Accelerating Public Domain Applications:
Lessans from Medels of Radiation Tr ransport,
S m IheMllk a Ga axy e S T,

."1 e il lm;_ ¥ \!-- .‘."h e

'I'.r"

' 'l‘ - L -':.I.

- ¥ ey o
,En.a P.u"’.allal JI jerse, ~f~$‘ir1ry* Discoyery dirave &F Ithan nght v

1"

L]
"r'.

The Planck one-

Custos od Solu B s > year all-sky
http: //colfax-mtl cem/ image credit

ESA, HFl and LFlI

Intel Theater Presentation SC'13, Denver, CO, USA consortia.

http://colfax-intl.com/
http://colfax-intl.com/

Building a 3D Model of the Milky Way Galaxy

An instance of a

Goal: build a 3D model of the Milky Way Galaxy generic data analysis problem
using a large volume of 2D data from sky surveys. A

Sun

One of possible realizations of 3D
models of the Milky Way Galaxy
(cosmic dust luminosity map

| calculated by the FRaNKIE code)
Image credits: a) DIRBE Team, COBE, NASA,; b) 2MASS/J. Carpenter, T. H. Jarrett, & R. Hurt

sooastedo|y O

Building a 3D Model of the Milky Way Galaxy

An instance of a
Goal: build a 3D model of the Milky Way Galaxy generic data analysis problem

using a large volume of 2D data from sky surveys. A
Method: Bayesian inference. Simulate the Galaxy, assess N
the fit to data, refine 3D model parameters, rinse & repeat. 4 /
Sun

Challenge: modeling the process of stochastic heating of cosmic

dust by starlight, in each voxel of a 3D grid, is very time consuming.
With unoptimized code, hundreds of CPU-years for each run.

One of possible realizations of 3D
models of the Milky Way Galaxy
(cosmic dust luminosity map
calculated by the FRaNKIE code)

sooastedo|y O

Accelerating Radiation Transport Models
for the Milky Way

Solution: use a computing accelerator, optimize existing code.

Calculation of Stochastic Heating and Emissivity of Cosmic Dust Grains H L;r}.(:jFr)eUdS
with Optimization for the Intel Many-Core Architecture Oyears :
Result: HEATCODE N _

: Troy A. Porter!, Andrey E. Vladimirov'?
HEterogeneous Architecture

u' Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, Ub A -

Ilbrary for STOChaS“C COsmIC ? Colfax International, 750 Palomar Ave, Sunnyvale, CA 94085, USA cat‘
Dust Emissivity
(open source, soon to be \ [
published) ute

GO o\P ~ Hundreds
Cosmic dust particles e e Glu starlight. Their absorption of starlight produces emission spectra from the near- to Of CPU_
far-infrared, ncqﬁ he sizes and properties of the dust grains, and spectrum of the heating radiation field. The near-
to mld- mmated by the emissions by very small grains. Modeling the absorption of starlight by these particles is, days

however, Computatlonally expensive and a significant bottleneck for self-consistent radiation transport codes treating the heatmo
of dustby starggdm this paj cgummarizg the formalisgefor computigg the stochastic emissjvityeof cosmic dust, which was

Three Mainstream Routes

Target Architecture
Development

Optimization

Established

Re-write in CUDA § Re-write in OpenCL

GPGPU or MIC MIC (Xeon Phi)

+
+
OpenCL or
Template Libraries Gz, Pl

Brand new

Young

CPU, GPU and MIC CPU and MIC

GPU only

Orchestrate Offload

for GPU for each platform common arch.

C/C++ and OpenMP

CUDA OpenCL

Our choice for i
HEATCODE

Offload to Xeon Phi and Out-of-Box Performance

Easy to offload the calculation to Xeon Phi:
* Represent data as bitwise-copyable arrays
 Insert #pragma offload into the code

void CalculateTransientEmissivity(
const vector< const valarray<double>* > &
const vector< valarray<double>* > &

const int = inData.size();
double* = (double*) malloc(sizeof(double)*M*N);
for (int = 0; r < M; r++)

inDataBC[r*N:N] = (*inData[r])[O0:N]

#pragma offload target(mic) \
in(inDataBC : length(M*N)) out(outDataBC : length(M*N))
{
tpragma omp parallel for
for (int = 0; r < M; r++) {
/* ... proceed with calculation ...

}

Performance out of the box? No free lunch! —

HEATCODE Benchmarks

‘ MUST

OPTIMIZE

©
C
o
o
)
wn
~
W
)
X
O
>
)
o
C
©
&
| -
@)
y—
| -
)
(a

UNOPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU (16 cores total)
versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Optimization Strategies: “Without Your Space Helmet,
Dave, You Are Going to Find That Rather Difficult”

1) Scale to 240 threads:

2) Vectorization:

3) Memory traffic:

4) General:

Optimization Strategies: “Without Your Space Helmet,
Dave, You Are Going to Find That Rather Difficult”

Unoptimized Version

1) Scale to 240 threads:
 Reduce memory footprint
 Increase iteration space, collapse nested loops
« Avoid synchronization

with 3-dimensional Temporary Arrays
const int iTile = 4; #pragma omp parallel for
const int H
assert(wlBins

InterpolateWeightedRadiationField() {

for (int i 0; i < gIMax; i++)
L 005 o o I \

gIMax
H{H weightedRadiationField

for (int jj = 0O:
for (int i1 = O:
float result[iT
for (int ¢ = O; <
result[c] = 0.0f;

for (int k = 0; k
for (int ¢ = 0; ¢

npBins: ++k) | calculateMatrices() {

Tile: c+4+) | g P B | "
Loop

result [(C

result

2) Vectorization:
* Rely on Intel compiler for auto-vectorization

» Guide compiler with pragma hints RO
« Pad/modify loop bounds

result [(3 iTile+c] += distribu

Detalils of
Optimization
= Methods are
Explained in the

» b+ |
Size| jj+blf

Unoptimized Loop Pattern

3) Memory traffic:
« Change order of operations for data locality
« Avoid dynamic memory allocation

Final level f
Final level f

4) General: " s
e Single precision everywhere
* Optimized math functions
* Precompute but not too much

for interpolation in bin j,

22: Pattern of nested loop: £ and i in the first example in Figure B.21 before and after optimization. The optimized loop pattern always has a multiple
of 16 ations in the inner vectoriz oop. which is beneficial for performance.

interpolate to grain wavelength

Write to

Optimized Version with Fused Loops
and 2-dimensional Temporary Amrays

#pragma omp parallel for

RadiationFieldToTemperatureDistribution () {
for (int i = 0; i < gIMax; i++)
{
/* .. InterpolateWeightedRadiationField .. */

fFH?
-

transientMatrix }O

/* .. CalculateTemperatureDistribution .. */

weightedRadiationField |

. CalculateMatrices .. */

ich increases the usable number of OpenMP threads.

Optimized Interpolation thm
Grain Wavelength Bin a et Precomputation
and Automatic Ve,

te over
clength index 5

Wavelength

e ———

Look up precomputed (£, 1)
and slope & offset for j

Vector loop
through all (£,1)
for current § LI

compute
interpolated RF,

Figure B.13: Schematic interpolation algorithm before and after optimization.

Heterogeneous Computing: Solid Rocket Boosters

« “Embarrassingly parallel” =>
easy to use the CPU in
tandem with multiple
coprocessors

 We use dynamic scheduling,
assigning work-items to
compute devices as they
become available

HETEROGENEOUS SYSTEM

Performance Benchmarks: The Big Bang Experience

vA 4

optimization,
performance
on Xeon Phi
Improved
tremendously.

HEATCODE Benchmarks

Did we achieve a

MIC vs CPU
speedup of 125x ?

©
C
o
o
)
wn
~
=L
)
X
O
>
)
o
C
©
&
| -
@)
y—
| -
)
(a

UNOPTIMIZED OPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU (16 cores total)
versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Performance Benchmarks: The Big Bang Experience

A

HEATCODE Benchmarks

same C++ code

optimization,

performance

on Xeon Phi
Improved

1.9x

tremendously. Did we achieve a

MIC vs CPU
speedup of 125x ?

©
C
o
o
)
wn
~
=L
)
X
O
>
)
o
C
©
&
| -
@)
y—
| -
)
(a

UNOPTIMIZED OPTIMIZED

t for end-users Dual-socket Intel Xeon E5-2670 CPU (16 cores total)
vVersus

Xeon Phl) Intel Xeon Phi 5110P coprocessor (60 cores)

Performance Benchmarks: The Big Bang Experience

HEATCODE Benchmarks

Heterogeneous
calculation (CPU + two
Xeon Phi coprocessors)
Improves per-node
performance even further.

©
C
o
o
)
wn
~
=L
)
X
O
>
)
o
C
©
&
| -
@)
y—
| -
)
(a

UNOPTIMIZED OPTIMIZED HETEROG

Dual-socket Intel Xeon E5-2670 CPU (16 cores total)
versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Performance Benchmarks: The Big Bang Experience

HEATCODE Benchmarks

Our optimizations had a
positive effect with the
GNU compiler

(important for end-users
without an Intel compiler)

©
C
o
o
)
wn
~
=L
)
X
O
>
)
o
C
©
&
| -
@)
y—
| -
)
(a

UNOPTIMIZED OPTIMIZED HETEROG

Dual-socket Intel Xeon E5-2670 CPU (16 cores total)
versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Peer Review: Houston, Do You Read Me?

How difficult is it to read, understand and modify the optimized MIC code for end-users without
Xeon Phi programming knowledge?

BEFORE OPTIMIZATION

for (int fMax[gI]; £ >= 1; --f) {
for (int = 0; 1 <= f; ++1) {

.

L
o
=
S
X
n

for (int = 0; 1 < wlBins; ++i) {
for (int = 0; J < gsBins; ++3j) {
for (int = 0; k < tempBins; ++k)
dist[k] =
planckDistribution[i*tempBins + k]*
distribution[j*tempBins + k];

Example 2

double result = 0;
result = std::accumulate(&dist[0],
&dist[tempBins], result);

AFTER OPTIMIZATION

for (int = fMax[gI]; £ >= 1; --f) {
const int = (f - 1) + (FLOATS_IN ALIGN BYTES-

(f - 1)%FLOATS IN ALIGN BYTES) - 1;
const int = (uB <= tempBins-1 ? uB : tempBins-1);
for (int = 0; 1 <= iMax; ++i) {

. /* More regular vectorization pattern */

for (int = 0; JJ < gIMax-(gIMax%]jTile); Jjj += JTile)
for (int =0; ii<wlBins; ii+=iTile) { /* Loop tiling */
float [1Tile*]jTile];
for (int ¢ = 0; ¢ < iTile*jTile; c++) result[c] = 0.0f;

for (int 0; ¢ < iTile; c++) {
result[(0)*iTilet+tc] +=
distribution[(jj+0)*tempBins+k]*
planckDistribution[(iitc)*tempBins+k];
result[(1l)*iTile+c] += ...

for (int = 0; k < tempBins; ++k)
)

The code may get... stylistically challenging. But it is still C/C++ with OpenMP parallelism.

Click to Download
Even If You Do Not Have a Xeon Phi

° CPU & each coprocessor iS /* nComputeDevices is the number of coprocessors that the end user

wishes to employ, plus 1 if the host CPU is used as well */

an independent compute omp_set nested(1);
de\"ce' omp set num threads(nComputeDevices)
#pragma omp parallel for if (nComputeDevices > 1) schedule(dynamic,1l)
- - for (int = 0; m < nChunks; m++) {
* DIStrIbUte & balance_work /* Bind one OpenMP thread to each device for scheduling */
aCross Compute de\"ces_ int iMic = omp get thread num() - computeOnHost;
#tpragma offload target(mic:iMic) if (iMic >= 0) in (...) out(...)
* Without coprocessors, fall { o
omp set num threads(defaultThreadsForThisDevice)
baCk to the CPU. /* Spawn OpenMP threads within each compute device for processing */
#tpragma omp parallel for
. for (int = 0; r < thisChunkSize; r++) {
e Same performance-crltlcal /* ... Code that runs either on the CPU or on the coprocessor
code for CPUs and gese femas =

COpProcessors.

Click to Download
Even If You Do Not Have an Intel Compiler

/* Compiler-specific hints can be
protected with the preprocessor macro
___INTEL COMPILER to avoid compilation
warnings from non-Intel compilers */

#ifdef INTEL COMPILER

#pragma vector aligned

#pragma simd

#endif

for (int = 0; 1 < tempBins; i++) {

[* .. */

}

/* Also for compiler-specific tuning */
#ifdef INTEL COMPILER

#define log2f

#define exp2f

telse

#define logf

tdefine expf

#endif

/* Code specific to Xeon Phi coprocessor programming
can be protected with the macro _ INTEL OFFLOAD.
It is defined only in Intel compilers that support
the MIC architecture */

#ifdef INTEL OFFLOAD

tpragma offload attribute(push, target(mic))

#endif

void RadiationFieldToTemperatureDistribution(...);

#ifdef INTEL OFFLOAD
#pragma offload attribute(pop)
#endif

/* Macro __MIC protects coprocessor-specific tuning * /
#ifdef MIC

const int
telse

const int

#tendif

Summary: Acceleration with Xeon Phi
Coprocessors for Public Domain Applications

« Same code for Xeon and Xeon Phi —» Do optimization only once
« CPU optimization is often a “low-hanging fruit”: ~100x for HEATCODE

» Users without Xeon Phi can still use the application on the CPU

» Users without the Intel compiler can still use GCC

« Users without CUDA or OpenCL knowledge can understand and modify the code
* Forward-scalable to future many-/multi-core platforms

Maintain
+ One

Code

M MIC-accelerated application
i Xeon Phi + CPU is possible

Multithreaded Offload + Optimization

M No Xeon Phi? Use the CPU

Maintain GPU-only application
+ GPU f==== [X] GPU + CPU not possible
Code No GPU? No application

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

