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Intel® Parallel Computing Centers (IPCC) 

● The IPCCs are an Intel initiative for code 
modernization of technical computing codes.

● The work primary focus on code optimization 
increasing parallelism and scalability on 
multi/many core architectures.
 

● Currently ~70 IPCCs are funded worldwide.

● Our target is to prepare the simulation software 
for new platforms achieving high
nodel-level performance and multi-node 
scalability.
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Outline of the talk

Preprint of this work: https://arxiv.org/abs/1612.06090

● Overview of the code: P-Gadget3 and SPH.

● Challenges in code modernization approach.

● Multi-threading parallelism and scalability.

● Enabling vectorization through:
Data layout optimization (AoS → SoA).
Reducing conditional branching.

● Performance results and outlook.
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Gadget intro

● Leading application for simulating the 
formation of the cosmological large-scale structure 
(galaxies and clusters) and of processes at 
sub-resolution scale (e.g. star formation, metal 
enrichment).

● Publicly available, cosmological 
TreePM N-body + SPH code.

● Good scaling performance up to 
O(100k) Xeon cores 
(SuperMUC @ LRZ).

Introduction



6

Smoothed particle hydrodynamics (SPH)

Introduction

● SPH is a Lagrangian particle method for solving the equations of fluid 
dynamics, widely used in astrophysics.

● It is a mesh-free method, based on a particle discretization of the 
medium. 

● The local estimation of gas density (and all other derivation of the 
governing equations) is based on a kernel-weighted summation over 
neighbor particles:
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Gadget features 

Introduction

The code can be run at different levels of 
complexity:

● N-Body-only (a.k.a. dark matter) simulations.

● N-Body + gas component (SPH).

● Additional physics (sub-resolution) modules:
radiative cooling, star formation,…

● More physics → more memory required
per particles (up to ~ 300B / particle). 
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Features of the code

Gadget features

● Gadget has been first developed in the late 90s as serial code, has later 
evolved as an MPI and a hybrid code.

● After the last public release Gadget-2, many research groups all over the 
world have developed their own branches. 

● The branch used for this project (P-Gadget3) has been used for more than 
30 research papers over the last two years.  

● The code have  ~200 files, ~400k code lines, extensive use of #IFDEF, ext. 
libs (fftw,hdf5).
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Basic principles of our development

Basic principle of our development

● Our intention is to ensure:
● Portability on all modern architectures (Intel® Xeon/MIC, Power, GPU,…);
● Readability for non-experts in HPC;
● Consistency with all the existing functionalities.

● We perform code modifications which are minimally invasive.

● The domain scientists have to be able to modify the code without coping 
with performance questions.
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Code modernization approach

Code modernization

● Scalar optimization: compiler flags, data casting, precision consistency.

● Vectorization: prepare the code for SIMD, avoid vector dependencies.

● Memory access: improve data layout, cache access.

● Multi-threading: enable OpenMP, manage scheduling and pinning.

● Communication: enable MPI, offloading computation. 

https://software.intel.com/en-us/articles/what-
is-code-modernization; colfaxresearch.com
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Code modernization approach

Code modernization

● Scalar optimization: compiler flags, data casting, precision consistency.

● Vectorization: prepare the code for SIMD, avoid vector dependencies.

● Memory access: improve data layout, cache access.

● Multi-threading: enable OpenMP, manage scheduling and pinning.

● Communication: enable MPI, offloading computation. 

https://software.intel.com/en-us/articles/what-
is-code-modernization; colfaxresearch.com

Preparation for the next generation processors and efficient usage of the current 
hardware
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Target architectures for our project

Intel® architectures

● E5-2650v2 Ivy-Bridge (IVB) @ 2.6 GHz, 
8-cores / socket.       
TDP: 95W, RCP: $1116.

● AVX. 

Intel® Xeon processor Intel® Xeon Phi™ coprocessor
1st generation

● Knights Corner (KNC) coprocessor 5110P 
    @ 1.1GHz, 60 cores.             
    TDP: 225W, RCP: N/D.

● Native / offload computing.

● Directly login via ssh.

● SIMD 512 bits.
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Further tested architectures

Intel® architectures

● E5-2697v3 Haswell (HSW) @ 2.3 GHz, 
14-cores / socket.   
TDP: 145W, RCP: $2702.

● AVX2, FMA. 

● E5-2699v4 Broadwell (BDW) @ 2.2 GHz,     
22-cores / socket.
TDP: 145W, RCP: $4115.

● AVX2, FMA. 

Intel® Xeon processors

● Knights Landing (KNL) Processor 7250 
    @ 1.4 GHz, 68 cores.            
    TDP: 215W, RCP: $4876.

● Available as bootable processor.

● Binary-compatible with x86.

● High bandwidth memory.

● New AVX512 instructions set.

Intel® Xeon Phi™ processor
2nd generation
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Optimization strategy 

Optimization strategy

● We isolate the representative code kernel subfind_density and run it in as
a stand-alone application, avoiding the overhead from the whole simulation.

● As most code components, it consists of two sub-phases of nearly equal 
execution time (40 to 45% for each of them), namely the neighbour-finding 
phase and the remaining physics computations. 

● Our physics workload: ~ 500k particles. This is a typical workload per node of 
simulations with moderate resolution.  

● We focus mainly on node-level performance. 

● We use tools from the Intel® Parallel Studio XE (VTune Amplifier and Advisor).
 

Simulation details: 
www.magneticum.org
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Isolation of a kernel code

Data serialization

● Serialization: the process of converting data structures or objects into 
a format that can be stored and easily retrieved.

● This allows to isolate the computational kernel using realistic input 
workload (~ 551MB).

● Dumping data for compression.

Object Byte stream Byte streamByte stream ObjectDB

file

mem
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Initial profiling

Multi-threading parallelism

thread spinning

● Severe shared-memory 
parallelization overhead

● At later iterations, the 
particle list is locked and 
unlocked constantly due 
to the recomputation

● Spinning time 41%
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Algorithm pseudocode

Subfind algorithm

more_particles = partlist.length;
while(more_particles){
  int i=0;                 
  while(!error && i<partlist.length){
  #pragma omp parallel
  {
    #pragma omp critical
    {

   p = partlist[i++];  
    }
    if(!must_compute(p)) continue;
    ngblist = find_neighbours(p);
    sort(ngblist);
    for(auto n:select(ngblist,K)) 
       compute_interaction(p,n);
  }
  more_particles = mark_for_recomputation(partlist);
}

while loop over the full particle list

each thread gets the next particle    
(private p) to process

check for computation

actual computation
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Removing lock contention

Subfind algorithm

todo_partlist = partlist;

while(partlist.length){
  error=0;
  #pragma omp parallel for schedule(dynamic)
  for(auto p:todo_partlist){
    if(something_is_wrog) error=1;
    ngblist = find_neighbours(p);
    sort(ngblist);
    for(auto n:select(ngblist,K)) 
       compute_interaction(p,n);
  }

//...check for any error
  todo_particles = mark_for_recomputation(partlist);
}

creating a todo particle list

iterations over the todo list 
(private ngblist)

actual computation

No-checks for computation
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Improved performance

Multi-threading parallelism

no spinning

● Lockless scheme

● Time spent in spinning 
only 3%
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Improved speed-up

Multi-threading parallelism

● On IVB 
● speed-up: 1.8x
● parallel efficiency: 92%

● On KNC
● speed-up: 5.2x 
● parallel efficiency: 57%
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Obstacles to efficient auto-vectorization

for(n = 0, n < neighboring_particles, n++ ){

    j = ngblist[n];   

           

    if (particle n within smoothing_length){   
                        

       inlined_function1(…, &w);

       inlined_function2(…, &w);

       rho   += P_AoS[j].mass*w;

       vel_x += P_AoS[j].vel_x;

       …

       v2 += vel_x*vel_x + … vel_z*vel_z;      

   }

Target loop

for loop over neighbors

check for computation

computing physics

Particles properties via

AoS
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struct ParticleAoS
{
  float pos[3];
  float vel[3];
  float mass;
}

struct ParticleSoA
{
  float *pos_x, *pos_y, *pos_z;
  float *vel_x, *vel_y, *vel_z;
  float mass;
}

Data layout
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Vector
Register
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AoS SoA

Data layout: AoS vs SoA

Automatically vectorized loops can 
contain loads from not contiguous 
memory locations  → non-unit stride 

● The compiler has issued hardware 
gather/scatter instructions.
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Proposed solution: SoA

● New particle data structure: defined as Structure of Arrays (SoA).

● From the original set, only variables used in the kernel are included in the 
SoA:  ~ 60 bytes per particle.

● Software gather / scatter routines.

● Minimally invasive code changes: 
● SoA in the kernel. 
● AoS exposed to other parts of the code.

 

Data layout
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Implementation details

Data layout

struct ParticleSoA
{
  float *pos_x, … , *vel_x, …, mass;
}
Particle_SoA P_SoA;

P_SoA.pos_x = malloc(N*sizeof(float));

…

       

…

rho   += P_AoS[j].mass*w;

vel_x += P_AoS[j].vel_x;

…

       

…

rho   += P_SoA.mass[j]*w;

vel_x += P_SoA.vel_x[j];

…

       

struct ParticleAoS
{
  float pos[3], vel[3], mass;
}
Particle_AoS *P_AoS;
P_AoS = malloc(N*sizeof(Particle_AoS);

    

void gather_Pdata(struct Particle_SoA *dst, struct Particle_AoS *src, int N )

for(int i = 0, i < N, i++ ){

    dst ­> pos_x[i] = src[i].pos[1]; dst ­> pos_y[i] = src[i].pos[2]; … 

}   
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AoS to SoA: performance outcomes
● Gather+scatter overhead at 

most 1.8% of execution time.   
→ intensive data-reuse

● Performance improvement: 
● on IVB:  13%, on KNC: 48%

● Xeon/Xeon Phi performance 
ratio: from 0.15 to 0.45.

● The data structure is now 
vectorization-ready.

Data layout

1/exec.time
higher is better
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Optimizing for vectorization

● Modern multi/many-core architectures rely on vectorization as an additional 
layer of parallelism to deliver performance.

● Mind the constraint: keep Gadget readable and portable for the wide user 
community! Wherever possible, avoid programming in intrinsics.

● Analysis with Intel® Advisor 2016:
• Most of the vectorization potential (10 to 20% of the workload) in the 

kernel “compute” loop.
• Prototype loop in Gadget: iteration over the neighbors of a given particle.

● Similarity with many other N-body codes.

Vectorization
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Vectorization: improvements from IVB to KNL

● Vectorization through localized 
masking (if-statement moved 
inside the inlined functions).

● Vector efficiency:  
       perf. gain / vector length

   on IVB:  55%
   on KNC: 42% 
   on KNL: 83%

Vectorization

- Yellow + red bar: kernel workload
- Red bar: target loop for vectorization
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Node-level performance comparison between HSW, 
KNC and KNL

Features of the KNL tests:
● KMP Affinity: scatter; 

Memory mode: Flat; 
MCDRAM via numactl; 
Cluster mode: Quadrant. 

Results:
● Our optimization improves the 

speed-up on all systems.
● Better threading scalability up 

to 136 threads on KNL.
● Hyperthreading performance is 

different between KNC and KNL.

Performance results on Knights Landing
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Performance comparison: first results including KNL 
and Broadwell 

● Initial vs. optimized including all 
optimizations for subfind_density

● IVB, HSW, BDW: 1 socket w/o 
hyperthreading.                                   
KNC: 1 MIC, 240 threads.                     
KNL: 1 node, 136 threads.

● Performance gain: 
● Xeon Phi: 13.7x KNC, 20.1x KNL.
● Xeon: 2.6x IVB, 4.8x HSW, 

4.7x BDW.

Performance results

lower is better
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Summary and outlook

● Code modernization as the iterative process for improving the performance of an 
HPC application.

● Our IPCC example: P-Gadget3.
Threading parallelism
Data layout                             Key points of our work, guided by analysis tools. 
Vectorization

● This effort is (mostly) portable! Good performance found on new architectures (KNL 
and BDW) basically out-of-the-box.

● For KNL, architecture-specific features (MCDRAM, large vector registers and NUMA 
characteristics) are currently under investigation for different workloads.

● Investment on the future of well-established community applications, and crucial for 
the effective use of forthcoming HPC facilities.  

https://arxiv.org/abs/1612.06090
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