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Abstract
In-place matrix transposition, a standard operation in linear algebra, is a memory bandwidth-bound operation. The

theoretical maximum performance of transposition is the memory copy bandwidth. However, due to non-contiguous
memory access in the transposition operation, practical performance is usually lower. The ratio of the transposition rate
to the memory copy bandwidth is a measure of the transposition algorithm efficiency.

This paper demonstrates and discusses an efficient C language implementation of parallel in-place square matrix
transposition. For large matrices, it achieves a transposition rate of 49 GB/s (82% efficiency) on Intel Xeon CPUs
and 113 GB/s (67% efficiency) on Intel Xeon Phi coprocessors. The code is tuned with pragma-based compiler hints
and compiler arguments. Thread parallelism in the code is handled by OpenMP, and vectorization is automatically
implemented by the Intel compiler. This approach allows to use the same C code for a CPU and for a MIC architecture
executable, both demonstrating high efficiency. For benchmarks, an Intel Xeon Phi 7110P coprocessor is used.
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1 WHY MATRIX TRANSPOSITION IS DIFFICULT

1 Why Matrix Transposition is Difficult
In computer memory, two-dimensional arrays are typically laid out in row-major or column-major for-

mat. With row-major layout, adjacent elements within each row are contiguous in memory, and one row
follows another. Traversing a row-major matrix along columns is much slower than traversing it along rows,
because in the latter case, memory is accessed with a stride equal to the row length. Therefore, for algo-
rithms that must traverse the matrix data in the sub-optimal direction, it may be cheaper to transpose the data
and modify the algorithm to access memory in the more efficient row-wise direction.

Transposition looks simple on paper: this operation swaps matrix rows with columns, as shown in Equa-
tion 1. However, when transposition is performed in computer memory, the order in which matrix elements
are swapped tremendously impacts performance. The theoretical maximum performance of shared-memory
matrix transposition is equal to the memory copy bandwidth, because the matrix data must be read once and
written once to a different location. Yet, an architecture-unaware algorithm may perform several times to an
order of magnitude slower than that.

A =

 a11 a12 . . . a1n
a21 a22 . . . a2n

. . .
an1 an2 . . . ann

 , AT =

 a11 a21 . . . an1
a12 a22 . . . an2

. . .
a1n a2n . . . ann

 . (1)

Most computer architectures, including the Intel MIC architecture, achieve high memory bandwidth
when data in memory are accessed contiguously. However, whether the matrix is laid out in a row-major
or column-major format, in the course of transposition, non-contiguous memory accesses must occur some-
where. For instance, for the row-major format, if the algorithm reads the original matrix along a row, then
the read access to memory is contiguous, but when it writes the transposed data, it must write into a col-
umn, where adjacent elements are separated in memory by the stride equal to the length of the matrix row.
Conversely, if the algorithm writes contiguously (along a row), it must read with a stride (along a column).
Figure 1 illustrates that difficulty.
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Figure 1: Transposition of a square matrix in a row-major layout on a computer architecture where a cache line fits 8 matrix elements.
If the algorithm performs streaming read, it must do scattered write, and vice-versa.

The need for contiguous memory access is rooted in the memory architecture. In order to achieve the
best bandwidth, memory in most computer architectures, including Intel Xeon Phi coprocessors, is accessed
with a granularity of a cache line. When a core reads or writes a single data element in memory, the memory
controller transfers a whole cache line containing that element from RAM to cache, or to the core. Cache
lines in Intel Xeon CPUs and Xeon Phi coprocessors are 64 bytes long. In other words, after a double-
precision (8 bytes long) element a11 of a matrix is fetched from memory, it costs nothing to access a12
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1 WHY MATRIX TRANSPOSITION IS DIFFICULT

through a18; however, accessing a19 or a21 will require an additional memory access1. As Figure 1 shows,
the nature of matrix transposition causes the algorithm to either read from one and write to many cache lines,
or vice-versa. In addition to this, the virtual memory in Linux is mapped into virtual memory pages, and
when too many large-stride accesses occur, the lookup of the page mapping may incur additional delays.

In order to overcome the difficulty with data access being non-local in memory space, scattered memory
accesses must be issued close to each other in time. This way, even though the algorithm will scatter to, or
gather from multiple cache lines, it will be done while these cache lines are still in the core vector registers
or in a high-level cache. As a consequence, the data will be shuffled in fast memory, and the main memory
access can be streamlined. Such optimization of data locality in time can be achieved with the help of
loop tiling (also known as loop blocking) or recursive divide-and-conquer (also known as a cache-oblivious
algorithm). These approaches have been developed by multiple authors (e.g., [1], [2], [3]); see also [4] for a
summary.

In addition to the memory traffic optimization, efficient matrix transposition requires parallelism. Utiliz-
ing all memory controllers and core-local caches in the Intel MIC architecture is possible only when multiple
cores join forces. However, work must be shared between cores in such a way that

a) There is enough work to balance the load across all cores (i.e., parallelism must be sufficiently fine-
grained), and

b) Only one core must access any given cache line at a time so that false sharing does not occur (i.e.,
parallelism must be sufficiently coarse-grained),

c) Little or no synchronization between cores is necessary.

A number of existing libraries provide efficient functions for distributed-memory transpositions, i.e.,
when matrix data are stored in multiple compute nodes that do not share memory (e.g., [5], [6]). While
distributed-memory (also called “out-of-core”) transposition is an important and, in many aspects, more dif-
ficult problem, it does not fulfill the need of applications that require efficient multithreaded transposition in
shared memory. The Intel MKL library [7] has a multithreaded implementation of in-place matrix transpo-
sition and scaling (functions mkl ?imatcopy). While mkl ?imatcopy supports non-square matrices,
its performance is highly tuned only for specific regimes of multithreading and matrix sizes2. In Section 3.7
we will see that for a broader range of matrix sizes, it is possible to perform in-place square matrix trans-
position up to 1.5x faster than with mkl ?imatcopy. Transposition on GPUs has also been studied (e.g.,
[8], [9]). However, efficient shared-memory transposition of large (i.e., large than cache) matrices on multi-
and many-core architectures seems to be under-represented in software, which motivates the development
of such an application.

In addition to the practical importance of square matrix transposition, this problem is a good educational
challenge on which general methods of optimization for multi-core CPUs and many-core coprocessors can
be studied. Indeed, cache traffic optimization simultaneously with instrumenting thread parallelism is typical
of a general class of problems that involves the processing of multidimensional arrays.

Considering these aspects, by implementing an efficient matrix transposition algorithm for the Intel MIC
architecture, I pursue two goals:

1) to produce a multi-purpose tool for matrix transposition, as this operation is universal in linear alge-
braic applications, and

2) to learn and share general optimization methods for memory traffic in general-purpose CPUs and MIC
architecture coprocessors.

1This example assumes that a11 is located at the beginning of a cache line, and that the matrix is laid out in a row-major order.
2As of MKL version 11.0.5, build date 20130612.
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2 Implementation
In a previous Colfax Research publication [4], I described my initial experiences with the implemen-

tation of the transposition algorithm for the Intel MIC architecture. Two methods of optimization were
investigated: nested loop tiling and cache-oblivious recursion, and two parallel frameworks were tested for
each method: Intel Cilk Plus and OpenMP. The results reported in [4] were quantitatively unsatisfactory, but
provided a roadmap for future work.

A new, improved implementation of the in-place square matrix transposition algorithm is discussed be-
low. This implementation corrects the issues observed in [4] and achieves a better performance for all matrix
sizes. The rest of this section describes the details of this implementation and discusses the optimization
process that has led to this result. The code of the new implementation is provided in Figure 18, and the full
benchmark code is available at the Colfax Research web site3.

2.1 Praire Schooner Speed: How not to Do Matrix Transposition
The simple transposition algorithm shown in Figure 2 is impeded by sub-optimal memory access pattern,

as described in Section 1. On the host system with Intel Xeon CPUs, this algorithm achieves a transposition
rate equal to 60-70% of the performance of the optimized algorithm discussed below. On an Intel Xeon Phi
coprocessor, this algorithm is only 25-30% as fast as the optimized implementation that we are discussing.

Figure 2: Unoptimized parallel transposition
algorithm yields unsatisfactory
performance. FTYPE is float
for single precision or double for
double precision.

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++)
3 for (int j = 0; j<i; j++) {
4 const FTYPE c = A[i*n + j];
5 A[i*n + j] = A[j*n + i];
6 A[j*n + i] = c;
7 }

The key to improving the transposition rate is modifying this algorithm with tiling or recursion. With
this optimization, the matrix is split into many sub-matrices (tiles), and a parallel algorithm for traversing
the set of tiles is chosen. When a tile is visited, it is transposed serially (by one thread) with a piece of code
hereafter referred to as the transposition microkernel. This approach is illustrated in Figure 3.

Figure 3: Schematic parallel trans-
position algorithm with
data locality improve-
ments via tiling.

1 #pragma omp parallel for
2 for (int tile = 0; tile < nTiles; tile++) {
3 // Traversal of the set of tiles:
4 const int ii = // ... choose the x-location of the tile
5 const int jj = // ... choose the y-location of the tile
6
7 // Tile transposition microkernel:
8 for (int i = ii; i < ii+TILE; ii++)
9 for (int j = jj; j < jj+TILE; jj++) {

10 // ... swap A_ij with A_ji
11 const FTYPE c = A[i*n + j];
12 A[i*n + j] = A[j*n + i];
13 A[j*n + i] = c;
14 }
15 }

The choice of the traversal algorithm and the optimization of the transposition microkernel are discussed
in this Section.

3http://research.colfaxinternational.com/post/2013/08/12/Trans-7110.aspx
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2 IMPLEMENTATION

2.2 Team Penning: Regularizing the Vectorization Pattern
In my previous publication [4], the tile traversal algorithm visited all tiles in the matrix, including the

tiles that contain the main diagonal of the matrix, and the tiles at the edges of the matrix. The implementation
of a single tile transposition microkernel from [4] is shown in Figure 4.

Figure 4: Sub-optimal transposition
microkernel from [4] with a
check for reaching the main
diagonal or the matrix edge.

1 const int iMax = (n < ii+TILE ? n : ii+TILE);
2 for (int i = ii; i < iMax; i++) {
3 const int jMax = (i < jj+TILE ? i : jj+TILE);
4 #pragma loop count avg(TILE)
5 #pragma simd
6 for (int j = jj; j<jMax; j++) {
7 const FTYPE c = A[i*n + j];
8 A[i*n + j] = A[j*n + i];
9 A[j*n + i] = c;

10 }
11 }

Here TILE is a constant known at compile time, empirically chosen as TILE=32. The inner loop in
j has a variable upper bound jMax. This is to control that the inner loop index j is never greater than the
outer loop index i. Otherwise, the corresponding matrix element would be transposed twice. More often
than not, jMax==jj+TILE — this is the case for all tiles except those that contain the main diagonal of
the matrix. In addition, the outer loop in i has a variable upper bound iMax, which makes sure that if the
tile is at the edge of the matrix, the microkernel does not access the matrix out of bounds. Again, for most
tiles, iMax==ii+TILE — unless the tile is at the edge of the matrix.

This microkernel is general, but sub-optimal, because the iteration count of the inner loop in j is not
known at compile time. As a consequence, the compiler must implement multiple executable codes for
this loop, and produce runtime checks which take different code paths, depending on whether the runtime
value of the loop count is a multiple of the SIMD vector length or not. The compiler hint “#pragma
loop count avg(TILE)” helps somewhat by advising the compiler that the most frequent case is
jMax==jj+TILE (for tiles that are away from the main diagonal and from the matrix edges). However,
runtime checks and the choice of the execution path still have to be performed for each transposed tile.

It is possible to improve the transposition performance by modifying the microkernel to have constant
loop bounds. This would regularize the vectorization pattern and enable the compiler to produce a more
efficient executable code. In order to do that, the tile traversal algorithm must be modified so that the
microkernel is applied only to tiles “well-behaved” tiles, i.e., tiles that do not contain the main diagonal, and
are not at the matrix edges.

Figure 5: In order to simplify the microker-
nel for the transposition of a sin-
gle tile, the tile traversal algorithm
is modified. Matrix body tiles
(shown in blue) that do not con-
tain the main diagonal and do not
touch the matrix edges are pro-
cessed using an optimized micro-
kernel (Figure 6). The rest of
the tiles (the main diagonal tiles
and the “peel” around the matrix
edges) are processed separately.
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                                           — BODY TILES

                                                             — MAIN DIAGONAL TILES
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As Figure 5 shows, in the present implementation we partition the matrix into three regions.
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1. The matrix body tiles (shown in blue) comprise the bulk of the matrix data. For these tiles, a simplified
transposition microkernel is used (see Figure 6, top panel), which does not have to check for proximity
to the main diagonal and the matrix edges.

2. The tiles that contain the main diagonal (shown in yellow) are transposed in a separate loop, using
a different microkernel (see Figure 6, bottom left panel), in which the inner vector loop in i has a
termination condition i>=j. This renders the vector form of this loop less efficient, however, it is
required for producing the correct result of transposition.

3. Finally, the tiles around the edges of the matrix (the “peel”) are transposed in a third loop using a
microkernel shown in Figure 6 bottom right panel, which performs checks for proximity to the edges
to avoid out-of-bounds memory accesses. In this case, #pragma simd is not used, and therefore
automatic vectorization is not mandatory. Due to the short length of the inner loop, vectorization may,
in fact, be counter-productive.

Because the tile size does not depend on the matrix size n, the number of tiles in the matrix body scales
as O(n2). The number of the main diagonal tiles and the “peel” tiles scales as O(n). Therefore, for large n,
the fraction of work in the body tiles asymptotically approaches 100%.

1 // Tile transposition microkernel
2 // for main body tiles
3 for (int j = jj; j < jj + TILE; j++) {
4 #pragma simd
5 for (int i = ii; i < ii + TILE; i++) {
6 const FTYPE c = A[i*n + j];
7 A[i*n + j] = A[j*n + i];
8 A[j*n + i] = c;
9 }

10 }

1 // Tile transposition microkernel
2 // for tiles on the main diagonal
3 for (int j = jj; j < jj+TILE; j++) {
4 #pragma simd
5 for (int i = ii; i < j; i++) {
6 const FTYPE c = A[i*n + j];
7 A[i*n + j] = A[j*n + i];
8 A[j*n + i] = c;
9 }

10 }

1 // Transposition algorithm
2 // for elements at the edges of the matrix
3 const int nEven = n - n%TILE;
4 for (int j = 0; j < nEven; j++) {
5 for (int i = nEven; i < n; i++) {
6 const FTYPE c = A[i*n + j];
7 A[i*n + j] = A[j*n + i];
8 A[j*n + i] = c;
9 }

10 }

Figure 6: Optimized transposition microkernels. Top: for the bulk of the tiles, with constant loop bounds known at compile time.
Bottom left: for tiles containing the main diagonal. Bottom right: for elements at the edges of the matrix (the “peel”).

As opposed to transposing all of the tiles with one general microkernel (as done in [4]), the partitioning
of the matrix into three regions and using an optimized microkernel for the “well-behaved” regions increases
the amount of code and makes it less abstract. However, it improves the performance by approximately 20%.
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2.3 Square Dance: Matrix Traversal Algorithm
The indexes ii and jj in the codes in Figure 6 are the column and row of the top left element of a

single tile. The algorithm for choosing the values of ii and jj determines in what order the set of tiles is
traversed. An essential part of this algorithm is the parallelization of the work across processor cores.

In the previous work [4], two methods of matrix traversal were implemented:

1. A method with two nested loops, which sequentially increment the tile row (outer loop) and column
(inner loop). This method had the disadvantage that only the outer loop was parallelized, while the
inner loop ran serially in each thread, which caused insufficient parallelism for small matrix sizes. In
this case then the number of parallel work items (rows of tiles) is ≈n/TILE. The empirical optimal
value of TILE is 32, and the Intel Xeon Phi coprocessor supports 240 or 244 threads (depending on
the model). For matrix sizes less than 8000 × 8000, the value n/TILE is smaller than 240, so there
is not enough work to occupy all threads. Furthermore, small values of ii have less work than large
values of ii, so load imbalance may occur. This approach is illustrated in the left-hand side panel of
Figure 7.

2. A recursive cache-oblivious divide-and-conquer method, in which the matrix is recursively split hor-
izontally or vertically into sub-matrices, until the sub-matrix size is small enough. These smallest
sub-matrices (tiles) are then transposed individually. The recursive method did not have the insuffi-
cient parallelism issue: the granularity of parallelism with recursion is a single tile, as shown in the
right-hand side panel of Figure 7. This makes the number of parallel work-items (tiles) approximately
equal to (n*n)/(2*TILE). For TILE=32, and for matrices greater than 700 × 700, there are at
least 240 work-items, which means that workload can be balanced across the 240 logical cores of the
coprocessor. However, the parallel scheduling overhead of the recursive method was too high because
of a large number of parallel tasks that needed to be scheduled.

  

                                        — TILES

OpenMP 
threads

— MATRIX ELEMENTS

  

                                        — TILES

OpenMP 
threads

— MATRIX ELEMENTS

Figure 7: Left: matrix traversal with nested loops in previous work [4]: rows of tiles are distributed across threads (insufficient par-
allelism, load imbalance). Right: matrix traversal with the tile-size granularity of parallelism (more parallelism, better
opportunities for load balancing).

In the new implementation discussed here, the nested loop and the recursive tile traversal algorithms are
implemented again. However, in order to alleviate the scheduling difficulties encountered in [4], the new
implementation

a) parallelizes the nested loop algorithm with a tile-size granularity, and

b) uses a planning stage to generate the order of tile traversal prior to executing the transposition, which
reduces the parallel overhead.

The planning routine must be called for a given matrix size prior to calling the transposition method.
This routine calculates the locations of all tiles in the main body of the matrix (blue region in Figure 5) and
writes them into a pre-allocated array in the required order. Then the transposition routine reads the tile
locations from this array (see, e.g., lines 5 and 6 in Figure 3). An example of the planning routine, the nested
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loop traversal algorithm, is shown in Figure 8. The planning routine for the recursive algorithm is not shown
due to its length. However, the complete benchmark code can be downloaded along with this PDF file from
the Colfax Research web site.

1 void NestedLoopTranspositionPlan(int* const plan, const int n) {
2
3 // Number of complete tiles in each dimension
4 const int wTiles = n / TILE;
5 int i = 0;
6
7 // Tiled plan
8 for (int j = 1; j < wTiles; j++)
9 for (int k = 0; k < j; k++) {

10 plan[2*i + 0] = j*TILE; // Value of ii
11 plan[2*i + 1] = k*TILE; // Value of jj
12 i++;
13 }
14 }

Figure 8: Planning routine for the nested loop tile traversal algorithm. Only those tiles that do not touch the main diagonal or the matrix
edges are traversed.

Figure 9 illustrates the nested and recursive tile traversal plans. In the nested loop algorithm (left-hand
side panel), the algorithm starts in the top left corner of the main matrix body and then traverses each row of
tiles from the left to the main diagonal. The chosen tile is transposed and swapped with the corresponding
tile symmetrically located above the main diagonal. The recursive algorithm also starts in the top left corner,
but traverses the tiles in a more complex fashion, striving to choose the next tile close in the horizontal as
well as in the vertical direction to the previous tile.
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Figure 9: Left: plan of matrix transposition with the nested loop tile traversal algorithm. Right: plan with the recursive cache-oblivious
method. Numbers in the tiles indicate the order in which the tiles are visited and the transposition microkernel (Figure 6,
top) is applied to each of them.

Both algorithms traverse only the tiles that do not touch the main diagonal or the edges of the matrix,
as justified in Section 2.2. Both algorithms strive to maintain data locality by choosing the next tile close to
the previous. According to [3], the recursive algorithm has the best asymptotic cache hit ratio. However, in
practice, we have found on the Intel Xeon Phi coprocessor, in many cases, the nested loop algorithm is the
winner (see Section 3).
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2.4 Flying Gallop to RAM: Prefetching and Non-temporal Stores
With the tile traversal algorithm chosen, and the transposition microkernel optimized, the remaining op-

timizations are done in the compiler arguments and environment variables. This section focuses on methods
that improve the efficiency of reading and writing data from/to memory.

In order to optimize the read performance, prefetching can be used. Prefetching is a function of caches
available in CPUs and in the MIC architecture, which allows to request the movement of a cache line from
the RAM into a cache ahead of the time when these data are used by the core. This allows to mask the
memory access latency behind calculations. Prefetch instructions can be issued by dedicated hardware
units (hardware prefetching) or by the application itself (software prefetching). Intel Xeon CPUs have
Level-1 and Level-2 cache hardware prefetchers, and Intel Xeon Phi coprocessors have only Level-2 cache
hardware prefetchers. Therefore, for Intel Xeon Phi applications, software prefetch instructions are cru-
cial for performance, and they are usually inserted into the executable code by the compiler automatically.
However, it is possible to override the prefetch distance chosen by the compiler (i.e., how many vector
loop iterations ahead a prefetch instruction is issued). We have found that using the compiler argument
“-opt-prefetch-distance=8” improves the performance by an additional 1-2%.

In order to optimize the writing performance, the transposition routine can use non-temporal stores. With
non-temporal stores, written data are flushed to RAM, bypassing caches. This avoids cache contamination
with unnecessary data and makes a greater cache capacity available to the read operation. Non-temporal
stores are suitable for the transposition operation, because once the transposed tile is written, its data are not
re-used in the course of transposition. This type of write operations can be requested by using the compiler
argument “-opt-streaming-stores always”. Alternatively, the Intel C++ compiler can implement
non-temporal stores for a single loop if “#pragma vector nontemporal” is placed before this loop.
In the present work, the former method (the compiler argument) is used. Non-temporal stores improve the
transposition performance by approximately 2%.

Figure 10: Software prefetching: processor requests
the cache to fetch data from the main
memory ahead of time. Prefetch distance
is estimated by the compiler heuristically,
but can be overridden by the compiler argu-
ment “-opt-prefetch-distance=n”.
Non-temporal stores: processor writes
data directly to the main memory, by-
passing the cache. Compiler argument
“-opt-streaming-stores always”
enforces non-temporal write operations for
the compiled object file.
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2 IMPLEMENTATION

2.5 Mustang Taming: Thread Affinity
By default, OpenMP threads are allowed to migrate from one logical and physical core to another in

the course of application execution. This often leads to decreased performance, because when a thread (i.e.,
an instance of a parallel code) moves from one physical core to another, it loses access to the data in the
local caches of that core. It is possible to improve the application performance and reduce the performance
fluctuations by binding OpenMP threads to logical or physical cores. The mapping of OpenMP threads to
logical and physical cores is called thread affinity.

In the present implementation, the thread affinity is set at runtime by using the environment variable
“KMP AFFINITY=compact”. This type of affinity places OpenMP threads with adjacent numbers as close
to each other as possible: if the current physical core is not full, then the thread is placed on that physical
core; otherwise, it is placed on the next physical core. For multi-CPU solutions, one CPU socket is filled
first, and only then are the threads placed on the next CPU. By default (unless parameter “granularity”
is specified in the affinity mask), the granularity of “compact” OpenMP affinity is a single physical core, i.e.
threads are allowed to migrate between the logical cores of a single physical core. This has no appreciable
effect on the performance of the matrix transposition application.

Figure 11: OpenMP thread affinity
of type “compact”
places consecutive
OpenMP threads as
close to each other as
possible and prevents
thread migration across
physical cores. Image
credit: Intel.

2.6 “The Good, the Bad and the Ugly” Matrix Sizes
Best results are achieved when the matrix row length is a multiple of the cache line size, which is 64

bytes in the Intel Xeon architecture as well as in the Intel Xeon Phi architecture. Therefore, the matrix size
n must be a multiple of 64/4=16 in single precision or 64/8=8 in double precision. Matrix sizes that satisfy
this condition are hereafter referred to as “good” sizes, unless they also satisfy the criterion of “ugly” (see
below). Examples of “good” matrix sizes are n=960, 8000, 22000.

A “bad” matrix size is when the matrix row length in bytes is not a multiple of the cache line length.
The problem with this size is that the first element of a matrix row is not always mapped to the beginning
of a cache line. Therefore, when the transposition microkernel reads a block of elements equal in size to
the cache line, it sometimes has to load/store data from/to two cache lines instead of one. In addition,
false sharing may occur when a cache line is shared between two tiles, and two threads processing the tiles
simultaneously modify the contents of that cache line. Examples of “bad” matrix sizes: n=962, 8051, 22004.

Finally, “ugly” matrix sizes are those for which the length of a matrix row in bytes is a multiple of the
cache set conflict length, or close to it. Cache set conflicts occur in associative caches, where any given
memory address can be mapped to only a small region of the cache, called a set. The mapping between
memory addresses and allowable cache sets repeats with a periodicity called the cache set conflict length.
For Intel Xeon Phi architecture, the cache set conflict size is 4 kilobytes. This means that data elements 4
kilobytes apart in memory are mapped to the same cache set. When an application traverses data in memory
with a stride that is a multiple of 4 kilobytes, only a fraction of the cache may be used, which decreases the
performance. Examples of “ugly” matrix sizes are n=1024, 8192, 21504.

The implementation presented here produces correct results for any matrix size. However, the highest
performance is achieved for “good” sizes. In practical applications that require transposition, it is usually
possible to choose matrix sizes so that they fall into the “good” category. If necessary, a “good” matrix size
can be achieved by padding the matrix with unused rows and columns.
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3 Benchmarks

3.1 Transposition Rate
In this paper, the performance of transposition is reported in the units of bandwidth (GB/s). The trans-

position rate is calculated by dividing the matrix size, in gigabytes, by the transposition time, in seconds,
and multiplying the result by 2:

Transposition Rate =
N ×N × sizeof(TYPE)

230 × Time
× 2, (2)

where N is the matrix size. This is the conventional way to report the transposition performance. The factor
of 2 accounts for the fact that in order to transpose the matrix, the data has to be read and then written, thus
resulting in two memory accesses per matrix element. Multiplying the size to time ratio by 2 also allows
to directly compare the results to the STREAM benchmark [10] (the “copy” test), which also multiplies the
ratio of size to time by a factor of 2. Specifically, the theoretical maximum transposition rate in the sense of
Equation (2) is equal to the STREAM “copy” bandwidth.

When comparing the present results to the previous white paper [4], note that in the latter publication,
the factor of 2 was not included in the reported transposition rate, however, it is included in the present
report.

3.2 Harware System Configuration
In this paper, all tests are run on a CX2265i-XP5 server4 with the following specifications:

1) Host system: two eight-core Intel Xeon E5-2680 processors with two-way hyper-threading, 64 GB of
DDR3 RAM at 1,333 MHz, running Cent OS 6.4, using the Intel C++ Compiler version 13.1.3.192
(Build 20130607) to compile the code;

2) Coprocessor: one 61-core Intel Xeon Phi coprocessor SKU B1QS-7110P with 16 GB of GDDR5
RAM, running the MPSS (MIC Platform Software Stack, the driver suite for Intel Xeon Phi coproces-
sors) version 2.1.6720-13.

The coprocessor and the host CPU have the ECC (error-correcting code) functionality for runtime pro-
tection against single-bit corruption of data in RAM. This functionality was enabled for all tests in this paper.
It is a known fact that disabling the ECC functionality may increase the performance of bandwidth-bound
benchmarks. However, in practical applications, the ECC mode is usually employed, and therefore for these
tests we keep ECC on.

3.3 STREAM Benchmark
In order to put the transposition performance in perspective, the STREAM benchmark [10] was run on

the host CPUs as well as on the coprocessor. The result of the STREAM “copy” test provides an upper
bound on the performance of matrix transposition. The STREAM benchmark is compiled for the host and
for the coprocessor using the following commands, as recommended in [11]:

andrey@dublin$ # Compile CPU version:
andrey@dublin$ icpc -O3 -openmp -DSTREAM_ARRAY_SIZE=64000000 -o stream stream.c
andrey@dublin$ #
andrey@dublin$ # Compile MIC version:
andrey@dublin$ icpc -O3 -openmp -DSTREAM_ARRAY_SIZE=64000000 \

-mmic -opt-prefetch-distance=64,8 -opt-streaming-cache-evict=0 -ffreestanding \
-o stream-MIC stream.c

Figure 12: Compilation of the STREAM benchmark.

4http://www.colfax-intl.com/xeonphi/CX2265i-XP5.html
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The STREAM benchmark was executed on the host as usual, and on the coprocessor in the native
execution mode. For native execution, the executable code and dependent libraries are copied to the virtual
filesystem of the coprocessor, and then the application is started directly on the device via an SSH session.
The host processor does not participate in the native application execution. See also Section 3.4, where
native execution is illustrated for the transposition benchmark.

In order to achieve optimal results, the number of threads on the host was chosen as to 16, and on the
coprocessor as 60, by setting the environment variable OMP NUM THREADS to the respective value. This
setting corresponds to using one thread per physical core on each device5. In addition, the OpenMP thread
affinity was set to type “scatter” by assigning the environment variable KMP AFFINITY=scatter.

The STREAM benchmark results are summarized in Table 1.

Test Two Intel Xeon E5-2680 Intel Xeon Phi 7110P
KMP AFFINITY scatter scatter
OMP NUM THREADS 16 60
ECC on on
Copy 60.4 GB/s 169.2 GB/s
Scale 66.0 GB/s 166.5 GB/s
Add 65.8 GB/s 174.3 GB/s
Triad 66.3 GB/s 174.1 GB/s
Theoretical Peak Bandwidth 102.4 GB/s 352 GB/s

Table 1: Results of the STREAM benchmark.

The theoretical peak bandwidth of the host system with two Intel Xeon E5-2860 CPUs is 102.4 GB/s
[12], and so the STREAM benchmark achieves 60-65% efficiency. For the Intel Xeon Phi 7110P coproces-
sor, the theoretical peak bandwidth is 352 GB/s [13], and STREAM tests are 48-50% efficient.

3.4 Compilation and Execution
Figure 13 shows the command lines used to compile the double precision version of the matrix transpo-

sition application. These commands include the compiler flags discussed in Section 2.4:

andrey@dublin$ # CPU version:
andrey@dublin$ icpc -c Transpose.cc -o Transpose-dp-CPU.o \

-DDOUBLE -O3 -openmp -opt-prefetch-distance=8
andrey@dublin$ icpc -c Main.cc -o Main-dp-COU.o -DDOUBLE -O3 -openmp
andrey@dublin$ icpc -o runme-dp-CPU Main-dp-CPU.o Transpose-dp-CPU.o -O3 -openmp
andrey@dublin$ #
andrey@dublin$ # MIC version:
andrey@dublin$ icpc -c Transpose.cc -o Transpose-dp-MIC.o \

-DDOUBLE -O3 -openmp -mmic -opt-prefetch-distance=8 -opt-streaming-stores always
andrey@dublin$ icpc -c Main.cc -o Main-dp-MIC.o -DDOUBLE -O3 -openmp -mmic
andrey@dublin$ icpc -o runme-dp-MIC Main-dp-MIC.o Transpose-dp-MIC.o -O3 -openmp -mmic

Figure 13: Compilation of the double precision version of the transposition benchmark for the CPU (executable file runme-dp) and
for the coprocessor (executable file runme-dp-MIC).

The resulting executable runme-dp is compiled for the Intel Xeon architecture, and runme-dp-MIC
is compiled for native execution on Intel Xeon Phi coprocessors. For running the code (see Figure 14),

5Even though the 7110P coprocessor contains 61 cores, STREAM performs better with 60 threads. The extra core can be beneficial
in offload applications, where this core is dedicated to offload task management.
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the environment variable KMP AFFINITY=compact was used, as discussed in Section 2.5. The value
of OMP NUM THREADS was chosen as 32 on the host (16 cores with 2-way hyper-threading), and 244 on
the coprocessor (61 cores with 4-way hyper-threading). For native execution, the executable file and the
libraries used by it are transferred to the coprocessor’s virtual file system using the command scp. Then
the user can obtain a shell using the ssh client, set up the environment variables, and launch the application
directly on the Intel Xeon Phi coprocessor.

andrey@dublin$ # Benchmark on the CPU-based host
andrey@dublin$ export KMP_AFFINITY=compact
andrey@dublin$ export OMP_NUM_THREADS=32
andrey@dublin$ ./runme-dp-CPU
...
andrey@dublin$ #
andrey@dublin$ # Benchmark on the MIC-based coprocessor
andrey@dublin$ # Copy required libraries to the coprocessor:
andrey@dublin$ scp /opt/intel/composer_xe_2013.5.192/compiler/lib/mic/libiomp5.so mic0:˜/
andrey@dublin$ # Copy the code to the coprocessor:
andrey@dublin$ scp runme-dp-MIC runme-sp-MIC mic0:˜/
andrey@dublin$ # Log in to the coprocessor to run the code:
andrey@dublin$ ssh mic0
andrey@dublin-mic0$ export KMP_AFFINITY=compact
andrey@dublin-mic0$ export OMP_NUM_THREADS=244
andrey@dublin-mic0$ export LD_LIBRARY_PATH=.
andrey@dublin-mic0$ ./runme-dp-MIC
...
andrey@dublin-mic0$ exit
andrey@dublin$ #

Figure 14: Execution of the transposition benchmark on the host and on the coprocessor in the native execution mode.

The text output of the benchmark was collected, parsed and presented in plots and tables in Section 3.5
and 3.6. Like with the STREAM benchmark, the ECC functionality of the host and the coprocessor was
enabled for all tests.
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3.5 Results: “Good” Matrix Sizes
Transposition benchmarks for “good” matrix sizes (see Section 2.6 for definition) are summarized in

Figure 15. Note that for the results on the host CPUs, matrices under 30 MB in size fit in the L3 cache of each
Xeon E5-2680 processor. In order to simulate a realistic situation where the matrix is not in the processor
cache at the start of transposition, the benchmark evicts the contents of the cache between benchmark trials
by performing read/write operations on a large dummy array.
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Figure 15: Parallel in-place square matrix transposition rate for “good” matrix sizes. Error bars are one mean square deviation of 20
trials. See text for details.

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 14

http://research.colfaxinternational.com/


3 BENCHMARKS

3.6 Results: “Good” versus “Bad” and “Ugly” Matrix Sizes

Performance in Single Precision
Host Coprocessor

# “Good” “Bad” “Ugly” “Good” “Bad” “Ugly”

1
Size 1040×1040 1030×1030 1024×1024 1040×1040 1030×1030 1024×1024
Nested 42.3± 1.9 36.4± 2.8 29.8± 1.2 23.2± 3.2 21.2± 0.2 18.0± 0.4
Recursive 44.0± 1.0 33.0± 1.2 35.1± 0.9 21.9± 0.6 18.6± 2.9 18.3± 0.2

2
Size 2064×2064 2060×2060 2048×2048 2064×2064 2060×2060 2048×2048
Nested 55.8± 2.6 33.1± 8.4 22.0± 6.5 37.5± 0.6 32.5± 0.5 26.7± 0.6
Recursive 55.5± 2.7 31.7± 8.5 38.1± 0.5 36.0± 3.0 28.4± 0.2 22.9± 1.4

3
Size 4160×4160 4100×4100 4096×4096 4160×4160 4100×4100 4096×4096
Nested 22.2± 0.2 21.7± 0.3 15.1± 0.3 77.9± 5.2 60.2± 1.6 20.3± 1.3
Recursive 26.6± 4.5 24.6± 2.3 14.9± 0.0 77.6± 2.1 57.5± 0.9 20.4± 2.7

4
Size 8240×8240 8210×8210 8192×8192 8240×8240 8210×8210 8192×8192
Nested 33.4± 0.7 33.7± 0.3 27.2± 0.8 93.1± 1.1 71.4± 1.2 8.1± 0.0
Recursive 36.1± 0.6 46.1± 0.3 28.2± 0.7 90.8± 0.7 69.0± 0.7 7.5± 0.0

5
Size 16400×16400 16390×16390 16384×16384 16400×16400 16390×16390 16384×16384
Nested 44.9± 0.2 37.3± 0.2 29.1± 0.1 98.0± 0.2 71.2± 0.3 4.9± 0.0
Recursive 50.4± 0.4 48.6± 0.2 30.2± 0.0 98.1± 0.1 68.3± 0.2 4.8± 0.0

6
Size 22000×22000 22004×22004 21504×21504 22000×22000 22004×22004 21504×21504
Nested 41.9± 0.2 36.6± 0.1 36.0± 0.1 100.9± 0.3 78.9± 0.1 47.2± 0.1
Recursive 52.7± 0.2 50.8± 0.2 40.2± 0.0 99.5± 0.3 79.5± 0.2 46.5± 0.1

7
Size 31200×31200 31100×31100 30720×30720 31200×31200 31100×31100 30720×30720
Nested 40.5± 0.2 34.7± 0.1 35.1± 0.1 102.0± 0.1 78.5± 0.0 46.5± 0.0
Recursive 51.4± 0.2 48.7± 0.1 38.9± 0.1 100.8± 0.1 79.3± 0.1 45.9± 0.0

Performance in Double Precision
Host Coprocessor

# “Good” “Bad” “Ugly” “Good” “Bad” “Ugly”

1
Size 528×528 524×524 512×512 528×528 524×524 512×512
Nested 21.3± 1.4 13.2± 0.6 10.9± 0.5 14.7± 0.2 16.8± 0.4 14.5± 0.4
Recursive 18.7± 6.9 18.0± 0.6 12.2± 0.5 14.1± 0.3 15.2± 5.4 16.1± 0.4

2
Size 1040×1040 1030×1030 1024×1024 1040×1040 1030×1030 1024×1024
Nested 26.4± 1.5 24.7± 1.1 20.8± 0.6 40.6± 0.6 38.0± 4.0 32.3± 3.3
Recursive 26.8± 1.5 23.8± 1.0 21.5± 0.6 38.4± 0.6 39.2± 0.9 27.8± 3.6

3
Size 2064×2064 2060×2060 2048×2048 2064×2064 2060×2060 2048×2048
Nested 40.1± 1.5 80.7± 5.0 51.5± 1.8 66.4± 1.8 60.5± 1.1 39.3± 3.0
Recursive 39.6± 1.1 62.0± 13.8 56.4± 1.5 65.7± 2.0 58.5± 1.5 34.3± 0.8

4
Size 4160×4160 4100×4100 4096×4096 4160×4160 4100×4100 4096×4096
Nested 42.3± 0.1 24.7± 0.1 39.3± 0.2 98.5± 2.3 87.9± 2.2 16.6± 0.3
Recursive 44.4± 0.1 49.3± 0.5 29.1± 9.2 97.3± 1.7 85.0± 1.0 15.2± 0.1

5
Size 8240×8240 8210×8210 8192×8192 8240×8240 8210×8210 8192×8192
Nested 44.4± 0.2 45.9± 0.6 36.5± 2.3 108.0± 1.1 92.3± 0.4 16.0± 0.0
Recursive 48.1± 0.1 49.4± 0.7 29.3± 7.8 106.5± 0.2 90.4± 0.1 15.5± 0.0

6
Size 16400×16400 16390×16390 16384×16384 16400×16400 16390×16390 16384×16384
Nested 45.0± 0.2 41.9± 0.1 33.1± 0.2 111.5± 0.1 92.8± 0.2 16.2± 0.0
Recursive 48.4± 0.2 47.0± 0.1 34.9± 0.1 109.6± 0.1 90.1± 0.2 16.1± 0.0

7
Size 22000×22000 22004×22004 21504×21504 22000×22000 22004×22004 21504×21504
Nested 47.5± 0.4 46.8± 0.2 43.9± 0.3 112.9± 0.1 100.4± 0.1 83.0± 0.1
Recursive 49.3± 0.2 50.3± 0.6 47.5± 0.2 110.8± 0.1 99.6± 0.1 81.7± 0.0

Table 2: Performance results. Top table: single precision, bottom table: double precision. In each cell, the first line is the matrix size.
The second and third lines are the transposition rates and one mean square deviation of 20 trials, in GB/s. See Section 2.6 for
more information.
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3.7 Comparison with Intel MKL
The Intel Math Kernel Library (Intel MKL) [7] has functions mkl ?imatcopy, which can perform the

same in-place matrix transposition operation as we implemented in this paper [14]. mkl ?imatcopy has
more functionality than the routine developed here: it can transpose non-square matrices and perform data
scaling simultaneously with transposition. In addition, it is highly tuned for matrix sizes proportional to
powers of 2. The implementation of mkl ?imatcopy found in MKL version 11.0.5 performs best when
the number of threads is coordinated with the matrix size: n must be a multiple of the number of threads
times the number of data elements in a cache line.

Figure 16 shows a comparison of the performance of our transposition routine with mkl dimatcopy
on an Intel Xeon Phi coprocessor. For this comparison, two sets of matrix sizes were chosen:

1. For the plot in the left panel, sizes favorable for both our routine and the MKL function were chosen:
1952, 3904, 5856, 7808, 9760, 13664, 17568, 21472. These sizes are “good” in our definition, and,
additionally, they are multiples of the number of threads (244) times the number of elements in a cache
line (8 for double precision).

2. For the plot in the right panel, sizes favorable for MKL, but sub-optimal for our routine were cho-
sen: 2048, 3072, 4096, 6144, 8192, 12288, 16384, 21504. These sizes are “ugly” in our definition,
however, they are powers of 2 or sums of large powers of 2. 128 threads were used.
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Figure 16: Comparison between the present work and Intel MKL.

According to the plots in Figure 16, the implementation presented here performs faster than MKL by up
to 50% if matrix sizes are “good”. For n equal to powers of 2, MKL achieves better results.

The choice of the transposition method for a practical application is dependent on the restrictions
in the application. If the application requires non-square matrix transposition, or if the transposed ma-
trix is of power of 2 in size, and the number of threads can be coordinated with the matrix size, then
mkl ?imatcopy is the way to go. However, if the matrix is square, and its size can be padded to a “good”
value, or if the number of threads for the transposition routine cannot be coordinated with the matrix size,
then the application presented here can perform faster.

If you wish to use one of these codes for your application, it is advisable to download and test the latest
version of MKL, because the situation may be different in future versions of the library.
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4 Discussion
The cowboy-themed titles of Sections 2.1 — 2.6 reflect the fact that the primary interest of this pub-

lication is the speed that can be achieved for the ubiquitous operation of matrix transposition. In double
precision with ECC on, the transposition rate for the best of the two plans (nested and recursive) on the
two host CPUs approaches 49 GB/s for large matrices, and on the coprocessor, 113 GB/s was achieved for
the biggest matrix. These numbers correspond to 82% and of 67%, respectively, of the upper bound on
the transposition performance determined by the STREAM “copy” bandwidth. The Intel Xeon Phi 7110P
coprocessor performs 2.3x faster than two Intel Xeon E5-2680 CPUs for this operation.

Figure 17: Transposition rate for the the
unoptimized method (Figure 2)
and for the optimized method
(Figure 18) with the best of the
two plans (nested and recursive)
for matrix size 22000 × 22000
in double precision, and the
STREAM “copy” test bandwidth
(upper limit on the transposition
rate), with ECC on. Same C
language code compiled for the
CPU and for the MIC platform.

Two Intel Xeon E5-2680
Processors (16 cores/32 threads)

One Intel Xeon Phi 7110P
Coprocessor (61 cores/244 threads)
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The key to accelerating the transposition operation is cache traffic optimization. The unoptimized code
shown in Figure 2 achieves only 38 GB/s on the host and 29 GB/s on the coprocessor for the same case
(with KMP AFFINITY=scatter and OMP NUM THREADS=16 and 240). Achieving the high efficiency
and performance benefits from the MIC architecture, as reported above, is possible through the use of loop
tiling, which increases data locality in time. Another crucial optimization is enabling fine-granularity thread
parallelism with low scheduling overhead, which was achieved by planning the tile traversal pattern before
executing the transposition. Additional optimizations (data alignment, using #pragma simd, and tuning
the compiler arguments) help as well, but to a smaller degree.

It is typical that code optimization yields a greater speedup on the Intel Xeon Phi coprocessor than on the
Intel Xeon CPU-based system. The CPU is more forgiving than the coprocessor, because it contains more
resources to accommodate sub-optimal code, such as a unified Level-2 cache and hardware prefetchers in
the Level-1 cache. As soon as the code allows the Intel Xeon Phi coprocessor to efficiently use the cache
and employ all available parallelism, performance on the coprocessor jumps up.

However, besides practical achievable performance of Intel Xeon Phi coprocessor, this paper demon-
strates a very important feature of the programmability of this architecture. Indeed, the C language code
used for the benchmark on the CPU is transformed into an application for the MIC architecture simply by
recompilation. No low-level code is used, and the most sophisticated job of implementing the tile transposi-
tion microkernel is handled completely by the compiler.

The application presented here is 82% efficient on the CPU and 67% efficient on the coprocessor. There-
fore, additional optimizations are theoretically able to further accelerate the code by no more than 1.2x on
the host and 1.5x on the coprocessor. The reader is welcome to download the source code of the benchmark
from http://research.colfaxinternational.com/post/2013/08/12/Trans-7110.aspx to assess the effort required
for cross-platform portability with efficiency as high as achieved here.
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A SOURCE CODE

A Source code

1 void Transpose(FTYPE* const A, const int n, const int* const plan ) {// FTYPE is float or double
2 const int TILE = 32; // Tile size
3 const int nEven = n - n%TILE; // nEven is a multiple of TILE
4 const int wTiles = nEven / TILE; // Complete tiles in each dimens.
5 const int nTilesParallel = wTiles*(wTiles - 1)/2; // # of complete tiles under the main diag.
6 #pragma omp parallel // Start of parallel region
7 {
8 #pragma omp for schedule(guided)
9 for (int k = 0; k < nTilesParallel; k++) { // Parallel loop over body tiles

10 const int ii = plan[2*k + 0]; // Top column of the tile (planned)
11 const int jj = plan[2*k + 1]; // Left row of the tile (planned)
12
13 for (int j = jj; j < jj+TILE; j++) // Tile transposition microkernel:
14 #pragma simd // Ensure automatic vectorization
15 for (int i = ii; i < ii+TILE; i++) {
16 const FTYPE c = A[i*n + j]; //
17 A[i*n + j] = A[j*n + i]; // Swap matrix elements
18 A[j*n + i] = c; //
19 }
20 } // End of main parallel for-loop
21
22 #pragma omp for schedule(static)
23 for (int ii = 0; ii < nEven; ii += TILE) { // Transposing tiles on the main diagonal:
24 const int ii = jj;
25 for (int j = jj; j < jj+TILE; j++) // Diagonal tile transposition microkernel:
26 #pragma simd // Ensure automatic vectorization
27 for (int i = ii; i < j; i++) { // Avoid duplicate swaps
28 const FTYPE c = A[i*n + j]; //
29 A[i*n + j] = A[j*n + i]; // Swap matrix elements
30 A[j*n + i] = c; //
31 }
32 }
33
34 #pragma omp for schedule(static)
35 for (int j = 0; j < nEven; j++) // Transposing the "peel":
36 for (int i = nEven; i < n; i++) {
37 const FTYPE c = A[i*n + j]; //
38 A[i*n + j] = A[j*n + i]; // Swap matrix elements
39 A[j*n + i] = c; //
40 }
41 } // End of thread-parallel region
42
43 for (int j = nEven; j < n; j++) // Transposing bottom-right cornr
44 for (int i = nEven; i < j; i++) {
45 const FTYPE c = A[i*n + j]; //
46 A[i*n + j] = A[j*n + i]; // Swap matrix elements
47 A[j*n + i] = c; //
48 }
49 }

Figure 18: Improved implementation of parallel in-place square matrix transposition with loop tiling.
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