
CONFIGURATION AND BENCHMARKS
OF PEER-TO-PEER MPI COMMUNICATION

OVER GIGABIT ETHERNET AND INFINIBAND
IN A CLUSTER WITH INTEL XEON PHI COPROCESSORS

Vadim Karpusenko and Andrey Vladimirov
Colfax International

March 11, 2014

Abstract

Intel Xeon Phi coprocessors allow symmetric heteroge-
neous clustering models, in which MPI processes are run
fully on coprocessors, as opposed to offload-based cluster-
ing. These symmetric models are attractive, because they al-
low effortless porting of CPU-based applications to clusters
with manycore computing accelerators.

However, with the default software configuration and
without specialized networking hardware, peer-to-peer com-
munication between coprocessors in a cluster is quenched by
orders of magnitude compared to the capabilities of Gigabit
Ethernet networking hardware. This situation is remedied by
InfiniBand interconnects and the software supporting them.

In this paper we demonstrate the procedures for config-
uring a cluster with Intel Xeon Phi coprocessors connected
with Gigabit Ethernet as well as InfiniBand interconnects.
We measure and discuss the latencies and bandwidths of MPI
messages with and without the advanced configuration with
InfiniBand support. The paper contains a discussion of MPI
application tuning in an InfiniBand-enabled cluster with In-
tel Xeon Phi Coprocessors, a case study on the impact of the
InfiniBand protocol, and a set of recommendations for ac-
commodating the non-uniform RDMA performance across
the PCIe bus in high performance computing applications.

Table of Contents

List of Abbreviations 2
1 Message Passing with the Intel MIC Architecture 3
2 Peer-to-Peer Messaging between Coprocessors . 4

2.1 Ethernet 4
2.2 InfiniBand 6

3 Configuration of a Heterogeneous Cluster 7
3.1 Network Configuration 7
3.2 Network File Sharing 8
3.3 Account Management 9
3.4 MPSS Configuration 9
3.5 InfiniBand Configuration 10

4 MPI Performance Measurements 11
4.1 Performance with Ethernet 12
4.2 Performance with InfiniBand 14

4.2.1 Messages from Hosts 14
4.2.2 Messages between Coprocessors . . 14
4.2.3 Messages within a Coprocessor . . 15

4.3 Tuning the Fabrics 15
4.4 Tuning Collective Communication 15
4.5 MPI Performance in Heterogeneous Clus-

ter: Summary 15

5 Case Study: Asian Options 16
6 Conclusions . 17

Colfax International (http://www.colfax-intl.com/) is a leading provider of innovative and expertly en-
gineered workstations, servers, clusters, storage, and personal supercomputing solutions. Colfax Inter-
national is uniquely positioned to offer the broadest spectrum of high performance computing solutions,
all of them completely customizable to meet your needs - far beyond anything you can get from any
other name brand. Ready-to-go Colfax HPC solutions deliver significant price/performance advantages,
and increased IT agility, that accelerates your business and research outcomes. Colfax International’s
extensive customer base includes Fortune 1000 companies, educational institutions, and government
agencies. Founded in 1987, Colfax International is based in Sunnyvale, California and is privately held.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 1

http://www.colfax-intl.com
http://research.colfaxinternational.com/

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

API Application Programming Interface

CCL Coprocessor Communication Link

GPGPUs General-Purpose Graphics Processing Units

HCA Host Channel Adapter

IMB Intel MPI Benchmark

MIC Many Integrated Core

MKL Intel Math Kernel Library

MPI Message Passing Interface

MPSS Manycore Platform Software Stack

NFS Network File Sharing

NIC Network Interconnect

OFA OpenFabrics Alliance

OFED Open Fabrics Enterprise Edition

PCIe Peripheral Component Interconnect Express

QPI Quick Path Interconnect

RDMA Remote Direct Memory Access

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 2

http://research.colfaxinternational.com/

1 MESSAGE PASSING WITH THE INTEL MIC ARCHITECTURE

1. MESSAGE PASSING WITH THE INTEL MIC
ARCHITECTURE

Message Passing Interface (MPI) is a standard that
defines the syntax and semantics of library routines en-
abling parallel programming in distributed memory sys-
tems. MPI aims to provide applications with scalability,
portability, and high performance. Applications using
MPI do not need to explicitly manage network func-
tionality, and therefore developers can focus on design-
ing the parallel algorithm. At the same time, under the
hood, MPI works on customized, proprietary networks,
such as Mellanox InfiniBand and Intel True Scale, with
extremely high throughput and low latency, absolutely
transparently to the developers.

Among the multiple existing implementations of
MPI, the Intel MPI Library (see also [2]) is presently
the only one with support for Intel Xeon Phi coproces-
sors in a cluster. Intel Xeon Phi coprocessors feature the
Many Integrated Core (MIC) architecture, which may
yield greater performance for highly parallel applica-
tions than general-purpose Intel Xeon CPUs of compa-
rable cost and thermal design power.

Applications using Xeon Phi coprocessors may use
offload programming, which is similar to the CUDA
framework for General-Purpose Graphics Processing
Units (GPGPUs). With offload programming, the
CPU application is equipped with directives, which
send computing-intensive parts of the code and related
data from the host system memory to the coproces-
sor. Unlike GPGPUs, Xeon Phi coprocessors can run
performance-critical functions compiled from literally
the same C, C++ or Fortran codes as the same functions
for the CPU architecture. The offload clustering model
is schematically illustrated in Figure 1.

Additionally, Xeon Phi coprocessors can operate as
independent IP-addressable manycore nodes in a com-
puting cluster, with MPI processes running on copro-
cessors without the involvement of the host CPUs (see
Figure 2 for an illustration and [3] for a case study).
The symmetric clustering model is attractive to users of
existing MPI applications for CPU-based clusters, be-
cause it allows to use coprocessors and attain speedups
in HPC applications without re-structuring the code to
implement data offload.

Figure 1: Traditional heterogeneous clustering with offload pro-
gramming. MPI processes run only on the processors of
compute nodes, utilizing Intel Xeon Phi coprocessors via
an offload mechanism. Peer-to-peer communication be-
tween coprocessors is impossible, and application must
utilize offload Application Programming Interface (API)
to move code and data to and from the coprocessors.

Figure 2: Symmetric heterogeneous clustering. MPI processes are
launched directly on coprocessors. Peer-to-peer commu-
nication between coprocessors is possible, with network
fabric virtualized in the operating system. In this mode,
MPI applications for CPUs may be executed on copro-
cessors without code modification (however, tuning may
be required).

As mentioned above, MPI can use different network
configurations and fabrics for communication. In par-
ticular, this applies to peer-to-peer communication be-
tween coprocessors in a symmetric cluster. In this paper
we compare MPI communication performance between
coprocessors with the TCP protocol over the Ethernet
fabric to the DAPL protocol over the InfiniBand fabric.

In Section 2 we discuss the software stack enabling
Xeon Phi coprocessors to use networking fabrics for
peer-to-peer communication. In Section 3 we demon-
strate the system administration procedures for enabling
networking with Ethernet and InfiniBand in a symmet-
ric heterogeneous cluster with Xeon Phi coprocessors.
Section 4 provides MPI benchmark results for our con-
figuration, and Section 5 reports a case study on the im-
pact of improved communication on application perfor-
mance. In Conclusions (Section 6), we point out the
wins and drawbacks of InfiniBand-based peer-to-peer
communication in a MIC-enabled cluster, and discuss
the implications for HPC workload optimization.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 3

http://www.mcs.anl.gov/research/projects/mpi/
https://www.mellanox.com/
http://www.intel.com/content/www/us/en/infiniband/truescale-infiniband.html
http://software.intel.com/en-us/intel-mpi-library
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-5000-sequence.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://research.colfaxinternational.com/

2 PEER-TO-PEER MESSAGING BETWEEN COPROCESSORS

2. PEER-TO-PEER MESSAGING BETWEEN
COPROCESSORS

2.1. ETHERNET

Intel Xeon Phi coprocessors are Peripheral Com-
ponent Interconnect Express (PCIe) end-point devices.
They do not have Ethernet or InfiniBand ports to con-
nect them directly to the network. However, the Linux
operating system µOS on coprocessors and the Many-
core Platform Software Stack (MPSS) on hosts collab-
orate to virtualize networking on the coprocessor.

When MPSS is installed and configured with de-
fault parameters, it provides a “static pair” network
topology. In this configuration,

i) the host’s Ethernet Network Interconnect (NIC) is
connected to the private network of the cluster (in
our example, the cluster subnet is 10.33.0.0/15);

ii) on the host, virtual NICs mic0, mic1, etc., are
created with static IP addresses and subnets of
172.31.1.254/24, 172.31.2.254/24, etc.

iii) on the host, the file /etc/hosts contains host-
names and IP addresses of the Xeon Phi copro-
cessors inside the local system: host mic0 at
172.31.1.1, host mic1 at 172.31.2.1, etc.

iv) in the µOS of each coprocessor, a virtual NIC
mic0 (or mic1, mic2, etc.) appears, config-
ured to obtain a static IP address 172.31.1.1 (or
172.31.2.1, 172.31.3.1, etc), and

v) in the µOS of each coprocessor, the host file
/etc/hosts contains the hostname of the
host and and of other coprocessors: host at
172.31.1.254, mic0 at 172.31.1.1, etc.

In other words, each Xeon Phi coprocessor is placed
onto a private subnet inside of the machine, and com-
munication between the host and all coprocessors, as
well as peer-to-peer messages between coprocessors,
are possible. Physically, communication takes place
over the PCIe bus, however, this communication is vir-
tualized as a TCP/IP-capable NIC. Listing 1 illustrates
the static pair configuration.

Another possible network configuration is flat net-
work topology, also referred to in documentation as ex-
ternal bridge configuration (see Figure 3). For the flat
network model, the native Linux bridging mechanism
is used. In this configuration,

i) a bridge br0 is created on the host and connected
via the host’s NICs to the cluster network,

ii) the host’s primary network interface eth0 is con-
nected to br0

iii) all coprocessors’ virtual interfaces mic0, mic1,
etc., are connected to br0, and obtain IP addresses
on the cluster private network.

This allows to send direct TCP/IP packages addressed
to any coprocessor in a remote machine configured in
the same way. The end result of the flat network config-
uration is shown in Listing 2.

Ethernet
NIC

Chipset

CPU
System
Memory

MIC

MIC
Memory

PCIe PCIe

C
o
p

ro
ce

ss
o
r

Virtualized
Network
Interface
mic0

Network
Bridging
on br0

Figure 3: TCP/IP packet path with bridged networking from an In-
tel Xeon Phi coprocessor inside a symmetric heteroge-
neous cluster.

In Section 3.1 we will describe the procedure for
static pair and network configuration and for flat net-
work configuration with an external bridge. The lat-
ter configuration is necessary not only to run symmetric
MPI applications with the MIC architecture over Ether-
net. Flat network on the Ethernet connection of com-
pute nodes also allows to configure InfiniBand connec-
tion for symmetric MPI.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 4

http://research.colfaxinternational.com/

2 PEER-TO-PEER MESSAGING BETWEEN COPROCESSORS

[root@c001-n002 ˜]# # We are on host c001-n002
[root@c001-n002 ˜]# cat /etc/hosts
...
10.33.1.2 c001-n002 # Private cluster network
172.31.1.1 c001-n002-mic0 mic0 # Network...
172.31.2.1 c001-n002-mic1 mic1 # ...within...
172.31.3.1 c001-n002-mic2 mic2 # ...this...
172.31.4.1 c001-n002-mic3 mic3 # ...machine.
[root@c001-n002 ˜]#
[root@c001-n002 ˜]# ifconfig
...
eth0 Link encap:Ethernet HWaddr 00:25:90:C3...

inet addr:10.33.1.2 Bcast:10.35.255.255..
...

mic0 Link encap:Ethernet HWaddr 4C:79:BA:1A...
inet addr:172.31.1.254 Bcast:172.31.1.255

...
mic1 Link encap:Ethernet HWaddr 4C:79:BA:1A...

inet addr:172.31.2.254 Bcast:172.31.2.255
...
mic2 Link encap:Ethernet HWaddr 4C:79:BA:1A...

inet addr:172.31.3.254 Bcast:172.31.3.255
..
mic3 Link encap:Ethernet HWaddr 4C:79:BA:1A...

inet addr:172.31.4.254 Bcast:172.31.4.255
...
[root@c001-n002 ˜]# ssh mic0
[root@c001-n002-mic0 ˜]# # Now we are on mic0
[root@c001-n002-mic0 ˜]# cat /etc/hosts
...
172.31.1.254 host c001-n002
172.31.1.1 c001-n002-mic0 mic0
172.31.2.1 c001-n002-mic1 mic1
172.31.3.1 c001-n002-mic2 mic2
172.31.4.1 c001-n002-mic3 mic3
[root@c001-n002-mic0 ˜]#
[root@c001-n002-mic0 ˜]# ifconfig
...
mic0 Link encap:Ethernet HWaddr 4C:79:BA:1A...

inet addr:172.31.1.1 Bcast:172.31.1.255..
...

Listing 1: Default static pair network configuration of host
c001-n002 with four Intel Xeon Phi coprocessors.
The host and all coprocessors within a machine can com-
municate with each other using TCP/IP, however, com-
munication from coprocessors to remote coprocessors
(on other machines) is not possible. This configuration is
suitable for the offload clustering model (Figure 1) or for
symmetric MPI applications running on only one com-
pute node (Figure 2).

[root@c001-n002 ˜]# # We are on host c001-n002
[root@c001-n002 ˜]# cat /etc/hosts
...
10.33.1.2 c001-n002 # Private cluster network
10.33.1.22 c001-n002-mic0 mic0 # Now also on..
10.33.1.42 c001-n002-mic1 mic1 # ...private...
10.33.1.62 c001-n002-mic2 mic2 # ...cluster...
10.33.1.82 c001-n002-mic3 mic3 # ...network.
[root@c001-n002 ˜]#
[root@c001-n002 ˜]# ifconfig
...
br0 Link encap:Ethernet HWaddr 00:25:90:C3...

inet addr:10.33.1.2 Bcast:10.35.255.255..
...
eth0 Link encap:Ethernet HWaddr 00:25:90:C3...
...

mic0 Link encap:Ethernet HWaddr 4C:79:BA:1A...
...

mic1 Link encap:Ethernet HWaddr 4C:79:BA:1A...
...

mic2 Link encap:Ethernet HWaddr 4C:79:BA:1A...
...

mic3 Link encap:Ethernet HWaddr 4C:79:BA:1A...
...

[root@c001-n002 ˜]# ssh mic0
[root@c001-n002 ˜]# # Now we are on mic0
[root@c001-n002-mic0 ˜]# cat /etc/hosts
...
10.33.1.2 host c001-n002
10.33.1.22 c001-n002-mic0 mic0
10.33.1.42 c001-n002-mic1 mic1
10.33.1.62 c001-n002-mic2 mic2
10.33.1.82 c001-n002-mic3 mic3
[root@c001-n002-mic0 ˜]#
[root@c001-n002-mic0 ˜]# ifconfig
...
mic0 Link encap:Ethernet HWaddr 4C:79:BA:1A...

inet addr:10.33.1.22 Bcast:10.33.1.255...
...

Listing 2: External bridge network configuration of host
c001-n002 with four Intel Xeon Phi coprocessors.
TCP/IP packets can be sent directly between copro-
cessors in remote machines configured in this network
topology. This configuration is appropriate for symmet-
ric MPI applications utilizing the coprocessors in native
mode (i.e., without offload) as shown in Figure 2. At the
same time, cluster configured with external bridging can
still be used for offload applications.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 5

http://research.colfaxinternational.com/

2 PEER-TO-PEER MESSAGING BETWEEN COPROCESSORS

2.2. INFINIBAND

Intel MPI for Intel Xeon Phi coprocessors has
built-in support for the Open Fabrics Enterprise Edi-
tion (OFED) communications stack, based on Open-
Fabrics Alliance (OFA) development effort. OFED al-
lows to take advantage of Remote Direct Memory Ac-
cess (RDMA) capable transport over the InfiniBand
fabric, providing microsecond latencies and high band-
width communication channels.

There are two routes for RDMA transport in clus-
ters with Xeon Phi coprocessors:

1) the scif0 virtual InfiniBand adapter for intra-node
(i.e., within a compute node) communication within
a single platform. This mechanism abstracts com-
munication details over the PCIe bus between local
(belonging to one node) coprocessors, and between
the host and one of the local coprocessors.

2) the Coprocessor Communication Link (CCL) – a
proxy driver that allows inter-node (i.e., between
nodes) RDMA by virtualizing direct access to a
hardware InfiniBand Host Channel Adapter (HCA)
from Intel Xeon Phi coprocessors (see Figure 4).

RDMA
Device

Chipset

CPU
System
Memory

MIC

MIC
Memory

PCIe PCIe

C
o
p
ro
ce
ss
o
r

Virtualized
InfiniBand
HCA

Figure 4: RDMA transport with CCL between Intel Xeon Phi co-
processors inside a symmetric heterogeneous cluster. Di-
agram based on [4].

The end result of OFED configuration on a system
with Xeon Phi coprocessors and an InfiniBand HCA is

shown in Listing 3, where a real HCA mlx4 0 on the
host, a virtualized HCA mlx4 0 on the coprocessor,
and virtual adapters scif0 on host and on coprocessor,
are shown.

[root@c001-n002 ˜]# # We are on host c001-n002
[root@c001-n002 ˜]# service openibd status

HCA driver loaded
...
[root@c001-n002 ˜]# service ofed-mic status
Status of OFED Stack:
host [OK]
mic0 mic1 mic2 mic3 [OK]
[root@c001-n002 ˜]# ibv_devices

device node GUID
------ ----------------
scif0 4c79bafffe1a0ec9
mlx4_0 f45214030012ecf0

[root@c001-n002 ˜]#
[root@c001-n002 ˜]# ssh mic0
[root@c001-n002 ˜]# # Now we are on mic0
[root@c001-n002-mic0 ˜]# ibv_devices

device node GUID
------ ----------------
mlx4_0 f45214030012ecf0
scif0 4c79bafffe1a0ec8

[root@c001-n002-mic0 ˜]#

Listing 3: InfiniBand on a system with four Intel Xeon Phi co-
processors and a Mellanox InfiniBand HCA. The ser-
vice openibd (part of OFED) loads modules enabling
the operation of the InfiniBand HCA for communication
with other systems connected to the same InfiniBand net-
work. The service ofed-mic (part of MPSS) creates
a virtual InfiniBand interface scif0 for communica-
tion between local coprocessors, and virtualizes an In-
finiBand HCA on the coprocessor as device mlx4 0.

With the Ethernet and InfiniBand networks config-
ured across all machines in the cluster, the presence of
these networks is transparent to MPI applications. In-
tel MPI provides an abstraction for the developers to
separate the code from the hardware and software im-
plementation of communication fabrics and protocols.

In Section 3 we show how to set up and configure
networking in a symmetric heterogeneous cluster with
the MIC architecture, and in Section 4 we will demon-
strate how to execute MPI applications on the config-
ured cluster.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 6

https://www.openfabrics.org/resources/ofed-for-linux-ofed-for-windows/ofed-overview.html
https://www.openfabrics.org/resources/ofed-for-linux-ofed-for-windows/ofed-overview.html
http://research.colfaxinternational.com/

3 CONFIGURATION OF A HETEROGENEOUS CLUSTER

3. CONFIGURATION OF A HETEROGENEOUS
CLUSTER

This sections explains how to configure a cluster
with Intel Xeon Phi coprocessors and InfiniBand in-
terconnects for symmetric heterogeneous MPI work-
loads. We are assuming here that all nodes come with
a CentOS 6.5 Linux OS installed, and basic network-
ing over Ethernet is configured. We explain the steps
for manual configuration of MPSS, bridged network-
ing, and OFED on compute nodes, and the reader can
adapt this procedure to the provisioning system of their
cluster, be it imaging, kickstart, or cluster management
software.

The procedures described in this section are largely
based on the methodology proposed in [5], with updates
reflecting the features and specifics of the current MPSS
version 3.1.2.

3.1. NETWORK CONFIGURATION

In our cluster, the hostnames of compute nodes
are c001-n001, c001-n002, etc. In our naming
scheme, the first part of the hostname corresponds to
the number of cabinet in the cluster, and the second part
— to the index number of the chassis. Our cluster has
only one cabinet, but our naming system can be easily
extended to multiple cabinets.

IP addresses of the Ethernet adapters of compute
nodes follow the pattern 10.33.C.N, where C is the
cabinet number, and N is the node number, with a net-
mask 255.254.0.0. IP addresses of the InfiniBand
adapters of the corresponding nodes are 10.34.C.N
with a netmask 255.254.0.0. Note that the Ethernet
and InfiniBand IP address ranges do not overlap.

Finally, Intel Xeon Phi coprocessors have the same
hostnames as their host system with the additional suf-
fix -micX. For example, in the first cabinet, com-
pute node number two has hostname c001-n002,
and corresponding MIC cards are c001-n002-mic0,
c001-n002-mic1, etc. Their IP addresses follow
the pattern 10.33.C.M, where M=N+(X+1)*20, and
X is the zero-based number of the coprocessor. This
scheme allows to have up to 11 Intel Xeon Phi copro-
cessors per chassis (today’s systems support up to 8),

and up to 19 compute nodes in a cabinet.
As the first step, create /etc/hosts file with the

IP addresses of all machines and Intel Xeon Phi copro-
cessors in the cluster, and place it on the head node.
MPSS may modify this file during the configuration
process, so if you install and configure MPSS on the
head node, keep a backup copy of the hosts file. NOTE:
Intel Xeon Phi coprocessors are required to have the
same name as the host system with -micX suffix. Oth-
erwise, Intel MPI may not function properly.

[root@head-node ˜]# cat /etc/hosts
127.0.0.1 localhost
::1 localhost
10.32.0.1 head-node
10.33.1.1 c001-n001
10.33.1.21 c001-n001-mic0
10.33.1.41 c001-n001-mic1
10.33.1.61 c001-n001-mic2
10.33.1.81 c001-n001-mic3
10.33.1.2 c001-n002
10.33.1.22 c001-n002-mic0
10.33.1.42 c001-n002-mic1
10.33.1.62 c001-n002-mic2
10.33.1.82 c001-n002-mic3

Listing 4: Master /etc/hosts file must be stored on the head
node, from which the MPI jobs will be launched.

To implement the flat network topology we need to
configure network bridging on the host system. With
the bridged configuration, the host NIC will serve IP
addresses assigned to all the Intel Xeon Phi coproces-
sors in the system. In order for that to happen, the ad-
ministrator must create a bridge device br0 and con-
nect to it the Ethernet NIC eth0. This is similar to the
procedure of configuring external network access for a
virtual machine via a network bridge. The correspond-
ing network configuration files for the bridge br0 and
the Ethernet interface eth0 are located in the folder
/etc/sysconfig/network-scripts. Listing 5
shows an example of these files for node c001-n001.

Configuration files presented here are not using
DHCP for dynamic address distribution. Static as-
signment of the IP address and network mask are
used instead (BOOTPROTO=static). IP address
and network mask of the host system should be as-
signed to the bridge interface br0. To disable Net-
work Manager interference with the configuration,

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 7

https://www.colfax-intl.com/xeonphi/CXP9000.html
http://research.colfaxinternational.com/

3 CONFIGURATION OF A HETEROGENEOUS CLUSTER

[root@c001-n001 ˜]# \
> cat /etc/sysconfig/network-scripts/ifcfg-br0
DEVICE=br0
TYPE=Bridge
BOOTPROTO=static
ONBOOT=yes
NM_CONTROLLED=no
IPADDR=10.33.1.1
NETMASK=255.254.0.0
[root@c001-n001 ˜]#
[root@c001-n001 ˜]# \
> cat /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
TYPE=Ethernet
BRIDGE=br0
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
HWADDR="00:E0:81:E4:84:EC"

Listing 5: Configure bridging on compute nodes.

NM CONTROLLED=no should be specified for all in-
terfaces. ONBOOT=yes parameter means that the in-
terface is enabled automatically at every boot. After
modifying these files, the service network must be re-
started. Service NetworkManager, if present, must
be disabled.

At this point, all nodes must be connected to the
network with their respective IP addresses, and ping be-
tween them must succeed.

As a preparation for configuring Xeon Phi copro-
cessors, packet forwarding should be enabled (see List-
ing 6) on the host. This will allow coprocessors within
one system to communicate with each other over the
TCP protocol.

[root@c001-n001 ˜]# echo 1 > \
> /proc/sys/net/ipv4/ip_forward
[root@c001-n001 ˜]# cat /etc/sysctl.conf \
> | grep forward
Controls IP packet forwarding
net.ipv4.ip_forward = 1

Listing 6: Configure packet forwarding on compute nodes.

We have not yet configured networking for copro-
cessors. This is postponed until MPSS configuration in
(see Section 3.4).

3.2. NETWORK FILE SHARING

Network File Sharing (NFS) allows file sharing not
only with compute nodes, but also with Intel Xeon Phi
coprocessors. NFS-sharing with coprocessor is useful
for three purposes:

1) Sharing /home shares the SSH keys in ˜/.ssh/,
which allows to easily configure passwordless ac-
cess from the head node to compute nodes and to
coprocessors in compute nodes,

2) Sharing /home allows users to simplify symmetric
heterogeneous MPI calculation setup (when copro-
cessors are used in the native mode), and

3) Sharing /opt/intel with coprocessor simplifies
the transfer of Intel libraries (specifically, Intel Math
Kernel Library (MKL), MPI and OpenMP libraries)
to Intel Xeon Phi coprocessors.

In order to enable file sharing with coprocessors,
/etc/exports file must be modified on the head
node (of NFS server) as shown in Listing 7. We assume
that the head node is in the subnet 10.33.0.0/15 (in
our cluster, we use the IP address 10.32.0.1 for the
head node).

[root@head-node ˜]# cat /etc/exports
/opt/intel 10.33.0.0/15(rw,no_root_squash)
/home 10.33.0.0/15(rw,no_root_squash)
[root@head-node ˜]# exportfs -ra
[root@head-node ˜]# mkdir /opt/mic
[root@head-node ˜]# ln -s /opt/mic /opt/intel/mic

Listing 7: Configure NFS server on the head node to share /home
and /opt/intel.

Note that, in order to work around a miss-
ing feature in the MPSS configuration while mount-
ing /opt/intel, we must create a local directory
/opt/mic on the head node (and on all compute
nodes) and point a symbolic link /opt/intel/mic
to /opt/mic. This is necessary because some config-
uration files specific to the compute node are installed
into /opt/intel/mic. Without the symbolic link,
different nodes will overwrite each other’s configura-
tion, while pointing the link outside of the shared direc-
tory /opt/intel allows each node to have a unique
configuration.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 8

http://research.colfaxinternational.com/

3 CONFIGURATION OF A HETEROGENEOUS CLUSTER

Then, in order to mount /opt/intel and /home
from the server, the following lines must be appended
to /etc/fstab on compute nodes:

[root@c001-n002 ˜]# tail -f /etc/fstab
head-node:/home /home nfs defaults 1 2
head-node:/opt/intel /opt/intel nfs defaults 1 2

Listing 8: Configure NFS client to mount /home and
/opt/intel.

An alternative configuration is to install Intel Clus-
ter Studio on compute nodes, rather than NFS-mount
it from the head node. With locally installed Intel
Cluster Studio, the role of the NFS server that pro-
vides /opt/intel to coprocessors is played by the
local compute node. That is, each compute node must
be configured as an NFS-server, and /etc/exports
on compute nodes must allow sharing /opt/intel
with 10.33.C.N/24 (see Section 3.1 for an expla-
nation of this IP address pattern). In this case, it is
not necessary to create a symbolic link pointing from
/opt/intel/mic to /opt/mic.

Further details of standard NFS server and client
configuration and security are beyond the scope of this
paper.

3.3. ACCOUNT MANAGEMENT

Intel Xeon Phi coprocessors inherit user privilege
policies from the host system. Therefore, to run the
application under a specific user account, we need to
create one and set up the corresponding SSH keys (see
Listing 9).

Assuming that /home is NFS-shared from the
head-node to all compute nodes, we create the SSH
key for each user only once, on the head node. We copy
the public SSH key to the authorized keys file in
order to enable passwordless authentication across all
nodes and coprocessors NFS-sharing /home.

Note that non-empty passwords must be set for all
users that will access Intel Xeon Phi coprocessors, even
though access to coprocessors uses SSH key authenti-
cation and skips password prompt. This is required for
authentication on coprocessors.

Also, care must be taken to ensure that numerical

[root@c001-n001 ˜]# adduser cfxuser
[root@c001-n001 ˜]# passwd cfxuser
...
[root@c001-n002 ˜]# adduser cfxuser
[root@c001-n002 ˜]# passwd cfxuser
...
[root@head-node ˜]# adduser cfxuser
[root@head-node ˜]# passwd cfxuser
[root@head-node ˜]# su cfxuser
[cfxuser@head-node ˜]# ssh-keygen
...
[cfxuser@head-node ˜]# cat \
> .ssh/id_rsa.pub >> .ssh/authorized_keys
[cfxuser@head-node ˜]# chmod \
> 600 ˜/.ssh/authorized_keys

Listing 9: Configure users on compute nodes and their keys on the
head node.

user IDs and group IDs for each user are identical on
the head node and on compute nodes (use --uid and
--gid arguments of adduser if necessary). This is
required for correct NFS functioning.

3.4. MPSS CONFIGURATION

Next step is to install and configure MPSS for Intel
Xeon Phi coprocessors. For MPSS version 3.1.2, down-
load the archive from the Intel Registration Center (or
from the archive for older versions), unpack it and in-
stall the RPMs using yum, as shown in Listing 10.

[root@c001-n001 ˜]# tar -xf \
> mpss-3.1.2-rhel-6.5.tar
[root@c001-n001 ˜]# cd mpss-3.1.2/
[root@c001-n001 ˜]# yum install *.rpm

Listing 10: Installing MPSS

In our system configuration, we disable Linux dis-
tribution updates on compute nodes after installation.
This ensures that the installed kernel version is the same
as the kernel for which MPSS was compiled. If installed
kernel does not match the version for which MPSS was
compiled, MPSS kernel modules and OFED modules
will not work, and must be recompiled. The procedure
for recompilation is described in Section 8 of the MPSS
User Guide [6].

In order to configure MPSS, we will use the
micctrl tool. micctrl allows to manage the con-

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 9

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss-archive
http://research.colfaxinternational.com/

3 CONFIGURATION OF A HETEROGENEOUS CLUSTER

figuration of the µOS of Intel Xeon Phi coprocessors
through command line arguments. Listing 11 shows the
initialization of the configuration files for Intel Xeon
Phi coprocessors, configuring bridged connection and
setting up the network configuration, and adding NFS
folders previously configured on the host system.

[root@c001-n001]# micctrl --initdefaults
...
[root@c001-n001]# micctrl --addbridge=br0 \
> --type=external --ip=10.33.1.1 --netbits=15
[root@c001-n001]# micctrl --network=static \
> --bridge=br0 \
> --ip=10.33.1.21:10.33.1.41:10.33.1.61:\
>10.33.1.81

[root@c001-n001]# micctrl --addnfs=/opt/intel \
> --dir=/opt/intel
[root@c001-n001]# micctrl --addnfs=/home \
> --dir=/home

Listing 11: Configuring MPSS with bridging and NFS

As of MPSS 3.1.2, the NFS server for coproces-
sors set by micctrl --addnfs is always the host-
ing compute node, and it is not possible to specify a
different NFS server in the command line. Therefore,
if /home and/or /opt/intel must be mounted from
the head node, rather than from the hosting compute
node, the administrator must manually modify the files
/var/mpss/mic*/etc/fstab and change the lo-
cation of the NFS server to the correct IP address. For
example, Listing 8 shows how /home can be mounted
from the head node (10.32.0.1), and /opt/intel –
from the local compute node.

[root@c001-n001]# cat /var/mpss/mic0/etc/fstab \
| tail -2

10.32.0.1:/home /home nfs nolock 1 1
10.33.1.1:/opt/intel /opt/intel nfs nolock 1 1

Listing 12: Modified /etc/fstab for coprocessors mounts
/home from the head node instead of the local com-
pute node. As of MPSS 3.1.2, this modification must
be performed manually.

Now everything is ready for starting MPSS as
shown in Listing 13. With MPSS started on all devices,
it must be possible to ping all hosts and all coprocessors
from any host or coprocessor in the cluster.

[root@head-node]# ssh c001-n001
[root@c001-n001]# service mpss start
Starting Intel(R) MPSS: [OK]
mic0: online (mode: linux image: /usr/share/...
mic1: online (mode: linux image: /usr/share/...
mic2: online (mode: linux image: /usr/share/...
mic3: online (mode: linux image: /usr/share/...
[root@c001-n001]# exit
[root@head-node]# ping -q -c 1 c001-n001
PING c001-n001 (10.33.1.1) 56(84) bytes of data.

--- c001-n001 ping statistics ---
1 packets transmitted, 1 received ...
rtt min/avg/max/mdev = 0.330/0.330/0.330/0.000ms
[root@head-node]#
[root@head-node]# ping -c 1 c001-n001-mic0
PING c001-n001-mic0 (10.33.1.21) 56(84) bytes...

--- c001-n001-mic0 ping statistics ---
1 packets transmitted, 1 received ...
rtt min/avg/max/mdev = 0.714/0.714/0.714/0.000ms
[root@head-node]#
[root@head-node]# ssh c001-n002
[root@c001-n002]# service mpss start
...

Listing 13: Starting MPSS on compute nodes and verifying bridged
networking for coprocessors.

3.5. INFINIBAND CONFIGURATION

To install and configure InfiniBand support for In-
tel MPI for the Intel MIC architecture, OFED must
be installed on all compute nodes. With MPSS
3.1.2, CentOS 6.5 Linux and a Mellanox HCA (or
without an HCA, for improved intra-node commu-
nication via the scif0 virtual network), download
and install OFED version 1.5.4.1 from the OFA Web
site. To install the package, run the Perl installation
script install.pl. During the installation, answer
“No” to installing libraries dapl*, compat-dapl*
and 32-bit library support. After installing OFED,
install additional MPSS packages from subdirectory
mpss-3.1.2/ofed, as shown in Listing 14. Note
that if the Linux kernel is different from the kernel for
which the MPSS OFED packages were compiled, the
OFED modules will need to be recompiled prior to in-
stallation. Refer to Section 2.3 of the MPSS User Guide
[6] for more information.

Although not specifically called for by the docu-
mentation, we have found that a system reboot may be
helpful at this point in the configuration process.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 10

http://www.openfabrics.org/downloads/OFED/ofed-1.5.4/OFED-1.5.4.1.tgz
http://www.openfabrics.org/downloads/OFED/ofed-1.5.4/OFED-1.5.4.1.tgz
http://registrationcenter.intel.com/irc_nas/3778/MPSS_Users_Guide.pdf
http://research.colfaxinternational.com/

4 MPI PERFORMANCE MEASUREMENTS

[root@c001-n001 ˜]# cd OFED-1.5.4.1
[root@c001-n001 OFED-1.5.4.1]# ./install.pl
...
[root@c001-n001 OFED-1.5.4.1]# cd ../mpss-3.1.2
[root@c001-n001 mpss-3.1.2]# yum install\
> --disablerepo=* --skip-broken ofed/*.rpm
...

Listing 14: Installing OFED 1.5.4.1 from source and MPSS OFED
packages as RPMs.

After installing OFED, follow Listing 15 to:

1) configure a static IP address for the InfiniBand con-
nection,

2) start service openibd on all compute nodes,

3) start service opensmd on exactly one of the com-
pute nodes (unless the network switch already pro-
vides a subnet manager, in which case do not start
this service on any nodes),

4) start service ofed-mic in order to activate
CCL, which creates the virtual intra-node interface
scif0 and inter-node interfaces mlx4 0 on the
host and on coprocessors, and

5) verify the InfiniBand device status by running
ibstatus. The intra-node and inter-node inter-
faces must be present, and their state must be listed
as “ACTIVE”.

In order to ensure that InfiniBand support for Xeon
Phi coprocessors has been started, log in to one of
the coprocessors and execute ibv devinfo (List-
ing 16. Make sure that the intra-node interface scif0
and the inter-node interface mlx4 0 are listed in the
PORT ACTIVE state.

4. MPI PERFORMANCE MEASUREMENTS

The cluster on which the performance measure-
ments were taken consists of two Colfax ProEdgeTM

SXP8600p workstations, each with four Intel Xeon Phi
31S1P coprocessors. Two interconnects were used for
networking within the cluster:

[root@c001-n001 ˜]# cat \
> /etc/sysconfig/network-scripts/ifcfg-ib0
DEVICE=ib0
HWADDR=80:00:00:48:FE:80:00:00:00:00:00...
TYPE=InfiniBand
UUID=43a82878-51ee-427d-bec2-312d6b868508
ONBOOT=yes
NM_CONTROLLED=no
BOOTPROTO=static
IPADDR=10.34.1.1
NETMASK=255.254.0.0
[root@c001-n001 ˜]# service network restart
[root@c001-n001 ˜]# service openibd start
[root@c001-n001 ˜]# service ofed-mic start
[root@c001-n001 ˜]# ibstatus
Infiniband device ’mlx4_0’ port 1 status:

default gid: fe80:0000:0000:...
base lid: 0x1
sm lid: 0x1
state: 4: ACTIVE
phys state: 5: LinkUp
rate: 40 Gb/sec (4X QDR)
link_layer: InfiniBand

Infiniband device ’scif0’ port 1 status:
default gid: fe80:0000:0000:...
base lid: 0x3e8
sm lid: 0x1
state: 4: ACTIVE
phys state: 5: LinkUp
rate: 40 Gb/sec (4X QDR)
link_layer: Ethernet

[root@c001-n001 ˜]#

Listing 15: Start/check the InfiniBand services.

1. Intel Gigabit Ethernet adapters (model I350) in-
stalled in the systems and connected to a D-Link Gi-
gabit Ethernet switch (model DGS-1024D), and

2. Mellanox InfiniBand ConnectX-3 Single-Port VPI
4X QDR adapters (model version MCX353A-
FCAT) connected to a 36-port Mellanox Infinis-
cale IV switch (model IS5025).

The systems were running the CentOS 6.5 Linux
operating system with kernel 2.6.32-431.el6.x86 64,
MPSS 3.1.2, Intel MPI 4.1.1.036, and OFED 1.5.4.1.
We used the Intel MPI Benchmark (IMB) shipped with
Intel MPI for performance measurements.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 11

http://www.colfax-intl.com/nd/workstations/sxp8600p.aspx
http://www.colfax-intl.com/nd/workstations/sxp8600p.aspx
http://www.colfax-intl.com/nd/xeonphi/31s1p-promo.aspx
http://www.intel.com/content/www/us/en/network-adapters/gigabit-network-adapters/ethernet-server-adapter-i350.html
http://www.dlink.com/us/en/business-solutions/switching/unmanaged-switches/rackmount/dgs-1024d-24-port-copper-gigabit-switch
http://www.mellanox.com/page/products_dyn?product_family=119
http://www.mellanox.com/page/products_dyn?product_family=119
http://www.aspensystemsdirect.com/servers/pc/Mellanox-MCX353A-FCAT-ConnectX-3-VPI-Single-Port-QSFP-FDR-IB-56Gb-s-PCIe3-0-Adapter-Card-p759.htm
http://www.aspensystemsdirect.com/servers/pc/Mellanox-MCX353A-FCAT-ConnectX-3-VPI-Single-Port-QSFP-FDR-IB-56Gb-s-PCIe3-0-Adapter-Card-p759.htm
http://www.mellanox.com/page/products_dyn?product_family=17
http://www.mellanox.com/page/products_dyn?product_family=17
http://www.mellanox.com/page/products_dyn?product_family=60
http://research.colfaxinternational.com/

4 MPI PERFORMANCE MEASUREMENTS

[root@c001-n001 ˜]# ssh mic0
[root@c001-n001-mic0 ˜]# ibv_devinfo
hca_id: mlx4_0

transport: InfiniBand (0)
fw_ver: 2.30.8000
node_guid: f452:1403:0012:ed70
sys_image_guid: f452:1403:0012:ed73
vendor_id: 0x02c9
vendor_part_id: 4099
hw_ver: 0x0
phys_port_cnt: 1
port: 1

state: PORT_ACTIVE (4)
max_mtu: 2048 (4)
active_mtu: 2048 (4)
sm_lid: 1
port_lid: 1
port_lmc: 0x00
link_layer: IB

hca_id: scif0
transport: SCIF (2)
fw_ver: 0.0.1
node_guid: 460f:d8ff:fe1d:8294
sys_image_guid: 460f:d8ff:fe1d:8294
vendor_id: 0x8086
vendor_part_id: 0
hw_ver: 0x1
phys_port_cnt: 1
port: 1

state: PORT_ACTIVE (4)
max_mtu: 4096 (5)
active_mtu: 4096 (5)
sm_lid: 1
port_lid: 1001
port_lmc: 0x00
link_layer: SCIF

Listing 16: CCL at work: intra-node interface scif0 and the
inter-node interface mlx4 0 are virtualized on an In-
tel Xeon Phi coprocessor.

4.1. PERFORMANCE WITH ETHERNET

First, we would like to study the scenario in which
the InfiniBand interconnects are not installed, and MPI
communication takes place over Ethernet. We can em-
ulate this scenario by setting the environment variable
I MPI FABRICS=tcp, which forces Intel MPI to use
the TCP/IP protocol over Ethernet for communication.

Listing 17 demonstrates the procedure for launch-
ing the benchmark. The output of the benchmark appli-
cation was used to report the latencies and bandwidth
shown in the plots.

Figure 5 demonstrates the performance of the Ping-
Pong benchmark with the TCP protocol. For intra-node

[cfxuser@head-node ˜]# export I_MPI_MIC=1
[cfxuser@head-node ˜]# export I_MPI_FABRICS=tcp
[cfxuser@head-node ˜]# export IMBHOST=\
>${I_MPI_ROOT}/bin64/IMB-MPI1
[cfxuser@head-node ˜]# export IMBMIC=\
>${I_MPI_ROOT}/mic/bin/IMB-MPI1
[cfxuser@head-node ˜]# mpirun \
> -np 1 -host c001-n001 ${IMBHOST} PingPong :\
> -np 1 -host c001-n002-mic0 ${IMBMIC}
...

Listing 17: Execution of the Intel MPI benchmark with the Ether-
net fabric. In this example, one of the PingPong end-
points is the CPU on node 1, and the other is the copro-
cessor 0 on node 2.

communication, MPI uses virtualized Ethernet NICs
mic0, mic1, etc., for data transport. For inter-node
communication (from host to remote hosts and remote
coprocessors), the bridged connection of eth0 with
mic0, mic1, etc., is used.

The latency of short messages for all communica-
tion going through the bridge to coprocessors is be-
tween 300 and 500 µs. For direct connections (be-
tween the CPU and local coprocessors, and between
two CPUs), the latency is 50 to 100 µs. The band-
width of large messages approaches about 110 MB/s
for host-to-host connection, which is consistent with the
hardware limitation of the Gigabit Ethernet network.
However, for all communication involving coproces-
sors, the bandwidth plateaus at 20-25 MB/s. This is
orders of magnitude below the hardware limitation of
both the network interconnects, and the PCIe bus. As
we have reasoned in the previous work [3], the con-
venience of symmetric heterogeneous clustering over
Ethernet comes at the cost of reduced communication
efficiency.

However, in the next section we will see that this is
not the case for the InfiniBand fabric.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 12

http://research.colfaxinternational.com/

4 MPI PERFORMANCE MEASUREMENTS

4B 64B 1kB
Message Size

0

100

200

300

400

500

La
te

n
cy

 [
µ
s]

1kB 1MB 1GB
0.00

0.02

0.04

0.06

0.08

0.10

0.12

B
a
n
d
w

id
th

 [
G

B
/S

] CPU - remote CPU
CPU - mic0
mic0 - mic1
CPU - remote mic0
mic0 - remote mic0

http://research.colfaxinternational.com/

Figure 5: Intel MPI Benchmark, PingPong test over the Ethernet fabric (I MPI FABRICS=tcp). CPU indicates an MPI process run on the
host, and mic* are MPI processes executed on the respective coprocessor. “Remote” means located on a different chassis.

4B 64B 1kB
Message Size

0

5

10

15

La
te

n
cy

 [
µ
s]

1kB 1MB 1GB
Message Size

0

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 [
G

B
/S

] CPU - remote CPU
CPU - mic0
CPU - remote mic0
CPU - remote mic2

http://research.colfaxinternational.com/

Figure 6: Intel MPI Benchmark, PingPong test over the InfiniBand fabric (I MPI FABRICS=dapl) for communication originating in a
CPU host. See also caption for Figure 5.

4B 64B 1kB
Message Size

0

5

10

15

La
te

n
cy

 [
µ
s]

1kB 1MB 1GB
Message Size

0

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 [
G

B
/S

] mic0 - mic1
mic0 - mic2
mic0 - remote mic0
mic0 - remote mic2
mic2 - remote mic2

http://research.colfaxinternational.com/

Figure 7: Intel MPI Benchmark, PingPong test over the InfiniBand fabric (I MPI FABRICS=dapl) for communication originating in a
MIC host. See also caption for Figure 5.

4B 64B 1kB
Message Size

0

5

10

15

La
te

n
cy

 [
µ
s]

1kB 1MB 1GB
Message Size

0

2

4

6

8

10

12

B
a
n
d
w

id
th

 [
G

B
/S

] mic0 - mic0 (dapl)
mic0 - mic0 (shm)

http://research.colfaxinternational.com/

Figure 8: Intel MPI Benchmark, PingPong test over the shared-memory and InfiniBand fabrics (I MPI FABRICS=shm and
I MPI FABRICS=shm:dapl) for communication within a MIC host. See also caption for Figure 5.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 13

http://research.colfaxinternational.com/

4 MPI PERFORMANCE MEASUREMENTS

4.2. PERFORMANCE WITH INFINIBAND

The next step in benchmarking MPI communica-
tion over the InfiniBand fabric. Intel MPI can detect
and use this fabric automatically, and no additional
run configuration needs to be done. However, if auto-
mated configuration fails, or if the user wants to prevent
other fabrics from being used, the environment vari-
able I MPI FABRICS=dapl must be set in order to
request communication using the DAPL protocol.

We discuss the performance results for three groups
of communication participants: messages originating
from hosts, messages between Xeon Phi coprocessors,
and messages within a single Xeon Phi coprocessor.

4.2.1. MESSAGES FROM HOSTS

In Figure 6, latency and bandwidth of the PingPong
test from the host CPU to a remote CPU, a local copro-
cessor, and a remote coprocessor are shown. Immedi-
ately apparent is the fact that in this case, both metrics
are orders of magnitude better than with Ethernet and
TCP protocol.

The communication latency for short messages is
down to 1.5–8 µs. This is two orders of magnitude bet-
ter than with the TCP protocol over Ethernet, and one
order of magnitude better than the time of transferring
control to the coprocessor in the offload programming
model (see [7] for offload performance measurement).

The bandwidth for large messages from CPU to the
local Xeon Phi reaches 6.5 GB/s, which is near the lim-
its of the PCIe bus bandwidth for a PCIe v2.0 x16 de-
vice. Bandwidth from host to remote host and remote
coprocessor reaches 3.8 GB/s, which is consistent with
the limit of the 4X QDR InfiniBand interconnect.

Communication bandwidth and latency from host
to local coprocessors mic1, mic2 and mic3, as well
as to remote mic0 and mic1 all are very close to the
metrics from host to mic0, and therefore not shown.

However, messages from the host to remote mic2
and mic3 achieve only 0.5 GB/s. As we will see in
the next section, this is caused by the fact that the In-
finiBand HCA is installed on CPU1 on all hosts, and
coprocessors mic2 and mic3 are on CPU2.

4.2.2. MESSAGES BETWEEN COPROCESSORS

In Figure 7, the latency and bandwidth of MPI mes-
sages from mic0 to other local and remote coproces-
sors are plotted. While the latency is comparable in all
these cases, and is of order 10 µs, the bandwidth de-
pends on the pair of communicating devices.

In the case of intra-node communication:

i) Going from mic0 to local mic1, the bandwidth
reaches almost 4 GB/s. The same bandwidth
is achieved between mic2 and local mic3 (not
shown in the figure).

ii) However, going from mic0 to local mic2 (or
mic3, not shown), the bandwidth drops down to
1.3 GB/s. This is due to the location of the copro-
cessors on the PCIe bus. While mic0 and mic1
are connected to PCIe slots controlled by CPU1,
mic2 and mic3 are connected to PCIe slots con-
trolled by CPU2. The PCIe transport between end-
point devices is slower across the Quick Path In-
terconnect (QPI) connecting the CPUs than within
the domain controlled by the same CPU.

Likewise, in the case of inter-node communication,
the fact that the InfiniBand HCA is connected to the
PCIe slot on CPU1 determines the communication effi-
ciency pattern:

i) Communication between mic0 and remote (i.e.,
on another compute node) mic1 or mic0 (not
shown), the bandwidth approaches the InfiniBand
connection limit of 4 GB/s.

ii) However, from mic0 to remote mic2, the band-
width drops to 0.4 GB/s, because the data must be
sent from the remote HCA (on CPU1) to mic2 on
the same machine (which is on CPU2).

iii) Even worse is the traffic from mic2 to remote
mic2 (or mic3, not shown), which is around
0.25 GB/s. In this case, the data are sent first across
the local PCIe bus to CPU1, then across the In-
finiBand network, and then from remote HCA to
CPU2 on that machine.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 14

http://research.colfaxinternational.com/

4 MPI PERFORMANCE MEASUREMENTS

4.2.3. MESSAGES WITHIN A COPROCESSOR

A special case is communication between multiple
MPI processes within a single coprocessor. By default,
MPI uses a mixed communication protocol, which is
equivalent to setting I MPI FABRICS=shm:dapl.
With this setting, communication between MPI ranks
within the same compute device (CPU or coprocessor)
takes place using shared memory copy, and communi-
cation outside of the device uses DAPL.

However, in some cases, it may be beneficial to
use just shared-memory copy or only DAPL, as evident
from Figure 8. Indeed, the latency of short messages
is better in the case of the shm protocol (2 µs versus
10µs for dapl), and the bandwidth of large messages
is greater with the dapl protocol (up to 11 GB/s ver-
sus 2 GB/s for shm). Measurements for Figure 8 were
obtained by running IMB with I MPI FABRICS=shm
and with I MPI FABRICS=dapl.

4.3. TUNING THE FABRICS

The DAPL protocol is supported by multiple li-
braries in the OFED stack, and these libraries are tuned
to different message sizes and fabrics. Intel MPI au-
tomatically decides which providers of DAPL to use
depending on the detected system configuration at run-
time. However, that choice can be overridden.

In our system, MPI chose three DAPL providers for
communication: ofa-v2-mlx4 0-1 for short mes-
sages, ofa-v2-scif0 for long messages within a
compute node, and ofa-v2-mcm-1 for long mes-
sages outside a compute node. This choice can
be diagnosed by setting the environment variable
I MPI DEBUG=2 (or a higher value) for IMB. In or-
der to change this selection, the environment variable
I MPI DAPL PROVIDER LIST can be used. This
variable takes a comma-separated list of up to 3
providers: one for short messages, another for intra-
node long messages, and the third one for inter-
node long messages. See a blog post by James
Tullos for more details. The complete list of sup-
ported DAPL providers can be found in the file
/etc/dat.conf. The threshold between “short” and
“long” messages is controlled by the environment vari-
able I MPI DAPL DIRECT COPY THRESHOLD.

We have verified empirically that the choice made
by the Intel MPI library is indeed optimal.

4.4. TUNING COLLECTIVE COMMUNICATION

Parallel transfers (e.g., MPI SendRecv) and
collective MPI communication functions (e.g.,
MPI Allgather) use configurable algorithms
for moving data across the cluster. For the best
performance with a specific machine file, utility
mpitune can find the optimal algorithms. This
utility is a part of Intel MPI. The list of parame-
ters tuned by mpitune can be found in the file
$I MPI ROOT/etc64/options.xml, and the
instructions for using mpitune are available in [2].

4.5. MPI PERFORMANCE IN HETEROGENEOUS

CLUSTER: SUMMARY

The summary of our measurements is depicted in
Figure 9. In this image, the devices are shown with
rounded-corner rectangles, and MPI communication ef-
ficiency is drawn with connecting lines. The thick-
ness of the lines is proportional to the bandwidth of the
largest messages. Also, the bandwidth, along with the
latency for the shortest messages, is indicated in the la-
bel of each line.

m
ic

1

m
ic

2

m
ic

3

CPU0

m
ic

0

m
ic

1

m
ic

2

m
ic

3

CPU1CPU1

m
ic

0

PCIe PCIe PCIe PCIe

H
C

A

CPU0

IB Switch

H
C

A 1.1 μs
4.2GB/s

5.8μs 0.5GB/s
1.1μs 3.7GB/s

4.8μs 3.6GB/s

9.2μs 3.7GB/s

8
.7μs 3.8GB/s

4.6μs 6.5G
B/s

9.6μs 0.3GB/s9.3μs 1
.3G

B/
s

9.3μs 1.3GB/
s

8.5μs 0.5GB/s

8.9μs 0.5GB/s

8.8

μs
 1

1
G

B/s

3.6μ
s

6.
5

G

B/s

http://research.colfaxinternational.com/

Figure 9: Latency of short MPI messages and bandwidth of long
MPI messages with DAPL in our testbench cluster.
Thickness of lines is proportional to the bandwidth

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 15

http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/hh_goto.htm#Environment_Variables_MIC.htm
http://software.intel.com/en-us/articles/using-multiple-dapl-providers-with-the-intel-mpi-library
http://software.intel.com/en-us/articles/using-multiple-dapl-providers-with-the-intel-mpi-library
http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/hh_goto.htm#DAPL-capable_Network_Fabrics_Control.htm
http://research.colfaxinternational.com/

5 CASE STUDY: ASIAN OPTIONS

5. CASE STUDY: ASIAN OPTIONS

Reduced latency and increased bandwidth of MPI
communication in the presence of InfiniBand intercon-
nects is undoubtedly beneficial to any parallel applica-
tion with data traffic. In order to illustrate the bene-
fits, we benchmark the Asian option pricing application
previously reported in [3], this time on our cluster with
InfiniBand.

The application is a Monte Carlo code, which dis-
tributes an array of calculations for different sets of
option parameters across compute devices (CPUs and
Intel Xeon Phi coprocessors), using the boss-worker
model. The input parameters sent from the boss pro-
cess to each worker process are the drift rate, variability
of the underlying stock asset, and the strike price, and
the output returned by the worker are the discounted
pay-offs computed using the Monte Carlo method. The
amount of exchanged data in each message is very small
(32 bytes), and therefore the performance of this appli-
cation is sensitive to network latency. In order to sim-
plify the interpretation of results, this time we place the
worker processes only on Xeon Phi coprocessors.

In the previous publication [3], we focused on the
case where work items distributed by the boss process
are large, and the communication time is therefore in-
significant. In this paper, we consider the case of small
work items, which are processed very quickly. The
sizes of the work-items, measured in the quantity of
random values, in this study range from W = 216 to
W = 224, for which the computation time of each
work-item ranges from a few microseconds to several
milliseconds. Here, W = M × N , where M = 215

is the number of Monte Carlo paths required to achieve
the desired accuracy, and N ∈ {21, 24, 29} is the num-
ber of time intervals for price averaging per Asian op-
tion definition. In order to improve performance, we
used a hybrid MPI+OpenMP approach, with seven 32-
threaded workers on each Intel Xeon Phi coproces-
sor. Compared to the setup with 228 threads per pro-
cess, this approach incurs smaller thread synchroniza-
tion overhead. 228 threads is the number of logical
cores in the Intel Xeon Phi 31S1P coprocessor with 57
cores and 4-way hyper-threading.

Figure 10 shows the performance of this Monte

Carlo application, measured in the quantity of random
values generated and used per second, as a function of
the number of compute devices. In our cluster, four
Xeon Phi coprocessors per node are installed, so cases
with 6 and 8 coprocessor utilize two compute nodes.

1.0

3.0

10.0

30.0

100.0

 1 2 4 6 8

Pe
rfo

rm
an

ce
, b

illi
on

 v
al

ue
s/

se
c

Number of Coprocessors

Linear Scaling

W=2
16 , TCP D

APL

http://research.colfaxinternational.com/

DAPL, W=216

DAPL, W=219

DAPL, W=224

TCP, W=216

TCP, W=219

TCP, W=224

Figure 10: Asian option pricing calculation from [3] with Ethernet
and InfiniBand fabrics. Small work item sizes W make
the application sensitive to the network latency.

As Figure 10 shows, for large work-item sizes, the
performance of the application with Ethernet (labelled
“TCP”) and with InfiniBand (labelled “DAPL”) is iden-
tical. However, for smaller work-items, both fabrics
lose performance, because each worker has to remain
idle for relatively longer periods of time while await-
ing a scheduling command from the boss process. The
Ethernet case loses performance with decreasing work-
item size faster than the InfiniBand case, which is con-
sistent with the lower latency of InfiniBand.

The source code of the application can be obtained
at [3], however, the value of M and N and the machine
file need to be changed in order to reproduce the results
shown in Figure 10.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 16

http://research.colfaxinternational.com/

6 CONCLUSIONS

6. CONCLUSIONS

MPI communication with the TCP protocol satu-
rates the Gigabit Ethernet network bandwidth only for
communication between CPU hosts in a cluster. This is
satisfactory for applications utilizing the offload model
for Xeon Phi coprocessors (where MPI ranks are placed
only on CPUs). However, for heterogeneous MPI ap-
plications with ranks placed natively on coprocessors,
peer-to-peer communication over Ethernet is orders of
magnitude slower than the hardware limits.

We have demonstrated that installing InfiniBand
controllers and related software on top of the MPSS
leads to a tremendous improvement of MPI commu-
nication between hosts and coprocessors in a clus-
ter. That includes intra-node communication between
CPUs and coprocessors, intra-node communication be-
tween coprocessors, and inter-node communication be-
tween both types of devices. We have also shown the
steps required to reproduce our network and software
configuration in CentOS Linux 6.5 with MPSS 3.1.2
and OFED 1.5.4.1 with Mellanox interconnects.

With the scif0 virtual InfiniBand adapter, MPI
communication from hosts to local coprocessors
achieves the nominal PCIe bandwidth of 6.5 GB/s with
a latency of a few µs. MPI communication between
all devices (CPUs and coprocessors) connected to the
same CPU as the HCA achieves a nominal unidirec-
tional bandwidth of the QDR 4X interconnect, 4 GB/s.

However, for communication that involves passing
messages across the PCIe bus from one CPU to another,
a considerable drop in bandwidth is observed. Going
from mic0 to mic2 on the same dual-socket machine,
the bandwidth drops to 1.3 GB/s. Going from mic0 to
mic2 on a remote machine, the attained bandwidth is
only 0.5 GB/s.

The situation with non-uniform communication
bandwidth across the heterogeneous cluster with Xeon
Phi coprocessors may sometimes be accommodated by
considering and tuning the application’s communica-
tion pattern. For instance,

a) In communication patterns where messages are
passed to the nearest neighbor in a ring, the user may
change the order of MPI ranks. Pattern
mic0→ mic2→ mic3→ mic1→ remote mic0,

may be more efficient than
mic0→ mic1→ mic2→ mic3→ remote mic0,
because in the latter (default) pattern, the link
from mic3 to remote mic0 is the slowest (around
0.5 GB/s), while in the former (optimized) pat-
tern, links are no worse than from mic0→mic2 or
mic3→mic1 (around 1.3 GB/s). This optimiza-
tion requires only a permutation of the correspond-
ing lines in the MPI machine file.

b) For MPI bandwidth-bound applications, it may be
possible to reduce the work share of coprocessors
mic2 and mic3 installed on CPU2 (if the HCA is
installed on CPU1), in order to improve the load bal-
ance across the cluster.

c) Additionally, the programmer may consider using
offload-like communication pattern, where mic0 . . .
mic3 transfer data to the local CPU, the local CPU
sends it to the remote CPU, from which the data are
moved to coprocessors in the remote machine.

d) Finally, the programmer may decide that for a par-
ticular application, the offload approach is a bet-
ter choice than symmetric heterogeneous clustering
because of the better bandwidth and more uniform
RDMA performance between MPI processes.

Despite degraded bandwidth in some cases, all
communication paths involving Intel Xeon Phi copro-
cessors with InfiniBand are faster than with Gigabit
Ethernet by one to two orders of magnitude. This is a
considerable motivation for equipping compute nodes
with InfiniBand interconnects. Even with a stand-
alone workstation without a physical HCA, incorpo-
rating the OFED software into the MPSS installation
makes sense. In this case, MPSS will employ OFED to
create a virtual adapter scif0, which will be used by
MPI for faster communication between coprocessors.

Software means of improving the non-uniform
communication across the bus are investigated, and so-
lutions have been proposed [8]. One of the future pub-
lications on Colfax Research will study the possibility
of improving inter-node traffic by installing two HCAs,
one on CPU1 and another on CPU2. We will also watch
for updates in the standard Intel software (MPSS and
MPI) for Xeon Phi coprocessors, and for upgrades of
the PCIe bus in forthcoming computing platforms.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 17

http://research.colfaxinternational.com/

REFERENCES

ACKNOWLEDGEMENTS

We thank Intel’s Andrey Semin and Michael
Hebenstreit for help with troubleshooting and with the
interpretation of our results.

REFERENCES

[1] Landing page for this paper ”Configuration and Bench-
marks...”.
http://research.colfaxinternational.com/post/2014/03/
11/InfiniBand-for-MIC.aspx.

[2] Intel MPI Library Reference Manual for Linux* OS.
http://software.intel.com/sites/products/documentation/
hpc/ics/impi/41/lin/Reference Manual/index.htm.

[3] Hetetogeneous Clustering with Homogeneous Code.
http://research.colfaxinternational.com/post/2013/10/
17/Heterogeneous-Clustering.aspx.

[4] Intel Xeon Phi Coprocessor System Software Develop-
ers Guide.
http://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-system-software-developers-guide.

[5] Michael Hebenstreit. Configuring Intel Xeon Phi
coprocessors inside a cluster.
http://software.intel.com/en-us/articles/configuring-
intel-xeon-phi-coprocessors-inside-a-cluster.

[6] Intel Manycore Platform Software Stack (MPSS) User’s
Guide.
http://registrationcenter.intel.com/irc nas/3778/
MPSS Users Guide.pdf.

[7] Colfax International. Parallel Programming and Opti-
mization with Intel Xeon Phi Coprocessors. ISBN: 978-
0-9885234-1-8. Colfax International, 2013.
http://www.colfax-intl.com/xeonphi/book.html.

[8] S. Potluri et al., in Proceedings of SC’13. MVAPICH-
PRISM: a proxy-based communication framework using
InfiniBand and SCIF for intel MIC clusters.
http://dx.doi.org/10.1145/2503210.2503288.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 18

http://research.colfaxinternational.com/post/2014/03/11/InfiniBand-for-MIC.aspx
http://research.colfaxinternational.com/post/2014/03/11/InfiniBand-for-MIC.aspx
http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/index.htm
http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/index.htm
http://research.colfaxinternational.com/post/2013/10/17/Heterogeneous-Clustering.aspx
http://research.colfaxinternational.com/post/2013/10/17/Heterogeneous-Clustering.aspx
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
http://software.intel.com/en-us/articles/configuring-intel-xeon-phi-coprocessors-inside-a-cluster
http://software.intel.com/en-us/articles/configuring-intel-xeon-phi-coprocessors-inside-a-cluster
http://registrationcenter.intel.com/irc_nas/3778/MPSS_Users_Guide.pdf
http://registrationcenter.intel.com/irc_nas/3778/MPSS_Users_Guide.pdf
http://www.colfax-intl.com/xeonphi/book.html
http://dx.doi.org/10.1145/2503210.2503288
http://research.colfaxinternational.com/

	List of Abbreviations
	Message Passing with the Intel MIC Architecture
	Peer-to-Peer Messaging between Coprocessors
	Ethernet
	InfiniBand

	Configuration of a Heterogeneous Cluster
	Network Configuration
	Network File Sharing
	Account Management
	MPSS Configuration
	InfiniBand Configuration

	MPI Performance Measurements
	Performance with Ethernet
	Performance with InfiniBand
	Messages from Hosts
	Messages between Coprocessors
	Messages within a Coprocessor

	Tuning the Fabrics
	Tuning Collective Communication
	MPI Performance in Heterogeneous Cluster: Summary

	Case Study: Asian Options
	Conclusions

