
Performance Optimization of Smoothed Particle
Hydrodynamics for Multi/Many-Core Architectures

Dr. Fabio Baruffa fabio.baruffa@lrz.de

Leibniz Supercomputing Centre

MC² Series: Colfax Research Webinar, http://mc2series.com
March 7th, 2017

mailto:fabio.baruffa@lrz.de

2

Work contributors

● Member of the IPCC @ LRZ

● Expert in performance
optimization and HPC systems

● Member of the IPCC @ LRZ

● Expert in computational
astrophysics and simulations

Dr. Fabio Baruffa
Sr. HPC Application Specialist
Leibniz Supercomputing Centre

Dr. Luigi Iapichino
Scientific Computing Expert
Leibniz Supercomputing Centre

Email contacts: fabio.baruffa@lrz.de luigi.iapichino@lrz.de

mailto:fabio.baruffa@lrz.de

3

Intel® Parallel Computing Centers (IPCC)

● The IPCCs are an Intel initiative for code
modernization of technical computing codes.

● The work primary focus on code optimization
increasing parallelism and scalability on
multi/many core architectures.

● Currently ~70 IPCCs are funded worldwide.

● Our target is to prepare the simulation software
for new platforms achieving high
nodel-level performance and multi-node
scalability.

4

Outline of the talk

Preprint of this work: https://arxiv.org/abs/1612.06090

● Overview of the code: P-Gadget3 and SPH.

● Challenges in code modernization approach.

● Multi-threading parallelism and scalability.

● Enabling vectorization through:
Data layout optimization (AoS → SoA).
Reducing conditional branching.

● Performance results and outlook.

5

Gadget intro

● Leading application for simulating the
formation of the cosmological large-scale structure
(galaxies and clusters) and of processes at
sub-resolution scale (e.g. star formation, metal
enrichment).

● Publicly available, cosmological
TreePM N-body + SPH code.

● Good scaling performance up to
O(100k) Xeon cores
(SuperMUC @ LRZ).

Introduction

6

Smoothed particle hydrodynamics (SPH)

Introduction

● SPH is a Lagrangian particle method for solving the equations of fluid
dynamics, widely used in astrophysics.

● It is a mesh-free method, based on a particle discretization of the
medium.

● The local estimation of gas density (and all other derivation of the
governing equations) is based on a kernel-weighted summation over
neighbor particles:

7

Gadget features

Introduction

The code can be run at different levels of
complexity:

● N-Body-only (a.k.a. dark matter) simulations.

● N-Body + gas component (SPH).

● Additional physics (sub-resolution) modules:
radiative cooling, star formation,…

● More physics → more memory required
per particles (up to ~ 300B / particle).

8

Features of the code

Gadget features

● Gadget has been first developed in the late 90s as serial code, has later
evolved as an MPI and a hybrid code.

● After the last public release Gadget-2, many research groups all over the
world have developed their own branches.

● The branch used for this project (P-Gadget3) has been used for more than
30 research papers over the last two years.

● The code have ~200 files, ~400k code lines, extensive use of #IFDEF, ext.
libs (fftw,hdf5).

9

Basic principles of our development

Basic principle of our development

● Our intention is to ensure:
● Portability on all modern architectures (Intel® Xeon/MIC, Power, GPU,…);
● Readability for non-experts in HPC;
● Consistency with all the existing functionalities.

● We perform code modifications which are minimally invasive.

● The domain scientists have to be able to modify the code without coping
with performance questions.

10

Code modernization approach

Code modernization

● Scalar optimization: compiler flags, data casting, precision consistency.

● Vectorization: prepare the code for SIMD, avoid vector dependencies.

● Memory access: improve data layout, cache access.

● Multi-threading: enable OpenMP, manage scheduling and pinning.

● Communication: enable MPI, offloading computation.

https://software.intel.com/en-us/articles/what-
is-code-modernization; colfaxresearch.com

11

Code modernization approach

Code modernization

● Scalar optimization: compiler flags, data casting, precision consistency.

● Vectorization: prepare the code for SIMD, avoid vector dependencies.

● Memory access: improve data layout, cache access.

● Multi-threading: enable OpenMP, manage scheduling and pinning.

● Communication: enable MPI, offloading computation.

https://software.intel.com/en-us/articles/what-
is-code-modernization; colfaxresearch.com

Preparation for the next generation processors and efficient usage of the current
hardware

12

Target architectures for our project

Intel® architectures

● E5-2650v2 Ivy-Bridge (IVB) @ 2.6 GHz,
8-cores / socket.
TDP: 95W, RCP: $1116.

● AVX.

Intel® Xeon processor Intel® Xeon Phi™ coprocessor
1st generation

● Knights Corner (KNC) coprocessor 5110P
 @ 1.1GHz, 60 cores.
 TDP: 225W, RCP: N/D.

● Native / offload computing.

● Directly login via ssh.

● SIMD 512 bits.

13

Further tested architectures

Intel® architectures

● E5-2697v3 Haswell (HSW) @ 2.3 GHz,
14-cores / socket.
TDP: 145W, RCP: $2702.

● AVX2, FMA.

● E5-2699v4 Broadwell (BDW) @ 2.2 GHz,
22-cores / socket.
TDP: 145W, RCP: $4115.

● AVX2, FMA.

Intel® Xeon processors

● Knights Landing (KNL) Processor 7250
 @ 1.4 GHz, 68 cores.
 TDP: 215W, RCP: $4876.

● Available as bootable processor.

● Binary-compatible with x86.

● High bandwidth memory.

● New AVX512 instructions set.

Intel® Xeon Phi™ processor
2nd generation

14

Optimization strategy

Optimization strategy

● We isolate the representative code kernel subfind_density and run it in as
a stand-alone application, avoiding the overhead from the whole simulation.

● As most code components, it consists of two sub-phases of nearly equal
execution time (40 to 45% for each of them), namely the neighbour-finding
phase and the remaining physics computations.

● Our physics workload: ~ 500k particles. This is a typical workload per node of
simulations with moderate resolution.

● We focus mainly on node-level performance.

● We use tools from the Intel® Parallel Studio XE (VTune Amplifier and Advisor).

Simulation details:
www.magneticum.org

15

Isolation of a kernel code

Data serialization

● Serialization: the process of converting data structures or objects into
a format that can be stored and easily retrieved.

● This allows to isolate the computational kernel using realistic input
workload (~ 551MB).

● Dumping data for compression.

Object Byte stream Byte streamByte stream ObjectDB

file

mem

16

Initial profiling

Multi-threading parallelism

thread spinning

● Severe shared-memory
parallelization overhead

● At later iterations, the
particle list is locked and
unlocked constantly due
to the recomputation

● Spinning time 41%

17

Algorithm pseudocode

Subfind algorithm

more_particles = partlist.length;
while(more_particles){
 int i=0;
 while(!error && i<partlist.length){
 #pragma omp parallel
 {
 #pragma omp critical
 {

 p = partlist[i++];
 }
 if(!must_compute(p)) continue;
 ngblist = find_neighbours(p);
 sort(ngblist);
 for(auto n:select(ngblist,K))
 compute_interaction(p,n);
 }
 more_particles = mark_for_recomputation(partlist);
}

while loop over the full particle list

each thread gets the next particle
(private p) to process

check for computation

actual computation

18

Removing lock contention

Subfind algorithm

todo_partlist = partlist;

while(partlist.length){
 error=0;
 #pragma omp parallel for schedule(dynamic)
 for(auto p:todo_partlist){
 if(something_is_wrog) error=1;
 ngblist = find_neighbours(p);
 sort(ngblist);
 for(auto n:select(ngblist,K))
 compute_interaction(p,n);
 }

//...check for any error
 todo_particles = mark_for_recomputation(partlist);
}

creating a todo particle list

iterations over the todo list
(private ngblist)

actual computation

No-checks for computation

19

Improved performance

Multi-threading parallelism

no spinning

● Lockless scheme

● Time spent in spinning
only 3%

20

Improved speed-up

Multi-threading parallelism

● On IVB
● speed-up: 1.8x
● parallel efficiency: 92%

● On KNC
● speed-up: 5.2x
● parallel efficiency: 57%

21

Obstacles to efficient auto-vectorization

for(n = 0, n < neighboring_particles, n++){

 j = ngblist[n];

 if (particle n within smoothing_length){

 inlined_function1(…, &w);

 inlined_function2(…, &w);

 rho += P_AoS[j].mass*w;

 vel_x += P_AoS[j].vel_x;

 …

 v2 += vel_x*vel_x + … vel_z*vel_z;

 }

Target loop

for loop over neighbors

check for computation

computing physics

Particles properties via

AoS

22

struct ParticleAoS
{
 float pos[3];
 float vel[3];
 float mass;
}

struct ParticleSoA
{
 float *pos_x, *pos_y, *pos_z;
 float *vel_x, *vel_y, *vel_z;
 float mass;
}

Data layout

pos[0]

...

pos[1]

pos[2]

vel[0]

...

pos[0]

pos[1]

pos[2]

...

mass

x
i+1

x
i+2

x
i+3

x
i+4

x
i+5

x
i+6

x
i

x
i+7

...

pos_x

...

pos_x

pos_x

pos_x

pos_x

pos_x

pos_x

pos_x

pos_x

...

x
i+1

x
i+2

x
i+3

x
i+4

x
i+5

x
i+6

x
i

x
i+7

...
p
a
r
t
i
c
l
e
s
[
i
]

p
a
r
t
i
c
l
e
s
[
i
+
1
]

p.pos_x[i]

p.pos_x[i+1]

p.pos_x[i+2]

p.pos_x[i+3]

p.pos_x[i+4]

p.pos_x[i+5]

p.pos_x[i+6]

p.pos_x[i+7]

p.pos_x[i+8]

Memory Memory

Vector
Register

Vector
Register

AoS SoA

Data layout: AoS vs SoA

Automatically vectorized loops can
contain loads from not contiguous
memory locations → non-unit stride

● The compiler has issued hardware
gather/scatter instructions.

23

Proposed solution: SoA

● New particle data structure: defined as Structure of Arrays (SoA).

● From the original set, only variables used in the kernel are included in the
SoA: ~ 60 bytes per particle.

● Software gather / scatter routines.

● Minimally invasive code changes:
● SoA in the kernel.
● AoS exposed to other parts of the code.

Data layout

24

Implementation details

Data layout

struct ParticleSoA
{
 float *pos_x, … , *vel_x, …, mass;
}
Particle_SoA P_SoA;

P_SoA.pos_x = malloc(N*sizeof(float));

…

…

rho += P_AoS[j].mass*w;

vel_x += P_AoS[j].vel_x;

…

…

rho += P_SoA.mass[j]*w;

vel_x += P_SoA.vel_x[j];

…

struct ParticleAoS
{
 float pos[3], vel[3], mass;
}
Particle_AoS *P_AoS;
P_AoS = malloc(N*sizeof(Particle_AoS);

void gather_Pdata(struct Particle_SoA *dst, struct Particle_AoS *src, int N)

for(int i = 0, i < N, i++){

 dst ­> pos_x[i] = src[i].pos[1]; dst ­> pos_y[i] = src[i].pos[2]; …

}

25

AoS to SoA: performance outcomes
● Gather+scatter overhead at

most 1.8% of execution time.
→ intensive data-reuse

● Performance improvement:
● on IVB: 13%, on KNC: 48%

● Xeon/Xeon Phi performance
ratio: from 0.15 to 0.45.

● The data structure is now
vectorization-ready.

Data layout

1/exec.time
higher is better

26

Optimizing for vectorization

● Modern multi/many-core architectures rely on vectorization as an additional
layer of parallelism to deliver performance.

● Mind the constraint: keep Gadget readable and portable for the wide user
community! Wherever possible, avoid programming in intrinsics.

● Analysis with Intel® Advisor 2016:
• Most of the vectorization potential (10 to 20% of the workload) in the

kernel “compute” loop.
• Prototype loop in Gadget: iteration over the neighbors of a given particle.

● Similarity with many other N-body codes.

Vectorization

27

Vectorization: improvements from IVB to KNL

● Vectorization through localized
masking (if-statement moved
inside the inlined functions).

● Vector efficiency:
 perf. gain / vector length

 on IVB: 55%
 on KNC: 42%
 on KNL: 83%

Vectorization

- Yellow + red bar: kernel workload
- Red bar: target loop for vectorization

28

Node-level performance comparison between HSW,
KNC and KNL

Features of the KNL tests:
● KMP Affinity: scatter;

Memory mode: Flat;
MCDRAM via numactl;
Cluster mode: Quadrant.

Results:
● Our optimization improves the

speed-up on all systems.
● Better threading scalability up

to 136 threads on KNL.
● Hyperthreading performance is

different between KNC and KNL.

Performance results on Knights Landing

29

Performance comparison: first results including KNL
and Broadwell

● Initial vs. optimized including all
optimizations for subfind_density

● IVB, HSW, BDW: 1 socket w/o
hyperthreading.
KNC: 1 MIC, 240 threads.
KNL: 1 node, 136 threads.

● Performance gain:
● Xeon Phi: 13.7x KNC, 20.1x KNL.
● Xeon: 2.6x IVB, 4.8x HSW,

4.7x BDW.

Performance results

lower is better

30

Summary and outlook

● Code modernization as the iterative process for improving the performance of an
HPC application.

● Our IPCC example: P-Gadget3.
Threading parallelism
Data layout Key points of our work, guided by analysis tools.
Vectorization

● This effort is (mostly) portable! Good performance found on new architectures (KNL
and BDW) basically out-of-the-box.

● For KNL, architecture-specific features (MCDRAM, large vector registers and NUMA
characteristics) are currently under investigation for different workloads.

● Investment on the future of well-established community applications, and crucial for
the effective use of forthcoming HPC facilities.

https://arxiv.org/abs/1612.06090

31

Acknowledgements

● Research supported by the Intel® Parallel Computing Center program.
● Project coauthors: Nicolay J. Hammer (LRZ), Vasileios Karakasis (CSCS).

● P-Gadget3 developers: Klaus Dolag, Margarita Petkova, Antonio Ragagnin.
● Research collaborator at Technical University of Munich (TUM): Nikola Tchipev.

● TCEs at Intel: Georg Zitzlsberger, Heinrich Bockhorst.
● Thanks to the IXPUG community for useful discussion.

● Special thanks to Colfax Research for proposing this contribution to the MC² Series,
and for granting access to their computing facilities.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

