduling mode

● Avoid serial operations

Quantitatively, more parallelism: MIC

applications must scale to 240 threads

● Increase the the number of parallel

tasks to keep all threads busy

● Reduce per-thread memory overhead

if problem does not fit in memory

● Set appropriate thread affinity

HOW TO ACHIEVE:

➔ Use reduction instead of mutexes

➔ Padding, thread-private containers

➔ Load balance vs sched. overhead

➔ Parallelize algorithm, use static

memory allocation: malloc() is serial

➔ Collapse nested loops or rethink

parallelization strategy

➔ Change algorithm or use nested

parallelism within tasks

➔ In OpenMP, use KMP_AFFINITY

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Unoptimized Optimized (loop fusion)

Threading Issues in HEATCODE

● Unoptimized code used scratch

space liberally. This is OK on host,

but a limitation on MIC.

● Before optimization, we had to

reduce the # of threads on the MIC

to fit in 8 GB memory

● Optimization: reducing per-thread

memory overhead by loop fusion

 8 GB

16 GB

24 GB

32 GB

60 120 180 240

of threads

Memory

RAM on Host

unoptimized
RAM on

Coprocessor

optimized

 host MIC

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Why Care about Vectorization

● In older architectures, SIMD registers were narrow (64-, 128-bit), and

scientists often must use double precision (64-bit) =>

Without vectorization, one loses up to 2x — often not significant enough

● On the MIC architecture, 512-bit vectors =>

Without vectorization, one pays a 8x penalty in double precision (16x in

single precision)

Table credit: “Parallel Programming and Optimization with Intel Xeon Phi Coprocessors”, Colfax

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Optimization for the Intel MIC Architecture:
(Automatic) Vectorization

● Intel Xeon E5 (Sandy Bridge)

architecture: 256-bit AVX vector

instructions, legacy SSE,

MMX...

● Intel Xeon Phi (Knights Corner)

architecture: 512-bit IMCI

instructions

● Xeon Phi does not understand

AVX or SSE

● Explicit SIMD coding is

possible, but automatic

vectorization is more portable

and flexible & efficient

/* Fragment of the solution for
temperature distribution P_i
from B_ij in the HEATCODE library
with automatic vectorization */
#pragma vector aligned
for (int i = 0; i < tempBins; ++i)
 sum += bMatrix[f*tempBins + i]*x[i];

/* Fragment of the solution for
temperature distribution P_i
from B_ij in the HEATCODE library
with automatic vectorization */
#pragma vector aligned
for (int i = 0; i < tempBins; ++i)
 sum += bMatrix[f*tempBins + i]*x[i];

avladim@dublin$ # Auto-vectorization report
avladim@dublin$ icpc -c -vec-report3 \
 TransientHeatingFunctionsXeonPhi.cc
...
TransientHeatingFunctionsXeonPhi.cc(199):
 (col. 6) remark: LOOP WAS VECTORIZED.
...
TransientHeatingFunctionsXeonPhi.cc(199):
 (col. 6) remark: *MIC* LOOP WAS
 VECTORIZED.
TransientHeatingFunctionsXeonPhi.cc(199):
 (col. 6) remark: *MIC* REMAINDER LOOP
 WAS VECTORIZED.
...

avladim@dublin$ # Auto-vectorization report
avladim@dublin$ icpc -c -vec-report3 \
 TransientHeatingFunctionsXeonPhi.cc
...
TransientHeatingFunctionsXeonPhi.cc(199):
 (col. 6) remark: LOOP WAS VECTORIZED.
...
TransientHeatingFunctionsXeonPhi.cc(199):
 (col. 6) remark: *MIC* LOOP WAS
 VECTORIZED.
TransientHeatingFunctionsXeonPhi.cc(199):
 (col. 6) remark: *MIC* REMAINDER LOOP
 WAS VECTORIZED.
...

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Optimizing Vectorization

● Contiguous memory access

works best

● Align arrays on 64-byte

boundary

● The compiler may need hints

(pragma directives)

● Avoid type conversions

● Index notation better than

pointer references

● No need to precompute array

indices

/* Recurrent calculation of B_ij
 From T_ij in the HEATCODE library

Programmer guarantees data alignment,
so the compiler does not have to
implement runtime alignment checks.

Loop count estimate helps the compiler
to pick the optimal vectorization
strategy. */
#pragma vector aligned
#pragma loop count min(16)
for (int i = 0; i < iMax; ++i) {
 rSum[i] += bMatrix[f*tempBins + i];
 bMatrix[f*tempBins + i] = rSum[i];
}

/* Recurrent calculation of B_ij
 From T_ij in the HEATCODE library

Programmer guarantees data alignment,
so the compiler does not have to
implement runtime alignment checks.

Loop count estimate helps the compiler
to pick the optimal vectorization
strategy. */
#pragma vector aligned
#pragma loop count min(16)
for (int i = 0; i < iMax; ++i) {
 rSum[i] += bMatrix[f*tempBins + i];
 bMatrix[f*tempBins + i] = rSum[i];
}

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Optimizing Vectorization

● 512 bits vector fits 16 single precision FP numbers

● HEATCODE: padded loop bounds to a multiple of 16 iterations

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Optimization for the Intel MIC Architecture:
Cache Traffic

● MIC architecture has a similar cache structure to a multi-core CPU

● To minimize cache misses, maximize data locality and re-use

● This is usually done by changing the order of memory accesses:

● Fusion of loops

● Nested loop interchange (permutation)

● Loop tiling (blocking)

● Cache-oblivious recursion

Table credit: Colfax

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Loop Tiling Explained

/* Nested loops without tiling.
Array B[] does not fit into cache */
for (int i = 0; i < iMax; ++i)
 for (int j = 0; j < jMax; ++j)
 PerformWork(A[i], B[j]);

/* Nested loops without tiling.
Array B[] does not fit into cache */
for (int i = 0; i < iMax; ++i)
 for (int j = 0; j < jMax; ++j)
 PerformWork(A[i], B[j]);

/* Tiled nested loops */
for (int ii = 0; ii < iMax; ii += T)
 for (int j = 0; j < jMax; ++j)
 for (int i = ii; i < ii+T; ++i)
 PerformWork(A[i], B[j]);

/* Tiled nested loops */
for (int ii = 0; ii < iMax; ii += T)
 for (int j = 0; j < jMax; ++j)
 for (int i = ii; i < ii+T; ++i)
 PerformWork(A[i], B[j]);

 Cache Misses

array A array B

0

1

2

3

4

5

6

... ...

array A array B

0

1

2

3

4

5

6

... ...
7 7

 Cache Hits

Example:

tile size T=2

cache size=3

Without Tiling

With Tiling

Cache Hit Rate = 6/16 Cache Hit Rate = 10/16

FASTERSLOWER

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Cache Traffic Optimization in HEATCODE

/* Convolution of temperature distr.
with emissivity function in the
HEATCODE library (UNOPTIMIZED) */
for (int i = 0; i < wlBins; ++i) {
 float sum = 0.0f;
 for (int j = 0; j < gIMax; ++j) {
 const float scaling = ...[i,j];

 float result = 0.0f;
 for (int k = 0; k < tempBins; ++k)
 result +=
 planck[i*tempBins + k]*
 distribution[j*tempBins + k];

 sum += result*scaling;
 }
 trans[i] = sum*wavelength[i]*units;
}

/* Convolution of temperature distr.
with emissivity function in the
HEATCODE library (UNOPTIMIZED) */
for (int i = 0; i < wlBins; ++i) {
 float sum = 0.0f;
 for (int j = 0; j < gIMax; ++j) {
 const float scaling = ...[i,j];

 float result = 0.0f;
 for (int k = 0; k < tempBins; ++k)
 result +=
 planck[i*tempBins + k]*
 distribution[j*tempBins + k];

 sum += result*scaling;
 }
 trans[i] = sum*wavelength[i]*units;
}

/* OPTIMIZED w/double loop tiling */
for (int jj=0; jj<gIMax; jj+=jTile) {
for (int ii=0; ii<wlBins; ii+=iTile){
 float result[iTile*jTile];
 for (int c = 0; c<iTile*jTile; c++)
 result[c] = 0.0f;

#pragma simd
 for (int k = 0; k < tempBins; ++k)
 for (int c = 0; c < iTile; c++) {

 result[(0)*iTile + c] +=
 distribution[(jj+0)*tempBins+k]*
 planck[(ii+c)*tempBins+k];
 result[(1)*iTile + c] +=
 distribution[(jj+1)*tempBins+k]*
 planck[(ii+c)*tempBins+k];
 result[(2)*iTile + c] +=
 distribution[(jj+2)*tempBins+k]*
 planck[(ii+c)*tempBins+k];
 result[(3)*iTile + c] +=
 distribution[(jj+3)*tempBins+k]*
 planck[(ii+c)*tempBins+k];
 }
...

/* OPTIMIZED w/double loop tiling */
for (int jj=0; jj<gIMax; jj+=jTile) {
for (int ii=0; ii<wlBins; ii+=iTile){
 float result[iTile*jTile];
 for (int c = 0; c<iTile*jTile; c++)
 result[c] = 0.0f;

#pragma simd
 for (int k = 0; k < tempBins; ++k)
 for (int c = 0; c < iTile; c++) {

 result[(0)*iTile + c] +=
 distribution[(jj+0)*tempBins+k]*
 planck[(ii+c)*tempBins+k];
 result[(1)*iTile + c] +=
 distribution[(jj+1)*tempBins+k]*
 planck[(ii+c)*tempBins+k];
 result[(2)*iTile + c] +=
 distribution[(jj+2)*tempBins+k]*
 planck[(ii+c)*tempBins+k];
 result[(3)*iTile + c] +=
 distribution[(jj+3)*tempBins+k]*
 planck[(ii+c)*tempBins+k];
 }
...

↑ “Before” “After” →

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Memory Traffic Optimization in HEATCODE

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Optimization for the Intel MIC Architecture:
Offload Data Traffic

● Upon offload, data are

transferred across the PCIe

bus: ~6 GB/s

● Whenever possible, retain

data on coprocessor between

offloads

● Memory allocation on

coprocessor is slow (a serial

operation): ~1 GB/s

● Whenever possible, retain

allocated memory on

coprocessor between offloads

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Optimization for the Intel MIC Architecture:
Offload Data Traffic

/* Offload pragma in HEATCODE,
data marshaling directives */
#pragma offload target(mic)
…
in(rfArray : \
 length(n*rfBins)) \
out(emissivityArray : \
 length(n*rfBins)) \
…
in(absorptionCrossSection : \
 length(gIMax*wlBins))
}

/* Offload pragma in HEATCODE,
data marshaling directives */
#pragma offload target(mic)
…
in(rfArray : \
 length(n*rfBins)) \
out(emissivityArray : \
 length(n*rfBins)) \
…
in(absorptionCrossSection : \
 length(gIMax*wlBins))
}

/* Offload pragma in HEATCODE, optimized
using data and memory persistence */
#pragma offload target(mic:iDevice)
…
in(rfArray : \
 length(n*rfBins) alloc_if(0) free_if(0)) \
out(emissivityArray : \
 length(n*rfBins) alloc_if(0) free_if(0)) \
…
in(absorptionCrossSection : \
 length(0) alloc_if(0) free_if(0))
}

/* Offload pragma in HEATCODE, optimized
using data and memory persistence */
#pragma offload target(mic:iDevice)
…
in(rfArray : \
 length(n*rfBins) alloc_if(0) free_if(0)) \
out(emissivityArray : \
 length(n*rfBins) alloc_if(0) free_if(0)) \
…
in(absorptionCrossSection : \
 length(0) alloc_if(0) free_if(0))
}

 Unoptimized:

For every offload,
● Sending/receiving input & output
● Sending/receiving model data
● Allocating/deallocating memory

 Optimized:

For every offload,
● Sending/receiving input & output
● Re-using offloaded model data
● Re-using allocated memory
● Requires initial offload and

cleanup (not shown here)

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Optimization for the Intel MIC Architecture:
Heterogeneous Work Sharing

● In our compute nodes: a 2-socket Xeon CPU + two Xeon Phi

● We would like to use all available compute power

● One Xeon Phi is ~2x faster than CPU → can't split work evenly

● Must split up work into chunks and use “boss-worker” scheduling

● Easy solution using the OpenMP scheduler:

#pragma omp parallel for n_threads(3) schedule(dynamic,1)
for (int i = 0; i < nChunks; i++) {
 int iDevice = omp_get_thread_num();
 #pragma offload target(mic: iDevice) if (iDevice > 0)
 ...

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Other Optimization Considerations for
HEATCODE

● Precomputation often helps; however, sometimes reading a

precomputed value is more expensive than computing on the fly

● Avoiding type conversion:

● consistently use single or double precision variables

● specify single precision constants as “0.0f”, “1.0f”, etc.

● use single-precision math functions: sinf(), expf(), fabsf()...

● Use base 2 logarithms and exponentials: exp2f(), log2f()

● Use -fimf-domain-exclusion=15 if do not need denormals, NaNs...

● Set MIC_USE_2MB_BUFFERS to improve TLB traffic

● Potentially: use the Intel Math Kernel Library (MKL) for matrix

multiplication. MKL has a number of standard routines (xGEMM, FFT,

random numbers, etc) optimized for Intel Xeon Phi coprocessors.

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Performance Benchmarks: Optimization

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Performance Benchmarks: Platforms

● HEATCODE on one Xeon Phi

vs two Xeon E5-2680s: 1.9x

speedup

● Why against two CPUs?

Same power ~ 250 W

● Synthetic benchmarks:

SGEMM 2.9x, LINPACK 2.6x,

STREAM 2.2x

● Before optimization, the

(parallel) code was 100x

slower on host and 400x

slower on MIC

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Developer Experience: Programming

● Initial porting is trivial with native execution: “-mmic” compiler argument.

Works for open source packages and autotools as well. Example:
 ./configure --prefix=~/mic/xerces-c --without-curl --enable-transcoder-iconv \
 CC="icc" CXX="icpc" CFLAGS="-mmic" CXXFLAGS="-mmic" --host=x86_64

● Explicit offload model is straightforward, but must pack all data into arrays

● Initially, the ported code was miserable on the coprocessor. However, it

meant that it was not doing very well on the host, either.

● Optimizations for coprocessor lead to better performance on the host, and

vice-versa. Coprocessor/host performance ratio is a measure of efficiency.

● Areas of optimization: thread scalability, vectorization, scalar efficiency,

cache traffic, communication with coprocessor.

● If don't know where to optimize, use VTune.

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Intel Vtune Parallel Amplifier XEIntel Vtune Parallel Amplifier XE

Developer Experience: Development Tools

● Must use Intel compilers ($500-1500

single user academic license)

● Intel C++ compiler beats GCC by 3x

(HEATCODE on the host)

● VTune: performance analysis with

hardware event sampling. Works on Intel

CPUs and Xeon Phi. The greatest thing

since sliced bread. Can find hotspots

down to a single line of code.

● Debugger is available, but “printf

debugging” works, too: console output

from the coprocessor is piped to host

● Intel MKL has a lot of optimized routines

for Xeon Phi. Binaries are redistributable

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Developer Experience: Optimization

● Is it easy to port applications to the MIC architecture? Yes

Do I get accelerated performance out of the box? Likely, No

● Same code on the host and the MIC? True

Same optimization for the host and the MIC? In many cases, true

● For HEATCODE, optimization involved:

 Loop fusion to reduce memory footprint, improve data locality

 Floating point precision consistency (constants, variables, functions)

 Strength reduction & precomputation in common expressions

 Nested loop permutation and tiling to improve cache traffic

 SIMD loop bounds and data alignment: pad to a multiple of 64 bytes

 Vectorization tuning w/pragmas (loop count, aligned notice, …)

 Data & memory persistence on the coprocessor (PCIe traffic)

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Learning Resources
on the Intel MIC Architecture Programming

on Amazon.com: Jeffers & Reinders http://colfax-intl.com/xeonphi/

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Learning Resources
on the Intel MIC Architecture Programming

http://software.intel.com/mic-developer

Intel C/C++ Compiler XE 13.1
User and Reference Guide

Intel MIC forum

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Summary

● HEATCODE — a new library for fast calculation of stochastic cosmic

dust grain heating and emissivity, with support for the Intel MIC

architecture and heterogeneous multi/many-core systems

● Optimization for the MIC architecture leads to significant performance

benefits on the host multi-core CPUs, and vice-versa

● One code for CPUs and Intel Xeon Phi coprocessors

● Publication for Computer Physics Communications in preparation

● Source codes will be publicly available via the CPC Program Library

 ACKNOWLEDGEMENT

 We thank Colfax International and Intel
 for early access to Intel Xeon Phi coprocessors

 and optimization guides
 http://colfax-intl.com/

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Backup Slides

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Optimization for the Intel MIC Architecture:
Heterogeneous Work Sharing

Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013Andrey Vladimirov, Stanford University — “Accelerated Simulations of Cosmic Dust Heating Using the Intel Many Integrated Core Architecture” — June 6, 2013

Intel MIC Architecture

Diagram credit: Intel

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

