
Primer on Computing with
Intel Xeon Phi Coprocessors

SLAC Geant4 Tutorial 2014

Andrey Vladimirov
Colfax International

March 6, 2014
Compututing with Xeon Phi Welcome © Colfax International, 2014

http://www-public.slac.stanford.edu/geant4/Tutorial2014.asp

MIC Architecture from the Programmer’s Perspective

Compututing with Xeon Phi MIC Architecture from the Programmer’s Perspective © Colfax International, 2014

Intel Xeon Phi Coprocessors and the MIC Architecture

PCIe end-point device

High Power efficiency

∼ 1 TFLOP/s in DP

Heterogeneous clustering

For highly parallel applications which reach the scaling limits
on Intel Xeon processors

Compututing with Xeon Phi MIC Architecture from the Programmer’s Perspective © Colfax International, 2014

Xeon Family Product Performance

Many-core Coprocessors
(Xeon Phi) vs Multi-core
Processors (Xeon) —

Better performance per
system & performance
per watt for parallel
applications

Same programming
methods, same
development tools.

Source: “Intel Xeon Product Family:
Performance Brief”

Compututing with Xeon Phi MIC Architecture from the Programmer’s Perspective © Colfax International, 2014

https://www-ssl.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-brief.html
https://www-ssl.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-brief.html

Intel Xeon Phi Coprocessors and the MIC Architecture

Many-core Intel Xeon Phi coprocessorMulti-core Intel Xeon processor

C/C++/Fortran; OpenMP/MPI

Standard Linux OS

Up to 768 GB of DDR3 RAM

≤12 cores/socket ≈3 GHz

2-way hyper-threading

256-bit AVX vectors

C/C++/Fortran; OpenMP/MPI

Special Linux µOS distribution

6–16 GB cached GDDR5 RAM

57 to 61 cores at ≈1 GHz

4-way hyper-threading

512-bit IMCI vectors
Compututing with Xeon Phi MIC Architecture from the Programmer’s Perspective © Colfax International, 2014

Examples of Solutions with the Intel MIC Architecture

Colfax’s CXP7450 workstation with
two Intel Xeon Phi coprocessors

Colfax’s CXP9000 server with eight
Intel Xeon Phi coprocessors

Compututing with Xeon Phi MIC Architecture from the Programmer’s Perspective © Colfax International, 2014

http://www.colfax-intl.com/nd/workstations/sxp7450.aspx
http://www.colfax-intl.com/xeonphi/cxp9000.html

Linux µOS on Intel Xeon Phi coprocessors (part of MPSS)
user@host% lspci | grep -i "co-processor"
06:00.0 Co-processor: Intel Corporation Device 2250 (rev 11)
82:00.0 Co-processor: Intel Corporation Device 2250 (rev 11)
user@host% sudo service mpss status
mpss is running
user@host% cat /etc/hosts | grep mic
172.31.1.1 host-mic0 mic0
172.31.2.1 host-mic1 mic1
user@host% ssh mic0
user@mic0% cat /proc/cpuinfo | grep proc | tail -n 3
processor : 237
processor : 238
processor : 239
user@mic0% ls /
amplxe dev home lib64 oldroot proc sbin sys usr
bin etc lib linuxrc opt root sep3.10 tmp var

Compututing with Xeon Phi MIC Architecture from the Programmer’s Perspective © Colfax International, 2014

Programming Models and Application Porting

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Native Execution

“Hello World” application:
1 #include <stdio.h>
2 #include <unistd.h>
3 int main(){
4 printf("Hello world! I have %ld logical cores.\n",
5 sysconf(_SC_NPROCESSORS_ONLN));
6 }

Compile and run on host:
user@host% icc hello.c
user@host% ./a.out
Hello world! I have 32 logical cores.
user@host%

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Native Execution
Compile and run the same code on the coprocessor in the native mode:

user@host% icc hello.c -mmic
user@host% scp a.out mic0:~/
a.out 100% 10KB 10.4KB/s 00:00
user@host% ssh mic0
user@mic0% pwd
/home/user
user@mic0% ls
a.out
user@mic0% ./a.out
Hello world! I have 240 logical cores.
user@mic0%

Use -mmic to produce executable for MIC architecture

Must transfer executable to coprocessor (or NFS-share) and run from shell

Native MPI applications work the same way (need Intel MPI library)

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Porting User Applications for Native Execution

Simple CPU applications can be compiled for native execution on Xeon
Phi coprocessors by supplying the flag “-mmic” to the Intel compiler:

user@host% icpc -c myobject1.cc -mmic
user@host% icpc -c myobject2.cc -mmic
user@host% icpc -o myapplication myobject1.o myobject2.o -mmic

Same for coprocessor-only MPI applications:

user@host% mpiicpc -c myobject1.cc -mmic
user@host% mpiicpc -c myobject2.cc -mmic
user@host% mpiicpc -o myapplication myobject1.o myobject2.o -mmic

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Native Applications with Autotools

Use the Intel compiler with flag -mmic
Eliminate assembly and unncecessary dependencies

Use --host=x86_64 to avoid “program does not run” errors

Example, the GNU Multiple Precision Arithmetic Library (GMP):

user@host% wget https://ftp.gnu.org/gnu/gmp/gmp-5.1.3.tar.bz2
user@host% tar -xf gmp-5.1.3.tar.bz2
user@host% cd gmp-5.1.3
user@host% ./configure CC=icc CFLAGS="-mmic" --disable-assembly --host=x86_64
...
user@host% make
...

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

More information in white paper on research.colfaxinternational.com, including a video.

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

http://youtu.be/GffmChTcWf8
http://research.colfaxinternational.com/post/2013/10/17/Heterogeneous-Clustering.aspx
http://research.colfaxinternational.com/
http://youtu.be/GffmChTcWf8

Explicit Offload Programming Model

“Hello World” in the explicit offload model:
1 #include <stdio.h>
2 int main(int argc, char * argv[]) {
3 printf("Hello World from host!\n");
4 #pragma offload target(mic)
5 {
6 printf("Hello World from coprocessor!\n"); fflush(0);
7 }
8 printf("Bye\n");
9 }

Application launches and runs on the host, but some parts of code and
data are moved (“offloaded”) the coprocessor.

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Compiling and Running an Offload Application

user@host% icpc hello_offload.cpp -o hello_offload
user@host% ./hello_offload
Hello World from host!
Bye
Hello World from coprocessor!

Code inside of #pragma offload is offloaded automatically

Console output on Intel Xeon Phi coprocessor is buffered and
mirrored to the host console

If coprocessor is not installed, code inside #pragma offload falls
back to the host system

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Offloading Functions and Data
1 int* __attribute__((target(mic))) data;
2

3 __attribute__((target(mic))) void MyFunction(int* foo) {
4 // ... implement function as usual
5 }
6

7 int main(int argc, char * argv[]) {
8 // ...
9 #pragma offload target(mic) inout(data : length(N))

10 {
11 MyFunction(data);
12 }
13 }

Functions and data used on coprocessor must be marked with the
specifier __attribute__((target(mic)))

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Virtual-shared Memory Model
1 _Cilk_shared int arr[N]; // This is a virtual-shared array
2

3 _Cilk_shared void Compute() { // This function may be offloaded
4 // ... function uses array arr[]
5 }
6

7 int main() {
8 // arr[] can be initialized on the host
9 _Cilk_offload Compute(); // and used on coprocessor

10 // and the values are returned to the host
11 }

Alternative to Explicit Offload

Data synced from host to coprocessor before the start of offload

Data synced from coprocessor to host at the end of offload
Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Heterogeneous Computing with the MIC Architecture

Compututing with Xeon Phi Heterogeneous Computing with the MIC Architecture © Colfax International, 2014

Heterogeneous Distributed Computing with Xeon Phi

Option 1: Symmetric Pure MPI.

MPI processes are single-threaded.

Native MPI processes on the coprocessor.

E.g., 32 MPI processes on each CPU, 240 on each coprocessor.
Compututing with Xeon Phi Heterogeneous Computing with the MIC Architecture © Colfax International, 2014

Heterogeneous Distributed Computing with Xeon Phi

Option 2: Symmetric Hybrid MPI+OpenMP.

MPI processes are multi-threaded with OpenMP.

Native MPI processes on the coprocessor.

E.g., one 32-thr MPI proc on each CPU, 240-thr on each coprocessor.
Compututing with Xeon Phi Heterogeneous Computing with the MIC Architecture © Colfax International, 2014

Heterogeneous Distributed Computing with Xeon Phi

Option 3: Hybrid MPI+OpenMP with Offload.

MPI processes are multi-threaded with OpenMP.

MPI processes run only on CPUs.

One or more OpenMP threads perform offload to coprocessor(s).
Compututing with Xeon Phi Heterogeneous Computing with the MIC Architecture © Colfax International, 2014

Optimization for Intel Xeon Family Products

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

One Size Does Not Fit All

An application must reach scalability limits on the CPU in order to
benefit from the MIC architecture.

Use Xeon Phi if:

Scales up to 100 threads

Compute bound &
vectorized, or
bandwidth-bound

Use Xeon if:

Serial or scales to .10
threads

Unvectorized or
latency-bound

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Three Layers of Parallelism

Instruction Pool

D
a
ta

 P
o
o
l

PU

PU

PU

PU

SIMD

V
e
ct

o
r

U
n
it

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Three Layers of Parallelism

Instruction Pool

D
a
ta

 P
o
o
l

PU

PU

PU

PU

SIMD

V
e
ct

o
r

U
n
it

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Three Layers of Parallelism

Instruction Pool

D
a
ta

 P
o
o
l

PU

PU

PU

PU

SIMD

V
e
ct

o
r

U
n
it

Compute Node 1

MPI

Host CPUs Xeon Phi coprocessor Xeon Phi coprocessor

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Compute-Bound Application Performance

Scalar & Single-thread

M
o

re
Pa

ra
lle

l

Vector & Single-thread

Scalar & Multi-threaded

Vector & Multi-threaded

More Performance

1 10 100 1k 10k

- Intel Xeon Phi

- Intel Xeon

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Xeon + Xeon Phi Coprocessors = Xeon Family

Programming models allow a range of CPU+MIC coupling modes

Xeon - Multi-Core Centric MIC - Many-Core Centric

Multi-Core Hosted

General serial and
parallel computing

Offload

Code with highly-
parallel phases

Symmetric

Codes with
balanced needs

Many Core Hosted

Highly-parallel
codes

Breadth

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Performance Expectations: “Two Birds with One Stone”

Performance will be
disappointing if code is not
optimized for multi-core
CPUs

Optimized code runs better
on the MIC platform and on
the multi-core CPU

Single code for two
platforms + Ease of porting =
Incremental optimization More information in case study on

research.colfaxinternational.com

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

http://research.colfaxinternational.com/post/2013/11/25/sc13-talk.aspx
http://research.colfaxinternational.com/

Caution on Comparative Benchmarks

In most of our benchmarks,
“Xeon Phi” = 5110P SKU
(60 cores, TDP 225 W, $2.7k),
“CPU” = dual Xeon E5-2680
(16 cores, TDP 260 W, $3.4k
+ system cost)

Why dual CPU vs single
coprocessor? Approximately
the same Thermal Design
Power (TDP) and cost. More information in case study on

research.colfaxinternational.com

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

http://research.colfaxinternational.com/post/2013/11/25/sc13-talk.aspx
http://research.colfaxinternational.com/

Optimization Checklist

1 Scalar optimization

2 Vectorization

3 Scale above 100 threads

4 Arithmetically intensive or bandwidth-limited

5 Efficient cooperation between the host and the coprocessor(s)

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Optimization Example: In-Place Square Matrix Transposition

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++) { // Distribute across threads
3 for (int j = 0; j < i; j++) { // Employ vector load/stores
4 const double c = A[i*n + j]; // Swap elements
5 A[i*n + j] = A[j*n + i];
6 A[j*n + i] = c;
7 }
8 }

Unoptimized code:

Large-stride memory accesses

Inefficient cache use

Does not reach memory bandwidth limit

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Tiling a Parallel For-Loop (Matrix Transposition)
1 #pragma omp parallel for
2 for (int ii = 0; ii < n; ii += TILE) { // Distribute across threads
3 const int iMax = (n < ii+TILE ? n : ii+TILE); // Adapt to matrix shape
4 for (int jj = 0; jj <= ii; jj += TILE) { // Tile the work
5 for (int i = ii; i < iMax; i++) { // Universal microkernel
6 const int jMax = (i < jj+TILE ? i : jj+TILE); // for whole matrix
7 #pragma loop count avg(TILE) // Vectorization tuning
8 #pragma simd // Vectorization hint
9 for (int j = jj; j<jMax; j++) { // Variable loop count (bad)

10 const double c = A[i*n + j]; // Swap elements
11 A[i*n + j] = A[j*n + i];
12 A[j*n + i] = c;
13 } } } }

Better (but not optimal) solution:
Loop tiling to improve locality of data access
Not enough outer loop iterations to keep 240 threads busy

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Further Optimization of Matrix Transposition

Multi-versioned inner loop for
diagonal, edges and body

Tuning pragma to enforce
non-temporal stores

Expand parallel iteration space
occupy all threads

Control data alignment

OpenMP thread affinity for
bandwidth optimization

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Further Optimization: Code Snippet
1 #pragma omp parallel
2 {
3 #pragma omp for schedule(guided)
4 for (int k = 0; k < nTilesParallel; k++) { // Bulk of calculations here
5 const int ii = plan[HEADER_OFFSET + 2*k + 0]*TILE; // Planned order
6 const int jj = plan[HEADER_OFFSET + 2*k + 1]*TILE; // of operations
7 for (int j = jj; j < jj+TILE; j++) { // Simplified main microkernel
8 #pragma simd // Vectorization hint
9 #pragma vector nontemporal // Cache traffic hint

10 for (int i = ii; i < ii+TILE; i++) { // Constant loop count (good)
11 const double c = A[i*n + j]; // Swap elements
12 A[i*n + j] = A[j*n + i];
13 A[j*n + i] = c;
14 } } }
15 // Transposing the tiles along the main diagonal and edges...
16 // ...

Longer code but still in the C language; works for CPU and MIC
Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

In-Place Square Matrix Transposition: White Paper

Unoptimized
("cache-ignorant")

Loop tiling
("cache-aware")

Further optimization
(see white paper)

0

20

40

60

80

100

120

Pe
rf

or
m

an
ce

, G
B/

s
(h

ig
he

r i
s

be
tt

er
)

38 GB/s 41 GB/s

49 GB/s49 GB/s

60 GB/s

113 GB/s

Parallel, in-place square matrix transposition

Host system (CPU)
Intel Xeon Phi Coprocessor

More information in the white paper on research.colfaxinternational.com
Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

http://research.colfaxinternational.com/post/2013/08/12/Trans-7110.aspx
http://research.colfaxinternational.com/

Future-Proofing: Reliance on Compiler and Libraries

Compututing with Xeon Phi Future-Proofing: Reliance on Compiler and Libraries © Colfax International, 2014

Future-Proofing: Reliance on Compiler and Libraries
Ease of use

Fine control

Threading Options Vector Options

Intel® Math Kernel Library

Array Notation: Intel® Cilk™ Plus

Auto vectorization

Semi-auto vectorization:
#pragma (vector, simd)

OpenCL*

C/C++ Vector Classes
(F32vec16, F64vec8)

Intel® Math Kernel Library API*

Intel® Threading Building
Blocks

Intel® Cilk™ Plus

OpenMP*

Pthreads*

D
e

p
th

Compututing with Xeon Phi Future-Proofing: Reliance on Compiler and Libraries © Colfax International, 2014

Next Generation MIC: Knights Landing (KNL)

2nd generation MIC product: code
name Knights Landing (KNL)

Intel’s 14 nm manufacturing process

A processor (running the OS) or a
coprocessor (PCIe device)

On-package high-bandwidth
memory w/flexible memory models:
flat, cache, & hybrid

Intel Advanced Vector Extensions
AVX-512 (public)

Source: Intel Newsroom

Compututing with Xeon Phi Future-Proofing: Reliance on Compiler and Libraries © Colfax International, 2014

http://newsroom.intel.com/community/intel_newsroom/blog/2013/11/19/chip-shot-at-sc13-intel-reveals-more-details-of-its-next-generation-intelr-xeon-phi-tm-processor

Getting Ready for the Future

Porting HPC applications to today’s
MIC architecture makes them ready for
future architectures, such as KNL

Xeon, KNC and KNL are not binary
compatible, therefore assembly-level
tuning will not scale forward.

Reliance on compiler optimization and
using optimized libraries (such as Intel
MKL) ensures future-readiness.

Source: Intel Newsroom

Compututing with Xeon Phi Future-Proofing: Reliance on Compiler and Libraries © Colfax International, 2014

http://newsroom.intel.com/community/intel_newsroom/blog/2013/11/19/chip-shot-at-sc13-intel-reveals-more-details-of-its-next-generation-intelr-xeon-phi-tm-processor

Colfax Developer Training

Colfax runs a one-day and four-day
trainings for organizations on parallel
programming with Intel Xeon Phi co-
processors.

http://www.colfax-intl.com/nd/xeonphi/training.aspx

Compututing with Xeon Phi Future-Proofing: Reliance on Compiler and Libraries © Colfax International, 2014

http://www.colfax-intl.com/nd/xeonphi/training.aspx
http://www.colfax-intl.com/nd/xeonphi/training.aspx

Thank you for tuning in,
and

have a wonderful journey
to the Parallel World!

research.colfaxinternational.com

P.S.: We are hiring! http://www.colfax-intl.com/nd/Jobs.aspx

Compututing with Xeon Phi © Colfax International, 2014

http://research.colfaxinternational.com/
http://www.colfax-intl.com/nd/Jobs.aspx

Resources/Backup Slides

Compututing with Xeon Phi Resources/Backup Slides © Colfax International, 2014

Reference Guides

Intel C++ Compiler 14.0 User and Reference Guide

Intel VTune Amplifier XE User’s Guide

Intel Trace Analyzer and Collector Reference Gude

Intel MPI Library for Linux* OS Reference Manual

Intel Math Kernel Library Reference Manual

Intel Software Documentation Library

MPI Routines on the ANL Web Site

OpenMP Specifications

Compututing with Xeon Phi Resources/Backup Slides © Colfax International, 2014

http://software.intel.com/en-us/node/459680
http://software.intel.com/en-us/vtuneampxe_2013_ug_lin
http://software.intel.com/en-us/itac_8.1.4_itarefg
http://software.intel.com/en-us/itac_8.1.4_itcrefg
http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/index.htm
http://software.intel.com/en-us/mkl_11.1_ref
http://software.intel.com/en-us/intel-software-technical-documentation
http://www.mcs.anl.gov/research/projects/mpi/www/
http://openmp.org/wp/openmp-specifications/

Intel’s Top 10 List
1 Download programming books: “Intel Xeon Phi Coprocessor High

Performance Programming” by Jeffers & Reinders, and “Parallel
Programming and Optimization with Intel Xeon Phi Coprocessors”
by Colfax.

2 Watch the parallel programming webinar
3 Bookmark and browse the mic-developer website
4 Bookmark and browse the two developer support forums: “Intel

MIC Architecture” and “Threading on Intel Parallel Architectures”.
5 Consult the “Quick Start” guide to prepare your system for first use,

learn about tools, and get C/C++ and Fortran-based programs up
and running

Link to TOP10 List for Starter Kit Developers
Compututing with Xeon Phi Resources/Backup Slides © Colfax International, 2014

http://store.elsevier.com/product.jsp?&isbn=9780124104143
http://store.elsevier.com/product.jsp?&isbn=9780124104143
https://www.colfax-intl.com/xeonphi/book/buybook.aspx
https://www.colfax-intl.com/xeonphi/book/buybook.aspx
http://software.intel.com/en-us/articles/intel-xeon-phi-webinar
http://software.intel.com/mic-developer
http://software.intel.com/en-us/forums/intel-many-integrated-core
http://software.intel.com/en-us/forums/intel-many-integrated-core
http://software.intel.com/en-us/forums/threading-on-intel-parallel-architectures
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-top10-list-for-starter-kit-developers

Intel’s Top 10 List (continued)

6 Try your hand at the beginning lab exercises
7 Try your hand at the beginner/intermediate real world app exercises
8 Browse the case studies webpage to view examples from many

segments
9 Begin optimizing your application(s); consult your programming

books, the ISA reference manual, and the support forums for
assistance.

10 Hone your skills by watching more advanced video workshops

Link to TOP10 List for Starter Kit Developers

Compututing with Xeon Phi Resources/Backup Slides © Colfax International, 2014

http://software.intel.com/mic-developer#pid-13664-1280
http://software.intel.com/mic-developer#pid-13664-1280
http://software.intel.com/mic-developer#pid-11724-1231
http://software.intel.com/mic-developer#pid-12678-1280
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-top10-list-for-starter-kit-developers

	Welcome
	MIC Architecture from the Programmer's Perspective
	Programming Models and Application Porting
	Heterogeneous Computing with the MIC Architecture
	Optimization for Intel Xeon Family Products
	Future-Proofing: Reliance on Compiler and Libraries
	Resources/Backup Slides

