
HETEROGENEOUS CLUSTERING WITH HOMOGENEOUS CODE:
ACCELERATE MPI APPLICATIONS WITHOUT CODE SURGERY

USING INTEL XEON PHI COPROCESSORS

Andrey Vladimirov and Vadim Karpusenko
Colfax International

December 9, 2013

Abstract

This paper reports on our experience with a hetero-
geneous cluster execution environment, in which a dis-
tributed parallel application utilizes two types of compute
devices: those employing general-purpose processors, and
those based on computing accelerators known as Intel Xeon
Phi coprocessors.

Unlike general-purpose graphics processing units (GPG-
PUs), Intel Xeon Phi coprocessors are able to execute native
applications. In this mode, the application runs in the copro-
cessor’s operating system, and does not require a host process
executing on the CPU and offloading data to the accelera-
tor (coprocessor). Therefore, for an application in the MPI
framework, it is possible to run MPI processes directly on
coprocessors. In this case, coprocessors behave like indepen-
dent compute nodes in the cluster, with an MPI rank, peer-
to-peer communication capability, and access to a network-
shared file system. With such configuration, there is no need
to instrument data offload in the application in order to uti-
lize a heterogeneous system comprised of processors and co-
processors. That said, an MPI application designed for a
CPU-only cluster can be used on coprocessor-enabled clus-
ters without code modification.

We discuss the issues of portable code design, load bal-
ancing and system configuration (networking and MPI) nec-
essary in order for such a setup to be efficient. An exam-
ple application used for this study carries out a Monte Carlo
simulation for Asian option pricing. The paper includes the
performance metrics of this application with CPU-only and
heterogeneous cluster configurations.

Table of Contents

1 Introduction: To Offload or To Take It Easy,
Aye There’s the Point 2

2 Asian Option Pricing 2
3 Implementation for a Traditional Cluster 4

3.1 Thread Parallelism and Vectorization 4
3.2 Dynamic Load Balancing with the Boss-

Worker Model 5
3.3 Compilation and CPU-Only Execution . . . 6

4 Heterogeneous Clustering with Coprocessors . . 7
4.1 SSH Keys for Coprocessors 7
4.2 Bridged Network Configuration 8
4.3 Network File Sharing with Coprocessors . . 9
4.4 Compilation and Heterogeneous Execution . 9

5 Performance Results 10
5.1 Coprocessor-Assisted Calculation 10
5.2 Behind the Scenes: MPI and NFS Speed . . 11

6 Discussion . 12
6.1 Prerequisites for Improved Performance on

Coprocessors 12
6.2 Limitations of Heterogeneous MPI 13
6.3 Having Your Cake and Eating It Too 14

Colfax International (http://www.colfax-intl.com/) is a leading provider of innovative and expertly en-
gineered workstations, servers, clusters, storage, and personal supercomputing solutions. Colfax Inter-
national is uniquely positioned to offer the broadest spectrum of high performance computing solutions,
all of them completely customizable to meet your needs - far beyond anything you can get from any
other name brand. Ready-to-go Colfax HPC solutions deliver significant price/performance advantages,
and increased IT agility, that accelerates your business and research outcomes. Colfax International’s
extensive customer base includes Fortune 1000 companies, educational institutions, and government
agencies. Founded in 1987, Colfax International is based in Sunnyvale, California and is privately held.

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 1

http://www.colfax-intl.com
http://research.colfaxinternational.com/

2 ASIAN OPTION PRICING

1. INTRODUCTION: TO OFFLOAD OR TO
TAKE IT EASY, AYE THERE’S THE POINT

Intel Xeon Phi coprocessors, featuring the Intel
Many Integrated Core (MIC) architecture, are com-
puting accelerators bearing considerable similarity to
general-purpose graphics processing units (GPGPUs):

i) both types of accelerators are connected to a CPU-
based system via a PCIe bus;

ii) they both require data and task parallelism to de-
liver greater performance and better power econ-
omy than general-purpose processors;

iii) coprocessors and GPGPUs support the so-called
offload programming model.

In the offload programming model, the application
is launched on the host system (i.e., using the CPU),
and initialization of data also takes place on the host.
Then the application uses the PCIe bus to push (“of-
fload”) a part of the data and specialized executable
code to the device for processing. After processing, re-
sults are pulled back to the host1. In the Nvidia CUDA
framework, offload is effected through specialized func-
tions and streams. For Intel Xeon Phi coprocessors,
the programmer uses compiler pragmas to initiate of-
fload. Finally, for both accelerators, OpenCL means
of offload are available. In order to instrument offload
in an application designed for general-purpose CPUs,
the programmer must devise a work-sharing strategy,
prepare data structures for offload, and outfit the code
with offload directives. Offload programming can be
used on standalone machines, as well as in clusters,
where on each machine, one or several MPI processes
are launched, each performing offload (see Figure 1).

However, two substantial circumstances set Intel
Xeon Phi coprocessors apart from GPGPUs:

i) Xeon Phi coprocessors run a limited version of a
Linux operating system, called uOS2, which makes
them IP-addressable devices with a virtual file sys-
tem, capable of running workhorse HPC services
including SSH, NFS and MPI.

1Hereafter, “host” means the operating system running on the
CPU-based platform, or the CPU platform itself, and “accelerator”
or “device” mean the GPGPU or coprocessor.

2uOS is a common spelling of µOS, which stands for “micro
operating system”

ii) Coprocessors also support native programming
model, in which the application is launched di-
rectly on the device, and all data initialization and
I/O take place there.

Native programming opens possibilities for architect-
ing distributed applications in ways not possible with
GPGPUs:

- Distributed applications in the MPI framework may
run exclusively on coprocessors, leaving the host
CPU free for other tasks;

- Alternatively, one may place MPI processes on host
CPUs as well as on coprocessors, for a computation
on a heterogeneous platform (see Figure 2).

The latter option is especially attractive for enabling ex-
isting MPI applications to use Intel Xeon Phi copro-
cessors, because in this model, the offload mechanism
does not have to be instrumented. Processes running
natively on Intel Xeon Phi coprocessors will initialize
themselves and participate in communication just like
processes running on hosts.

Naturally, such porting with zero programming ef-
fort will not always yield accelerated performance “out
of the box”. In this paper, we analyze the types of ap-
plications that can be efficiently executed on heteroge-
neous clusters, and the prerequisites for their implemen-
tation. We also describe the system configuration that
enables heterogeneous execution with Intel Xeon Phi
coprocessors. As a proof of concept, we implement a
Monte Carlo method of Asian stock option pricing in
the C language. This code is designed for a CPU-based
cluster, but can be executed on a heterogeneous cluster
with Intel Xeon Phi coprocessors with zero coding ef-
fort. The latter condition means that nothing in the code
of the application indicates that it is designed to use the
Intel Xeon Phi architecture, and yet, significant accel-
eration is observed when coprocessors are added to the
hardware configuration.

2. ASIAN OPTION PRICING

In Section 3, we discuss the implementation of a
distributed application in the MPI framework. This ap-
plication is a Monte Carlo simulation that solves the

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 2

http://research.colfaxinternational.com/

2 ASIAN OPTION PRICING

P
C

Ie

X
e
o
n
 C

P
U

C
o
p
ro

ce
ss

o
r

N
IC

Offload

192.168.9.10
compute-01

MPI
rank=1

P
C

Ie

X
e
o
n
 C

P
U

C
o
p
ro

ce
ss

o
r

N
IC

Offload

192.168.9.20
compute-02

MPI
rank=3

P
C

Ie

X
e
o
n
 C

P
U

C
o
p
ro

ce
ss

o
r

N
IC

Offload

192.168.9.30
compute-03

MPI
rank=3

Network

http://research.colfaxinternational.com/

MPI CommunicationMPI Communication

Figure 1: MPI communication in a traditional cluster with
offload to coprocessors. Hosts can communicate
with remote hosts using MPI and with local co-
processors using offload.

Asian option pricing problem. In this section we out-
line the financial problem and the mathematical model
involved in the simulation. Readers interested only in
the HPC aspect of this work may skip to Section 3.

Options are contracts which allow one party (called
“beneficiary”) to buy (“call option”) or sell (“put op-
tion”), on some future date (“option expiration date”),
a stock market asset from/to the other party (“grantor”)
at a “strike price” agreed upon the signing of contract.
A contract to buy is called a “call option”, and a con-
tract to sell is a “put option”. Unlike a futures con-
tract, an option gives the beneficiary the right to choose
whether to exercise the transaction. This choice is typi-
cally made based on the market price of the asset at the
option expiration date. For example, if at a call option
expiration date, the stock market price of the asset is
higher than in the option contract, the beneficiary will
elect to buy the asset from the grantor, and sell it on the
market, which yields a profit called a “payoff”. Other-
wise, the beneficiary does not exercise the option, but
the grantor retains the option fee. A style of options
called Asian options has the feature that the payoff is
calculated based on the mean price (arithmetic or geo-
metric) of the asset, sampled at prearranged instances.

P
C

Ie

X
e
o
n
 C

P
U

C
o
p
ro

ce
ss

o
r

N
IC

192.168.9.1
compute-01

MPI
rank=1

P
C

Ie

X
e
o
n
 C

P
U

C
o
p
ro

ce
ss

o
r

N
IC

192.168.9.2
compute-02

MPI
rank=3

P
C

Ie

X
e
o
n
 C

P
U

C
o
p
ro

ce
ss

o
r

N
IC

192.168.9.3
compute-03

MPI
rank=3

Network

MPI
rank=4

MPI
rank=5

MPI
rank=6

192.168.9.10
compute-01-mic0

192.168.9.20
compute-02-mic0

192.168.9.30
compute-03-mic0

Bridge Bridge Bridge

http://research.colfaxinternational.com/

MPI Communication

Figure 2: MPI communication in a heterogeneous cluster.
Hosts can communicate with remote hosts and
with local or remote coprocessors via MPI mes-
sages.

This reduces the risks associated with market volatility
and short-term market manipulation.

In order to perform risk analysis and to price an
Asian option, a Monte Carlo simulation method can be
used. In this method, multiple stochastic histories of
the asset price are simulated based on the available in-
formation on the asset volatility.

Variable S(t) is the price of the underlying asset for
the option, which is assumed to evolve in time accord-
ing to the stochastic equation

dS(t) = µS(t)dt+ σS(t)dB(t). (1)

In this equation, µ is the drift of the asset, σ is the option
volatility, and B(t) is a standard Brownian motion.

The solution of this stochastic differential equation
can be written as

S(ti) = S(ti−1)e(µ−σ
2/2)∆t+σ

√
∆tX , (2)

where X is a normally distributed random variable
with zero mean and unit standard deviation, and
∆t = ti − ti−1.

In order to calculate the Asian option payoff for
this asset, the asset price is averaged over the expira-

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 3

http://research.colfaxinternational.com/

3 IMPLEMENTATION FOR A TRADITIONAL CLUSTER

tion time T at N instants:

〈S〉arithm =
1

N

N−1∑
i=0

S(ti), (3)

〈S〉geom = exp

(
1

N

N−1∑
i=0

logS(ti)

)
, (4)

(5)

for the arithmetic and geometric means, respectively,
where ti = T × i/(N − 1). The corresponding payoffs
for the “call” and “put” options for strike price K are

Pput = e−rT max {0;K − 〈S〉} , (6)

Pcall = e−rT max {0; 〈S〉 −K} , (7)

where 〈S〉 can be either 〈Sarithm〉, or 〈Sgeom〉, depend-
ing on the contract, and r is the risk-free rate.

In order to numerically determine the mathemat-
ical expectation of the Asian option payoff for a set
of parameters {S,K, r, µ, v, T,N} and averaging rules
(arithmetic or geometric), a Monte Carlo simulation
may be used. The simulation plays out a large num-
ber M of random paths, each of which stochastically
evolves the option price from t = 0 to t = T according
to Equation (2), and computes the means over N time
points according to Equation (3) or (4). These means
are then used to calculate the put and call option payoffs
according to Equations (6) and (7). Finally, these pay-
offs are averaged over the M random paths, producing
a Monte Carlo estimate of their mathematical expecta-
tion.

3. IMPLEMENTATION FOR A TRADITIONAL
CLUSTER

Like any Monte Carlo simulation, our Asian option
pricing application has a parallel nature. The first op-
portunity for parallelism is that, when multiple sets of
parameters {S,K, r, µ, v, T,N} need to be processed,
each parameter set can be studied independently. In our
implementation, we use this property to distribute dis-
tinct parameter sets across MPI processes. The second
parallel property is that, for each parameter set, the sim-
ulated stochastic paths of asset evolution are indepen-
dent from one another. Our implementation takes ad-
vantage of this fact by distributing the simulated paths

across the processor cores and across the SIMD (Single
Instruction Multiple Data) lanes of each core. The latter
mode of parallelism is also known as vectorization.

Section 3.1 demonstrates the C language code of a
thread-parallel calculation in which a single set of op-
tion parameters is analyzed on a single shared-memory
compute device. In Section 3.2, we discuss the cor-
responding work distribution scheme, which scales
the application across MPI processes in a distributed-
memory system.

3.1. THREAD PARALLELISM AND VECTORIZATION

Listing 1 is an outline of the performance-critical
part of the calculation. Only the “put” option with arith-
metic mean is shown. Full code is available for down-
load [1]. This code is optimized for a multi-core proces-
sor with a SIMD instruction set, such as an Intel Xeon
CPU.

The aspects of our implementation most important
for performance are:

1. The workload is parallelized by distributing the
calculations of random paths across threads us-
ing the OpenMP framework (see lines 3-4). The
OpenMP scheduler takes care of load schedul-
ing across threads. By default, all cores available
on the CPU will be utilized for the calculation.
Therefore, only one such process must be started
per compute node.

2. Within each thread, multiple paths are computed
concurrently in the SIMD lanes of the core if
the compiler implements automatic vectorization
in the loops with the index k (specifically, the
performance-critical loop in line 13). The Intel
C compiler is capable of this procedure. The in-
struction set for this data parallelism is chosen at
the compile time according to the specifications
of the platform on which the code is compiled.

3. Random number generation is performed us-
ing the Intel Math Kernel Library (MKL) in
line 8. The Mersenne twister-based random num-
ber generator used in our implementation is vec-
torized, i.e., it takes advantage of the available
SIMD instruction set. Each OpenMP thread is
maintaining a private random number stream.

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 4

http://research.colfaxinternational.com/

3 IMPLEMENTATION FOR A TRADITIONAL CLUSTER

 /* The i-loop is thread-parallel, i.e.,
 distributed across the processor cores */
 #pragma omp parallel for schedule(guided) \
 reduction(+: payoff_arithm_put)
 for (int i = 0; i < nPaths/vecSize; i++) {
 for (int j = 1; j < nIntervals; j++) {
 /* Intel MKL random number generator */
 vsRngGaussian(
 VSL_RNG_METHOD_GAUSSIAN_BOXMULLER,
 stream, vec_size, rands, 0.0f, 1.0f);
 /* The k-loop is data-parallel thanks to
 automatic vectorization by the compiler */
 for (int k = 0; k < vecSize; k++) [
 spot_prices[k] *=
 exp2f(drift + vol*rands[k]);
 sumsm[k] += spot_prices[k];
 }
 }
 for (int k = 0; k < vecSize; k++) {
 arithm_mean_put[k] =
 K - (sumsm[k] * recipIntervals);
 if (arithm_mean_put[k] < 0.0f)
 arithm_mean_put[k] = 0.0f;
 }
 /* Reduction across vector lanes and across
 OpenMP threads is automatically implemented
 by the compiler */
 for (int k = 0; k < vecSize; k++)
 payoff_arithm_put += arithm_mean_put[k]*
 expf(-r*T)/(float)nPaths;
 }

Listing 1: A Monte Carlo method of Asian Option pricing.

4. There is no communication between threads dur-
ing the calculation. However, at the end of the
calculation, the results of the random paths are
reduced across SIMD lanes and across OpenMP
threads. The OpenMP library and the auto-
vectorizer implement this operation expressed in
lines 29-30 of the code.

All optimizations in the code in Listing 1 are
performed for general-purpose multi-core processors.
There is no indication in the code that it is specifically
targeted to Intel Xeon Phi coprocessors. However, as
we will see in Section 4.4, the same exact code can be
efficiently run on these coprocessors after a recompila-
tion pass. In this sense, the code in Listing 1 can be
labelled “many-core-ready”3.

3Here, we adopt a convention where “multi-core” denotes the
architecture of general-purpose processors featuring more than one
core (such as Intel Xeon CPUs), and “many-core” to denote the Intel
MIC architecture, specifically, Intel Xeon Phi coprocessors.

3.2. DYNAMIC LOAD BALANCING WITH THE

BOSS-WORKER MODEL

For a realistic application, more than one set of op-
tion parameters must be priced. In order to scale this
application across a computing cluster, we partition the
workload so that one or several sets of option parame-
ters are processed on each compute node.

 if (myRank == bossRank) {
 int nR = 0; /* Number of processed tasks */
 int iP = 0; /* Next task to assign */
 while (nR < nPars) {

 /* Wait for any worker to report for work */
 float buf[msgReportLength];
 MPI_Recv(&buf, msgReportLength,
 MPI_INT, MPI_ANY_SOURCE, msgReportTag,
 MPI_COMM_WORLD, &status);
 const int iW = status.MPI_SOURCE;

 if (buf[0] > 0.0f) {
 /* If worker reports with results of a
 previous task, record these results */
 nR++;
 const int iR = floorf(buf[1]);
 payoff_arithm_put [iR] = buf[2];
 }

 if (iP < nStrikes) {
 /* Assign the next task iP to worker iW */
 float buf[msgSchedLen] = {iP,
 M[iP], N[iP], K[iP], S[iP], /*...*/};
 MPI_Send((void*)&buf, msgSchedLen,
 MPI_FLOAT, iW, msgSchedTag,
 MPI_COMM_WORLD);
 iP++;
 }
 }
 }

Listing 2: The boss process implementation. Load balanc-
ing is achieved dynamically, with the boss pro-
cess receiving and satisfying workers’ requests
for work items.

Generally, there is no guarantee that each parame-
ter set takes the same amount of time to process on any
computing device. Indeed, the calculation time for a
parameter set is proportional to M × N , where M is
the number of Monte Carlo paths required to achieve
the desired accuracy, and N is the number of time in-
tervals for price averaging. The values of M and N
may vary across the studied parameter sets. We resolve
this problem by instrumenting a dynamic load balanc-

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 5

http://research.colfaxinternational.com/

3 IMPLEMENTATION FOR A TRADITIONAL CLUSTER

ing mechanism. This method of work scheduling will
also be helpful when coprocessors are employed in a
heterogeneous cluster with Xeon Phi coprocessors (see
Section 4).

A relatively simple and well-known method of dy-
namic work scheduling is the “boss-worker model”. In
this model, one process (“boss”) is occupied with the
task of receiving and satisfying requests for work from
multiple other processes (“workers”). When the boss
receives a request for work, it sends to the reporting
worker a “work item” to compute, which in our case
is a set of option parameters for the Monte Carlo sim-
ulation. Once the worker processes the work item, it
communicates to the boss again to report the results and
request the next work item. Because workers are loaded
with work as soon as they become idle, this scheduling
mechanism balances the load across workers even for
non-uniform costs of work items, or non-identical per-
formance of workers. There are limitations on the scal-
ability of the boss-worker scheduling method, as dis-
cussed in Section 5.2. However, this method is suffi-
cient for our purposes.

For the Asian option pricing application, the func-
tional part of the boss process code in the C language is
shown in Listing 2. Full code is available for download
[1]. In this implementation, the boss process is a single-
threaded process with the MPI rank equal to 0, and
workers are all other MPI processes in the MPI WORLD
communicator.

3.3. COMPILATION AND CPU-ONLY EXECUTION

We run the application on a test cluster consist-
ing of a head node and two compute nodes with In-
tel Xeon processors (see Figure 3). The compute
nodes NFS-import from the head node two directories:
/opt/intel (to give the compute nodes access to the
Intel MKL and Intel MPI libraries) and /nfs (to share
the executable file and any necessary data files with the
compute nodes).

As Figure 3 indicates, we are going to place one
worker on each compute node. In addition, on node
compute-01, we will place the boss worker. List-
ing 3 demonstrates how our simulation is compiled and
executed on a test cluster.

192.168.9.1
compute-01

192.168.9.2
compute-02

192.168.9.111
head-node

/opt/intel
/nfs

Worker
rank=1

Worker
rank=2

Boss
rank=0

http://research.colfaxinternational.com/

Figure 3: Cluster configuration and MPI run setup for the
Asian option pricing application with boss-worker
scheduling. Only CPU-based compute nodes are
used in this homogeneous cluster.

Intel MPI environment
[colfax@head-node]# source \
> /opt/intel/impi/4.1.1/intel64/bin/mpivars.sh
Viewing the cluster configuration
[colfax@head-node]# cat /etc/hosts | grep 192
192.168.9.1 compute-01
192.168.9.2 compute-02
[colfax@head-node]# cat /etc/exports
/opt/intel 192.168.9.0/24(rw,no_root_squash)
/nfs 192.168.9.0/24(rw,no_root_squash)

Compiling the code, sharing with compute nodes
[colfax@head-node]# mpiicc -std=c99 -mkl \
> -openmp -xAVX -o options options.c
[colfax@head-node]# cp -v options /nfs/options/
‘options’ -> ‘/nfs/options/options’

Starting the MPI job
[colfax@head-node]# cat ./machines-CPUs
192.168.9.1 # Boss process on compute-01
192.168.9.1 # Worker on compute-01
192.168.9.2 # Worker on compute-02
[colfax@head-node]# export I_MPI_PIN=0
[colfax@head-node]# mpirun \
> -machinefile machines-CPUs \
> /nfs/options/options
...

Listing 3: Launching a homogeneous MPI calculation using
a machine file. The first compute node receives
two MPI processes: the boss and one worker. All
other nodes are assigned only one worker process.

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 6

http://research.colfaxinternational.com/

4 HETEROGENEOUS CLUSTERING WITH COPROCESSORS

In order to compile the application, we run the Intel
MPI wrapper for the Intel C compiler, called mpiicc.
The compiler options include -openmp and -mkl to
enable runtime loading of the OpenMP and MKL li-
braries.

The execution of the application is done using the
script mpirun provided by the Intel MPI library. We
had prepared the list of hosts on which the calculation is
run in the file machines-CPUs. The first line in this
file corresponds to the MPI rank 0, which is the boss
process. All other lines list the workers.

One important aspect of the execution is that we set
the environment variable I MPI PIN=0. This setting
indicates to the Intel MPI library that it should not pin
MPI processes on their respective hosts. By default,
if several MPI processes are started on one host, the
MPI library restricts access of these processes to the
CPU resources, effectively partitioning the system to
share it between the processes. In our case, we place
the boss process and the first worker on the same host,
compute-01. With pinning, on our two-socket com-
pute nodes, the boss would have access to one socket,
and the worker to another. However, this is not opti-
mal, because the boss process is single-threaded, and it
will leave its assigned multi-core socket under-utilized.
By disabling pinning, we allow the worker to use all of
the CPU cores. The boss process is not CPU-intensive,
and it does not hurt the overall performance to run it in
addition to the worker.

4. HETEROGENEOUS CLUSTERING WITH
COPROCESSORS

In this section we will demonstrate how the Asian
option pricing application developed for a traditional
cluster can be executed, without code modification, on
a heterogeneous cluster containing Intel Xeon Phi co-
processors. Specifically, we put the coprocessors on the
same network as the compute nodes, and then we place
additional MPI processes directly on Intel Xeon Phi co-
processors. Our target setup is illustrated in Figure 4
(compare to Figure 3). We assume that the MIC Plat-
form Software Stack (Intel MPSS) [2] has already been
installed and configured with default settings.

192.168.9.1
compute-01

192.168.9.111
head-node

/opt/intel
/nfs

Worker
rank=1

Boss
rank=0

C
o
p
ro
ce
ss
o
r

Worker
rank=3

192.168.9.10
compute-01-mic0

192.168.9.1
compute-01

Worker
rank=2

Worker
rank=4

192.168.9.20
compute-02-mic0

C
o
p
ro
ce
ss
o
r

http://research.colfaxinternational.com/

Figure 4: Cluster configuration and MPI run setup for a het-
erogeneous calculation. The application uses a
heterogeneous cluster with CPU-based compute
nodes and Intel Xeon Phi coprocessors that act as
independent compute nodes.

4.1. SSH KEYS FOR COPROCESSORS

In order to run MPI processes natively on Intel
Xeon Phi coprocessors, the head node of the cluster
must be able to SSH into the operating system on run-
ning on the coprocessor. Authentication in this pro-
cess is done using SSH keys instead of passwords, just
like with MPI client authentication on regular compute
nodes. Unless this has already been done, the procedure
shown in Listing 4 must be performed.

Note that we stop MPSS on each compute node, and
reset the configuration of coprocessors. This is done for
two reasons. First, it automates the copying of the SSH
keys from the user’s home directory on the host to the
authorized keys file on all Intel Xeon Phi coprocessors.
Second, stopping the MPSS service is required for the

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 7

http://research.colfaxinternational.com/

4 HETEROGENEOUS CLUSTERING WITH COPROCESSORS

[colfax@head-node]% ssh-keygen
(output omitted)
[colfax@head-node]% cat ˜/.ssh/id_rsa.pub >>\
> ˜/.ssh/authorized_keys
The following steps must be repeated
for all compute nodes in the cluster.
[colfax@head-node]% scp ˜/.ssh/id_rsa \
> ˜/.ssh/id_rsa.pub ˜/.ssh/authorized_keys \
> compute-01:˜/
[colfax@head-node]% sudo su
[root@head-node]# ssh compute-01
[root@compute-01]# service mpss stop
Shutting down MPSS stack: [OK]
[root@compute-01]% micctrl --cleanconfig
[root@compute-01]% micctrl --initdefaults

Listing 4: Configuring passwordless access to coprocessors
in the cluster using SSH keys.

subsequent steps discussed in Sections 4.2 and 4.3.

4.2. BRIDGED NETWORK CONFIGURATION

As discussed in Section 3.2, the boss process run-
ning on compute-01 must be able to communi-
cate to the worker processes on compute-01 and
compute-02. With the addition of compute de-
vices compute-01-mic0 and compute-02-mic0
(coprocessor), the boss process must also commu-
nicate to them. The difficulty here is that the
boss process is running on compute-01, however,
compute-02-mic0 is located on a remote host.

In order to enable such communication, the MPSS
supports a bridged network configuration, in which co-
processors are assigned IP addresses on the same sub-
net as the compute hosts. This is done by creating a net-
work bridge on each compute node, and configuring the
coprocessors to connect to the network via that bridge.
What happens when compute-01 sends a message to
compute-02-mic0, is

1) the message travels from the network interface
controller (NIC) of compute-01 to the NIC of
compute-02,

2) then, with the help of the operating system and
the coprocessor driver on compute-02, the mes-
sage travels across the PCIe bus to the coprocessor
compute-02-mic0.

See Figure 2 for an illustration of this path. This setup,

however, is completely transparent to the application.
That is, compute-01 is oblivious of the fact that
compute-02-mic0 is not a real host, but an Intel
Xeon Phi coprocessor on a remote host.

In order to set up bridging, first, a network bridge
must be created on each compute node. In the OS that
we are using (CentOS 6.4), this is done by creating a
configuration as shown in Listing 5.

[root@compute-02]% cat \
> /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
HWADDR="00:1E:67:56:B7:4B"
NM_CONTROLLED="no"
ONBOOT="yes"
UUID="ac3cfdfd-b25f-4493-8bad-3f7b9d51d0d1"
BRIDGE=br0
MTU=9000
[root@compute-02]%
[root@compute-02]% cat \
> /etc/sysconfig/network-scripts/ifcfg-br0
DEVICE=br0
TYPE=Bridge
ONBOOT=yes
DELAY=0
NM_CONTROLLED="no"
MTU=9000
BOOTPROTO=static
IPADDR=192.168.9.2
NETMASK=255.255.255.0
NOZEROCONF=yes

Listing 5: A virtual bridge on a compute host is created in
the network configuration files.

In this configuration, ifcfg-br0 is a new file
that we created. With this file, we are configuring the
host compute-02 to use the virtual interface br0 to
connect to the network, and self-assign the IP address
192.168.9.24. The file ifcfg-eth0 was created
during the OS installation, and we modified it by adding
the line BRIDGE=br0 and removing the lines that as-
sign the IP address to this device. This procedure must
be repeated on each compute node, either manually, or
using the cluster management software.

The second step in creating bridged networking for
Intel Xeon Phi coprocessors is shown in Listing 6.

As we can see, the command micctrl
--network ... has changed the IP addresses

4If the cluster has a DHCP server, it is acceptable to connect
br0 using DHCP.

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 8

http://research.colfaxinternational.com/

4 HETEROGENEOUS CLUSTERING WITH COPROCESSORS

[root@compute-02]% micctrl --addbridge=br0 \
> --type=external --ip=192.168.9.1 \
> --netbits=24
[root@compute-02]% micctrl --network \
> --bridge=br0 --ip=192.168.9.20

mic0: Changing network to static
bridge br0 at 192.168.9.20

mic1: Changing network to static
bridge br0 at 192.168.9.21

[root@compute-02]% cat /etc/hosts | grep 192
192.168.9.1 compute-01
192.168.9.2 compute-02
192.168.9.20 compute-02-mic0 mic0
192.168.9.21 compute-02-mic1 mic1

Listing 6: Configuring coprocessors on compute nodes to
connect to an external network bridge. This
makes coprocessors on remote machines IP-
addressable.

of the two coprocessors present in this system, and
it was reflected in /etc/hosts. Now that the
coprocessors of this machine have IP addresses on the
same subnet as the hosts, it is possible to ping, SSH
into them and send MPI messages to them from remote
machines on this subnet. Again, this procedure has
to be repeated on all compute nodes of the cluster,
including compute-01.

Further details on network configuration with Intel
Xeon Phi coprocessors can be found in [3]

4.3. NETWORK FILE SHARING WITH

COPROCESSORS

With bridged network configuration, network file
sharing (NFS) can be configured across the cluster with
Intel Xeon Phi coprocessors, so that shared mounts also
appear on the coprocessors. This is a convenience fea-
ture that allows easy application initialization and direct
file I/O in MPI processes running on the coprocessors.

In Section 3, we already assumed that the head
node is configured as an NFS server, exporting
/opt/intel and /nfs to all hosts on the subnet
192.168.9.0/24. Therefore, the only remaining
task is mounting these directories from the uOS running
on each coprocessor.

In Listing 7 we show how the tool micctrl can
be used to create the NFS entries in /etc/fstab on
coprocessors that automatically mount when the copro-

cessor boots, and persist across system restarts. We
mount /opt/intel and /nfs from the head node
192.168.9.111, and the mount locations on copro-
cessors have the same paths as on the head node.

[root@compute-01]% micctrl --addnfs=/opt/intel \
> --dir=/opt/intel --server=192.168.9.111
[root@compute-01]% micctrl --addnfs=/nfs \
> --dir=/nfs --server=192.168.9.111
[root@compute-01]% service mpss start
Starting MPSS Stack: [OK]
[root@compute-01]%

Listing 7: Setting up two NFS mounts on coprocessors and
restarting the MPSS.

The NFS mount setup must be repeated on all com-
pute nodes in the cluster. Note that, because adding
NFS was the last step in the configuration of our het-
erogeneous cluster, it is time to start the MPSS service
again, which we do in the last command in Listing 7.

4.4. COMPILATION AND HETEROGENEOUS

EXECUTION

With the heterogeneous cluster configured, we can
recompile the MPI application for the MIC architecture
and launch a coprocessor-assisted heterogeneous calcu-
lation. Listing 8 summarizes the procedure.

In order to understand what additional steps were
taken this time, compare Listing 8 to Listing 3, where a
traditional MPI run is launched:

a) We performed two compilation passes. One, with
the flag -xAVX, produces the executable options,
which is suitable for CPU architectures with the In-
tel Advanced Vector Extensions (AVX) instruction
set, such as our compute nodes. The second pass,
with the flag -mmic, produces a native executable
for an Intel Xeon Phi coprocessor. The executable
file name is options.MIC.

b) Our machine file now contains the IP addresses of
coprocessors, in addition to the IP addresses of com-
pute nodes. This means that MPI will place pro-
cesses on these coprocessors. We include only one
coprocessor per node, even though our system has
two coprocessors in each system. This is done in or-
der to enable fair comparison of performance. How-

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 9

http://research.colfaxinternational.com/

5 PERFORMANCE RESULTS

[colfax@head-node]# source /opt/intel/impi/4.1.1/intel64/bin/mpivars.sh # Intel MPI environment
[colfax@head-node]# mpiicc -std=c99 -mkl -openmp -xAVX -o options options.c # Compile for CPU
[colfax@head-node]# mpiicc -std=c99 -mkl -openmp -mmic -o options.MIC options.c # Compile for MIC
[colfax@head-node]# cp -v options options.MIC /nfs/options/ # Copy to NFS-shared location
‘options’ -> ‘/nfs/options/options’
‘options.MIC’ -> ‘/nfs/options/options.MIC’

Starting the MPI job
[colfax@head-node]# cat ./machines-HETEROGENEOUS # View the machine file
192.168.9.1 # Boss process on compute-01
192.168.9.1 # Worker on compute-01
192.168.9.2 # Worker on compute-02
192.168.9.10 # Worker on compute-01-mic0
192.168.9.20 # Worker on compute-02-mic0
[colfax@head-node]# export I_MPI_PIN=0 # Disable MPI process pinning
[colfax@head-node]# export I_MPI_MIC=on # Enable MPI for the MIC architecture
[colfax@head-node]# export I_MPI_MIC_POSTFIX=.MIC # Postfix of the MIC architecture executable
[colfax@head-node]# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MIC_LD_LIBRARY_PATH # Enables MKL on MIC
[colfax@head-node]# mpirun -machinefile machines-HETEROGENEOUS /nfs/options/options # Launch

Listing 8: Starting a heterogeneous MPI calculation, the work is distributed across CPUs and coprocessors. Coprocessors
appear as independent compute nodes in the MPI machine file.

ever, the second coprocessor in each machine can
be loaded trivially, by adding the corresponding IP
address to the machine file.

c) We set the environment variable I MPI MIC=on
in order to inform the Intel MPI library that native
processes on Intel Xeon Phi coprocessors will be
launched.

d) I MPI MIC POSTFIX=.MIC is the postfix, which
the MIC executable has (remember, we com-
piled options for the CPU architecture and
options.MIC for the MIC architecture).

e) A trick with LD LIBRARY PATH enables easy
loading of the Intel MKL library on coprocessors
from the NFS-shared location /opt/intel

Note also that the arguments of mpirun are un-
changed, with the exception of the machine file name.
That completes our setup and launches a heterogeneous
(coprocessor-assisted) calculation of Asian option pric-
ing as illustrated in Figure 4.

5. PERFORMANCE RESULTS

All tests were performed on a cluster consisting of
two compute nodes. The nodes are Colfax ProEdge
SXP-7450 workstations. These are two-socket ma-
chines, with each socket containing an 8-core Intel

Xeon E5-2687W V2 processor. The total amount of
memory is 128 GB per server in 1600 MHz 16-GB
memory modules. In each system, two Intel Xeon Phi
QS-3120A active-cooled coprocessors are installed, of
which only one per system was used in the bench-
marks. The operating system is CentOS 6.4 with the
Linux kernel 2.6.32-358. The Intel C Compiler ver-
sion 13.1.3.192 was used for the tests, and Intel MPSS
2.1.6720-15 was installed. Toshiba MG03ACA100
hard disk drives are used on all machines.

5.1. COPROCESSOR-ASSISTED CALCULATION

Figure 5 shows three bars corresponding to the per-
formance of three calculations:

1) A CPU-only calculation as set up in Listing 3,
2) A coprocessor-only calculation, for which the setup

is not shown in the text, but which can be executed
by removing the second and third line from the ma-
chine file in Listing 8, and

3) A coprocessor-assisted heterogeneous calculation as
set up in Listing 8.

The performance is the number of option paths
priced per second, with a breakdown of the con-
tributions of each compute device (CPU or copro-
cessor). This performance metric was computed as

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 10

http://www.colfax-intl.com/nd/workstations/sxp7450.aspx
http://www.colfax-intl.com/nd/workstations/sxp7450.aspx
http://research.colfaxinternational.com/

5 PERFORMANCE RESULTS

CPUs
only

Coprocessors
only

Heterogeneous:
CPUs+coprocessors

0

5

10

15

20

25

30

35

Pe
rf

or
m

an
ce

, m
ill

io
ns

 o
f p

at
hs

 p
er

 s
ec

on
d

compute-01 (CPU)
compute-02 (CPU)
compute-01-mic0 (Xeon Phi)
compute-02-mic0 (Xeon Phi)

http://research.colfaxinternational.com/

Figure 5: Performance in three configurations: only CPUs,
only coprocessors, and both.

M ×N ×Q/τ , where τ is the wall clock time of the
calculation in which Q sets of parameters are processed
on the cluster, and for each parameter set, M Monte
Carlo paths are played out with N points for Asian op-
tion averaging. The parameters used for the calculation
are M = 220, N = 365, Q = 100. Other parame-
ters of the option used in the simulation are S = 15.3,
T = 1.0, µ = r = .08, 0.05 < v < 0.5 and
10 < K < 20. These parameters do not affect the
application performance.

For the parameters that we chose, the frequency of
MPI communication is low enough, and the number of
work-items Q is large enough so that the load can be
almost perfectly balanced across the four compute de-
vices. As one would expect in this case, the net perfor-
mance achieved CPUs and coprocessor is equal to the
performance with CPUs only plus the performance with
only coprocessors. See Section 6.2 for a discussion of
the scheduling overhead.

5.2. BEHIND THE SCENES: MPI AND NFS SPEED

In order to put the absolute performance metrics re-
ported above in context, and to estimate the scalability
limits of this approach, we performed additional tests of
the hybrid cluster performance.

The first test is the MPI latency and bandwidth for
communication within the cluster. This metric is im-

portant, because for the present problem, it determines
the parallel scalability limits of the boss-worker model.
In order to measure the MPI performance, we used the
Intel MPI benchmark. We executed the “PingPong” test
in several setups to measure the communication effi-
ciency between the host compute-01, on which the
boss process is running, and

1) compute-01 (i.e., boss and worker are running on
the same CPU node),

2) compute-02 (worker on a remote compute node),
3) coprocessor compute-01-mic0 (worker on a lo-

cal MIC node),
4) coprocessor compute-02-mic0 (worker on a re-

mote MIC node).

The results are shown in Figure 6.

100 101 102 103 104 105 106 10710-4

10-3

10-2

10-1

100

101

102

103

La
te

nc
y,

 m
s

Within a CPU host
To/from a remote CPU host
To/from a local MIC host
To/from a remote MIC host

100 101 102 103 104 105 106 107

Message size, bytes
10-2

10-1

100

101

102

103

104

Ba
nd

w
id

th
, M

B/
s

Within a CPU host
To/from a remote CPU host
To/from a local MIC host
To/from a remote MIC host

http://research.colfaxinernational.com/

Figure 6: Intel MPI benchmarks in the PingPong mode mea-
sure the latency and bandwidth of MPI commu-
nication between a CPU-based host (simulating
the boss process) and processes on other platforms
(simulating the workers).

The second test is the performance of the NFS-
exported file system. This metric is important in ap-
plications where heterogeneous MPI is used to initial-
ize MPI processes on coprocessors from data files, thus

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 11

http://research.colfaxinternational.com/

6 DISCUSSION

avoiding initialization by the pragma-based offload fa-
cility. Additionally, when MPI processes output some
data into files (instead of pushing it back to the host us-
ing the offload), it is important to know how fast this
writing can be done. We measured the read and write
speeds of large files

1) on a local hard drive (on the head node),
2) on a remote CPU host compute-02, and
3) on a remote MIC host compute-02-mic0.

This was done using the Linux tool dd to read or
write a single file, 1 GB in size. In order to avoid
cache effects, we flushed the disk cache before and af-
ter the write operation using sync. To purge the disk
cache before the read operation, we unmounted and re-
mounted the NFS share prior to reading. On the local
file system, we purged disk caches by writing “3” into
/proc/sys/vm/drop caches. Figure 7 shows the
performance results.

http://research.colfaxinernational.com/

Local
File System

NFS on a
CPU host

NFS on a
MIC host

0

20

40

60

80

100

120

140

160

Ra
te

, M
B/

s

Read
Write

Figure 7: Speeds of reading and writing a 1 GB file into
file systems, local and NFS-shared, with compute
nodes and with the uOS on coprocessors.

The I/O performance of the local drive on the head
node is 145 MB/s for reading and 130 MB/s for writ-
ing. On a remote CPU host (compute-02), the
NFS speed reaches only 110 MB/s for reading and
50 MB/s for writing. This performance is limited by
the bandwidth of the 1 Gigabit/s switch used to inter-
connect the machines. Finally, on a remote MIC host

(compute-02-mic0), the NFS I/O speed reaches
only 30 MB/s for reading and 25 MB/s for writing. It
is logical to attribute this limitation to the implementa-
tion of the networking stack on the MIC architecture,
because the bandwidth of the interconnect and of the
PCIe bus are far greater.

6. DISCUSSION

We have demonstrated that some applications de-
signed for traditional CPU-based clusters can be ex-
ecuted on an Intel Xeon Phi coprocessor-accelerated
heterogeneous cluster without code modification. Fur-
thermore, significant performance improvement from
adding the coprocessors was observed. To conclude this
work, we discuss the prerequisites for the success of this
approach, and the limitations of heterogeneous cluster-
ing method compared to the traditional offload-based
acceleration.

6.1. PREREQUISITES FOR IMPROVED

PERFORMANCE ON COPROCESSORS

The Intel C/C++ and Fortran compilers are able to
take high-level language code written for a general-
purpose CPU and compile it into an executable for
the many-core architecture of Xeon Phi coprocessors.
However, as discussed in our previous publications
(e.g., [4], [5], [6] and [7]), the coprocessor will yield
a better performance than an Intel Xeon CPU-based
system of comparable generation and wattage only if
the code is designed according to parallel programming
guidelines:

a) The algorithm is taking advantage of multiple cores
through the OpenMP or Pthreads framework;

b) Synchronization and false sharing are insignificant,
so that the application scales linearly up to 100 or
more threads;

c) Data structures and loop implementations permit au-
tomatic vectorization by the compiler;

d) No hand-coded vector instructions are used (SSE
and AVX instructions are not supported in Intel
Xeon Phi coprocessors);

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 12

http://research.colfaxinternational.com/

6 DISCUSSION

e) Memory traffic is either bandwidth-bound, or has
good locality in time and space, so that the caches
are used efficiently.

These guidelines are discussed in great detail in [8], and
we will not elaborate on them in this publication.

The guidelines shown above are also applicable to
HPC applications for multi-core CPUs. Therefore, an
important prerequisite for the success of a “recode-
nothing” approach is having a highly optimized multi-
core CPU implementation in the first place.

6.2. LIMITATIONS OF HETEROGENEOUS MPI

Even though most MPI applications can be trans-
lated to Intel Xeon Phi coprocessors in the way demon-
strated here, not every application will be accelerated
on a hybrid cluster without optimization or restructur-
ing. The list below summarizes the prerequisites for
successful heterogeneous execution.

a) The amount of MPI communication should not be
overwhelming. In the configuration presented here,
we used a commodity 1 Gigabit Ethernet switch, and
MPI messages were passed over the TCP/IP proto-
col. As Figure 6 shows, message passing from a host
to a local coprocessor achieves a bandwidth of only
20 MB/s. This is 300x lower than the practically
achievable bandwidth of the traditional offload data
traffic, which is currently 6-7 GB/s [8]; it is also 5x
slower than the measured bandwidth between CPU-
based compute nodes. Therefore, by making re-
mote coprocessors conveniently IP-addressable, the
cluster compromises a great deal of communication
bandwidth between a CPU and a local coprocessor.
Whether this is a limiting factor or not, is determined
by the ratio between data movement and computa-
tion in any given application.

b) Communication latency in a heterogeneous cluster
may be an issue in applications with frequent syn-
chronization. As Figure 6 shows, the greatest com-
munication latency is the message passing from a
CPU host to a remote coprocessor. It takes 0.3 ms
to ping-pong a short message between these end
points, as compared to 0.02 ms for ping-pong be-
tween CPU hosts. Furthermore, communication la-
tency becomes important even for embarrassingly

parallel applications that could run without any syn-
chronization on traditional, homogeneous clusters.
This is because for heterogeneous clusters, load bal-
ancing in some form is required. In the boss-worker
model, where the boss hands out work items to the
workers, communication latency puts a limit on the
parallel scalability of the application. Indeed, the
maximum number of workers in the boss-worker
model must be considerably lower than the ratio of
τ (the average compute time of a work-item on a
single worker) to the scheduling latency.

NW �
τ

0.3 ms
. (8)

If the application must be scaled beyond the limit
set by Equation (8), the programmer must increase
the size of a work-item or adjust the size of work-
items dynamically to achieve a compromise be-
tween the scheduling overhead and load balance.
For problems where the compute time for any work
item is predictable, it may be possible to avoid dy-
namic scheduling, and instead, statically schedule
a balanced workload by assigning to coprocessors
more work proportionally to their relative perfor-
mance. Section 4.7 in [8] provides examples of such
scheduling modes. In complex cases, some sort of
collective work scheduling must be employed, such
as a hierarchical structure of boss processes or a
work-stealing algorithm.

c) File I/O on coprocessors via NFS cannot be too in-
tensive. NFS is a useful convenience feature, en-
abling coprocessors to initialize from files and out-
put results. However, due to a limited speed of the
current NFS implementation for Intel Xeon Phi co-
processors, it cannot be relied upon for high-speed
I/O. As Figure 7 shows, reading or writing inside
an NFS-shared directory on a coprocessor achieves
only 20% of the available 1 Gigabit/s intercon-
nect bandwidth. If initialization of MPI processes
on coprocessors from files becomes a bottleneck of
the calculation, the application may need to be re-
structured to traditional offload-based acceleration.

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 13

http://research.colfaxinternational.com/

REFERENCES

6.3. HAVING YOUR CAKE AND EATING IT TOO

As we have seen, the heterogeneous cluster configu-
ration, with Intel Xeon Phi coprocessors acting as inde-
pendent compute nodes, enables, in some cases, accel-
eration “out of the box”. A significant factor in the con-
venience of this approach is that it does not require any
specialized networking hardware. The toy cluster tested
in this work used a common 1 Gigabit/s switch to inter-
connect the nodes. However, the convenient bridged
network configuration comes at the cost of increased
communication latency and reduced data transfer band-
width.

At the same time, for communication-bound work-
loads, the InfiniBand fabric provides reduced latency,
decreased CPU overhead, and advanced technologies,
such as Remote Direct Memory Access (RDMA). The
Intel TrueScale product line is an InfiniBand fabric,
which, in combination with the OpenFabrics Enterprise
Distribution (OFED), integrates with the Intel MPSS.
TrueScale and may be able to provide improved per-
formance with simplified programming techniques. In
future publications on Colfax Research, these advanced
HPC technologies will be showcased and examined.

REFERENCES

[1] Hetetogeneous Clustering with Homogeneous Code
(landing page for this paper).
http://research.colfaxinternational.com/post/2013/10/
17/Heterogeneous-Clustering.aspx.

[2] Intel Manycore Platform Software Stack (MPSS).
http://software.intel.com/en-us/articles/intel-manycore-
platform-software-stack-mpss.

[3] System Administration for the Intel Xeon Phi Coproces-
sor.
http://software.intel.com/en-us/articles/system-
administration-for-the-intel-xeon-phi-coprocessor.

[4] Andrey Vladimirov. Auto-Vectorization with the Intel
Compilers: is Your Code Ready for Sandy Bridge and
Knights Corner?
http://research.colfaxinternational.com/post/2012/03/
12/AVX.aspx.

[5] Andrey Vladimirov and Vadim Karpusenko. Test-
driving Intel Xeon Phi coprocessors with a basic N-body
simulation.

http://research.colfaxinternational.com/post/2013/01/
07/Nbody-Xeon-Phi.aspx.

[6] Vadim Karpusenko and Andrey Vladimirov. How to
Write Your Own Blazingly Fast Library of Special
Functions for Intel Xeon Phi Coprocessors.
http://research.colfaxinternational.com/post/2013/05/
03/Fast-Library-Xeon-Phi.aspx.

[7] Andrey Vladimirov. How to Write Your Own Blazingly
Fast Library of Special Functions for Intel Xeon Phi
Coprocessors.
http://research.colfaxinternational.com/post/2013/08/
12/Trans-7110.aspx.

[8] Colfax International. Parallel Programming and Opti-
mization with Intel Xeon Phi Coprocessors. ISBN: 978-
0-9885234-1-8. Colfax International, 2013.
http://www.colfax-intl.com/xeonphi/book.html.

c© Colfax International, 2013 — http://research.colfaxinternational.com/ 14

http://research.colfaxinternational.com/post/2013/10/17/Heterogeneous-Clustering.aspx
http://research.colfaxinternational.com/post/2013/10/17/Heterogeneous-Clustering.aspx
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/system-administration-for-the-intel-xeon-phi-coprocessor
http://software.intel.com/en-us/articles/system-administration-for-the-intel-xeon-phi-coprocessor
http://research.colfaxinternational.com/post/2012/03/12/AVX.aspx
http://research.colfaxinternational.com/post/2012/03/12/AVX.aspx
http://research.colfaxinternational.com/post/2013/01/07/Nbody-Xeon-Phi.aspx
http://research.colfaxinternational.com/post/2013/01/07/Nbody-Xeon-Phi.aspx
http://research.colfaxinternational.com/post/2013/05/03/Fast-Library-Xeon-Phi.aspx
http://research.colfaxinternational.com/post/2013/05/03/Fast-Library-Xeon-Phi.aspx
http://research.colfaxinternational.com/post/2013/08/12/Trans-7110.aspx
http://research.colfaxinternational.com/post/2013/08/12/Trans-7110.aspx
http://www.colfax-intl.com/xeonphi/book.html
http://research.colfaxinternational.com/

	Introduction: To Offload or To Take It Easy, Aye There's the Point
	Asian Option Pricing
	Implementation for a Traditional Cluster
	Thread Parallelism and Vectorization
	Dynamic Load Balancing with the Boss-Worker Model
	Compilation and CPU-Only Execution

	Heterogeneous Clustering with Coprocessors
	SSH Keys for Coprocessors
	Bridged Network Configuration
	Network File Sharing with Coprocessors
	Compilation and Heterogeneous Execution

	Performance Results
	Coprocessor-Assisted Calculation
	Behind the Scenes: MPI and NFS Speed

	Discussion
	Prerequisites for Improved Performance on Coprocessors
	Limitations of Heterogeneous MPI
	Having Your Cake and Eating It Too

