
FILE I/O ON INTEL XEON PHI COPROCESSORS:
RAM DISKS, VIRTIO, NFS AND LUSTRE

Andrey Vladimirov, Vadim Karpusenko and Tony Yoo
Colfax International

July 28, 2014

Abstract

The key innovation brought about by Intel Xeon Phi co-
processors is the possibility to port most HPC applications
to manycore computing accelerators without code modifica-
tion. One of the reasons why this is possible is support for
file input/output (I/O) directly from applications running on
coprocessors. These facilities allow seamless usage of many-
core accelerators in common HPC tasks such as application
initialization from file data, saving running output, check-
pointing and restarting, data post-processing and visualiza-
tion, and other.

This paper provides information and benchmarks neces-
sary to make the choice of the best file system for a given
application from a number of the available options:

- RAM disks,
- virtualized local hard drives, and
- distributed storage shared with NFS or Lustre.

We report benchmarks of I/O performance and parallel
scalability on Intel Xeon Phi coprocessors, strengths and lim-
itations of each option. In addition, the paper presents system
administration procedures necessary for using each file sys-
tem on coprocessors, including bridged networking and In-
finiBand configuration, software installation and MPSS im-
age modifications. We also discuss the applicability of each
storage option to common HPC tasks.

Table of Contents

1 File I/O on Intel Xeon Phi coprocessors 2
2 Methodology . 3

2.1 System configuration 3
2.2 IOzone cross-compilation 3
2.3 “Write” and “write+sync” 3
2.4 “Cold read” and “re-read” 4
2.5 Parallel I/O Scalability 5

3 System administration procedures 6
3.1 Using RAM disks 6

3.1.1 Configuration of tmpfs 6
3.1.2 Configuration of ramfs 6
3.1.3 MPSS optimizations 6

3.2 Access to host drives with VirtIO 7
3.2.1 Preparation of a logical volume . . 7
3.2.2 Using a logical volume in VirtIO . . 7

3.3 NFS over Gigabit Ethernet 8
3.3.1 Network configuration 8
3.3.2 Client configuration 8

3.4 Lustre over InfiniBand 9
3.4.1 IPoIB configuration 9
3.4.2 Client configuration 9

4 Benchmark results 10
4.1 Physical media benchmarks 10
4.2 Single-threaded I/O benchmarks 10
4.3 Parallel I/O benchmarks 10

5 Discussion . 13

Colfax International (http://www.colfax-intl.com/) is a leading provider of innovative and expertly en-
gineered workstations, servers, clusters, storage, and personal supercomputing solutions. Colfax Inter-
national is uniquely positioned to offer the broadest spectrum of high performance computing solutions,
all of them completely customizable to meet your needs - far beyond anything you can get from any
other name brand. Ready-to-go Colfax HPC solutions deliver significant price/performance advantages,
and increased IT agility, that accelerates your business and research outcomes. Colfax International’s
extensive customer base includes Fortune 1000 companies, educational institutions, and government
agencies. Founded in 1987, Colfax International is based in Sunnyvale, California and is privately held.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 1

http://www.colfax-intl.com
http://research.colfaxinternational.com/

1 FILE I/O ON INTEL XEON PHI COPROCESSORS

1. FILE I/O ON INTEL XEON PHI
COPROCESSORS

Intel Xeon Phi coprocessors are manycore comput-
ing accelerators for highly parallel applications. Unlike
GPGPUs, coprocessors run a Linux operating system,
which allows them to execute not only offload work-
loads, but also native applications. Native applications
use coprocessors as additional compute nodes in a clus-
ter with their own cores, memory, storage media and in-
terconnects. This approach simplifies application port-
ing from general-purpose CPUs to coprocessors, be-
cause the programmer does not need to instrument of-
fload traffic in the code. This applies to shared-memory
codes, as well as distributed and even heterogeneous
applications (see [2]). Native applications running on
Intel Xeon Phi coprocessors can use the same paral-
lel frameworks as general-purpose applications, such as
OpenMP and MPI (see, e.g., [3] or [4]) and communi-
cate with other network nodes using Gigabit Ethernet or
InfiniBand fabrics (see [5]).

Continuity of programming facilities between
CPUs and coprocessors also applies to file I/O. Copro-
cessor applications can read and write files using Linux
system calls. This gives native applications on copro-
cessors the same latitude for working with data as CPU
applications.

There are three distinct ways to work with files from
native Intel Xeon Phi coprocessor applications:

1) Direct access to a RAM disk,

2) Virtualized access to a physical drive,

3) Network access to a distributed file system.

HOST
OS

uOS

HARD
DISK

HARD
DISK

RAM FS

PCIe BUS

IB HCA

NATIVE
MPI

PROCESS
I/O

NIC

HOST

XEON
PHI

Figure 1: RAM disk file systems: tmpfs or ramfs.

uOS

HARD
DISK

RAM FS

IB HCA

NATIVE
MPI

PROCESS

HOST
OS

HARD
DISK

PCIe BUS

I/O

/mnt/dir

NIC

XEON
PHI

HOST

Figure 2: Virtualized access to a local physical drive: VirtIO.

uOS

HARD
DISK

RAM FS

NATIVE
MPI

PROCESS

HARD
DISK

I/O

HOST
OS

IB HCA

NIC

/mnt/dir

PCIe BUS

I/O

TO LUSTRE

TO NFS

HOST

XEON
PHI

Figure 3: Distributed file system: NFS or Lustre.

In the first case (see Figure 1), the RAM disk is
stored in the memory of the coprocessor. This storage
device is not persistent across coprocessor reboots and
is limited in size by the amount of available onboard
RAM. However, this option is readily available when
the coprocessor boots. The user can boost performance
of the RAM disk by enabling MPSS optimizations or
mounting a ramfs file system instead of the default
tmpfs. Section 3 discusses this case in more detail.

In the second case (see Figure 2), the coprocessor
reads and writes files physically stored on a data stor-
age device such as a hard drive in the host system. The
Linux device representing the drive is virtualized on the
coprocessor using the VirtIO protocol. This is the same
technology that is used to give control over a hard drive
to a virtual machine. This option requires a bit more
work to set up, and it does not allow sharing files be-
tween multiple coprocessors or systems. However, it
offers persistent high-capacity storage.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 2

http://research.colfaxinternational.com/

2 METHODOLOGY

Finally, the third option, distributed file system,
comes in the form of two protocols: Network File Shar-
ing (NFS) protocol [6] and Lustre distributed file sys-
tem [7] (see Figure 3). To work with files in an NFS or
Lustre file system from an Intel Xeon Phi coprocessor,
some system configuration steps must be performed,
most importantly, virtual network configuration in the
coprocessor OS (Ethernet or InfiniBand). The result is
persistent, high-capacity, distributed storage, in which
files can be shared across a cluster.

In this paper we demonstrate the procedures for set-
ting up each of the available file systems on an Intel
Xeon Phi coprocessor. We also measure the perfor-
mance of streaming read and write operations and study
the parallel scalability of file I/O performance.

2. METHODOLOGY

2.1. SYSTEM CONFIGURATION

For RAM disk, VirtIO and NFS benchmarks,
we used CentOS 6.5 Linux with kernel 2.6.32-
431.el6.x86 64 on the host and MPSS 3.3 for the copro-
cessor [8]. For Lustre benchmarks, we used the Linux
kernel 2.6.32-431.17.1.el6.x86 64 and MPSS 3.1.2 for
compatibility with the Intel Enterprise Edition Lustre
(IEEL) version 2.0.0 [9].

The computing system used for benchmarks is a
Colfax SXP8600p Workstation with four Intel Xeon
Phi 7120P coprocessors. Each of these coprocessors
has 61 active cores and 16 GB of onboard RAM. The
workstation is connected to the Lustre server with Mel-
lanox InfiniBand ConnectX-3 Single-Port VPI adapters
(model version MHQH19B-XTR at 4X QDR (40 Gb/s)
via a 36-port Mellanox Infiniscale IV switch (model
IS5025). Connection to the NFS server is via a NET-
GEAR JGS524 Gigabit Ethernet switch.

The hard drives used for testing are:

- For VirtIO and NFS: a software RAID0 array of two
2 GB Toshiba MG03ACA200 SATA hard disk drives
(HDDs), and

- For Lustre: four 4 TB Toshiba MG03ACA400 HDDs
in a single object storage server.

2.2. IOZONE CROSS-COMPILATION

All tests discussed below use the open source
IOzone benchmark [10]. In order to cross-compile the
benchmark for the Intel manycore architecture native
mode, we modified the Makefile to use the Intel C com-
piler and included the argument -mmic into compiler
and linker flags. The resulting executable was copied to
the coprocessor and run from the terminal.

In all console listings, the host name of the server
is shown as lyra, and the Linux username is shown as
vega. Hostname lyra-mic0 corresponds to the first
coprocessor in the system. For convenience, many of
the tests are run under the root account, because su-
peruser access is required for some of the necessary op-
erations, including dropping disk caches and unmount-
ing/remounting file systems. These procedures are de-
scribed in Section 2.4.

2.3. “WRITE” AND “WRITE+SYNC”

For testing the performance of the various file sys-
tems, we used operations representative of typical HPC
tasks such as initializing an application, storing run-
ning output, checkpoint-restart, and post-processing or
visualization jobs following a simulation. In most ap-
plications, data participating in these operations can be
stored in the form of large contiguous arrays. For that
reason, of most interest to us is the performance of se-
quential reads and writes.

The first test we perform for all file systems is the
standard “write” test, which in IOzone is represented by
the write() system call. This system call blocks until
it is safe to use the write buffer in the user application.
In our Figures 5 – 7 and in the summary table (Table 1),
we call it the “write” test.

The “write” is an accurate measure of write per-
formance in applications with low intensity of file I/O.
That is because when the write() system call returns,
the written data is usually placed into the OS disk cache,
but not flushed to the storage medium or pushed across
the network (see Figure 4). In low-intensity I/O, the
OS may flush the data later, in the background, without
slowing down the user application.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 3

http://www.colfax-intl.com/nd/workstations/sxp8600p.aspx
http://www.mellanox.com/page/products_dyn?product_family=119
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=212
http://www.mellanox.com/page/products_dyn?product_family=17
http://www.mellanox.com/page/products_dyn?product_family=60
http://cl.netgear.com/service-provider/products/switches/unmanaged-rackmount-switches/JGS524.aspx
http://cl.netgear.com/service-provider/products/switches/unmanaged-rackmount-switches/JGS524.aspx
https://storage.toshiba.eu/cms/en/hdd/enterprise/product_detail.jsp?productid=527
https://storage.toshiba.eu/cms/en/hdd/enterprise/product_detail.jsp?productid=527
http://research.colfaxinternational.com/

2 METHODOLOGY

"Write"

"Write+sync"

"Cold read"

"Re-read"

Storage
media
(HDD) N

et
w

or
k Disk

Cache
in OS

A
pp

li
ca

tio
n

Figure 4: “Write”, “write+sync”, “cold read” and “re-read” tests
performed on Intel Xeon Phi coprocessors in this work.

In order to simulate applications with high inten-
sity and long duration of file I/O, we perform a dif-
ferent benchmark, which we call “write+sync”. With
intense I/O, the OS disk cache may eventually fill up.
When that happens, the write() operation will block
for the amount of time required to flush the data to
the physical medium or send it across the network,
which is much slower than working with the cache. For
the “write+sync” test, after the write() call, IOzone
makes the sync() call to ensure that the data are writ-
ten to the medium or pushed across the network. The
duration of sync() is included in timing. This is done
by calling IOzone with the argument -e.

Listing 1 demonstrates the syntax with which we
call IOzone for the “write” and “write+sync” tests. The
result of the “write” test is taken for the column labelled
“write” produced by the first call to IOzone. The per-
formance of “write+sync” is also taken from the column
“write”, but in the second IOzone call with the argument
-e. Column “rewrite” produced by IOzone is ignored
in this paper.

vega@lyra-mic0% # Write test:
vega@lyra-mic0% ./iozone.MIC -i 0 -r 4M -s 1G
... (use "write" column):

kB reclen write rewrite ...
32768 4096 294795 334773

vega@lyra-mic0% # Write + sync test:
vega@lyra-mic0% ./iozone.MIC -i 0 -e -r 4M -s 1G
... (use "write" column)

kB reclen write rewrite ...
32768 4096 27972 27982

Listing 1: I/O tests “write”, “write+sync”.

2.4. “COLD READ” AND “RE-READ”

For benchmarking file reading performance, we
also view this task from the HPC application point of
view.

One situation is when the application reads input
data which has never been transferred from the stor-
age medium to the coprocessor RAM. To represent this
case, we perform a test that we call “cold read”. For
the “cold read” test, prior to benchmarking the reading
of an existing file, we use Linux functionality to clear
disk caches and also unmount and re-mount the file sys-
tem (unless we are using tmpfs or ramfs). This trick
works for NFS and Lustre, however, for VirtIO these
measures do not help to eliminate cache effects. For that
reason, only for VirtIO benchmarks, we create files for
reading on the host side, which provides a clean “cold
read” measurement. The goal of the “cold read” test is
to represent the situation where the file is read by the
coprocessor OS for the first time since reboot, or when
the amount of read data exceeds the amount of copro-
cessor memory available for disk cache.

root@lyra-mic0% # 1) Create the test file:
root@lyra-mic0% for i in {1..5}; do
> cat ˜/pattern >> /nfs/file32M ; done
root@lyra-mic0% # 2) Unmount the file system:
root@lyra-mic0% umount /nfs
root@lyra-mic0% # 3) Drop caches on coprocessor:
root@lyra-mic0% echo 3 >/proc/sys/vm/drop_caches
root@lyra-mic0% # 4) and on storage server:
root@lyra-mic0% ssh nfs-server \
> "echo 3 > /proc/sys/vm/drop_caches"
root@lyra-mic0% # 5) Mount the file system:
root@lyra-mic0% mount /nfs
root@lyra-mic0% # 6) Run the benchmarks:
root@lyra-mic0% ./iozone.MIC -i 1 -+E \
> -r 4M -s 32M -f /nfs/file32M
... (use "read" column for "cold read" test
... and "reread" column for "re-read" test)

kB reclen write rewrite read reread
32768 4096 24443 986690

Listing 2: Tests “cold read” and “re-read”.

Another situation is, for example, restarting a com-
puting application from checkpoint data, or reading the
output of a simulation by a subsequent post-processing
or visualization job. In these cases, the data has been in
the coprocessor memory before, and there is a chance
(though not a guarantee) that it may still be in the disk

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 4

http://research.colfaxinternational.com/

2 METHODOLOGY

cache. To represent this situation, we allow IOzone to
conduct the second test, in which the file that had just
been read is re-read. We call this test “re-read”. The
goal of this test is to represent the situation where the
data read from a file system is present in the disk cache
of the coprocessor OS.

Listing 2 shows the procedure that we use to obtain
the “cold read” and the “re-read” performance. The file
called pattern is a specially prepared file 1 MB in
size filled with characters of hexadecimal value 0xF4.
This is the pattern that IOzone expects to find in the
read file. Note that the “cold read” result is taken from
the “read” column in IOzone output, and the “re-read”
result – from the “reread” column in the same run.

2.5. PARALLEL I/O SCALABILITY

In HPC applications, it is common for multiple con-
current read or write operations to be performed on a
compute node or a coprocessor. These multiple op-
erations may come from different MPI processes each
reading or writing their own chunk of data, or from mul-
tiple threads within one process parallelizing I/O for
added performance. In this paper, we assume that the
IOzone parallel I/O tests represent the situations of par-
allel I/O in real HPC applications. It is important to note
that for RAM disks, different parallel frameworks (e.g.,
Pthreads, OpenMP, MPI) can lead to different file I/O
performance because of the differences in multithread-
ing overhead, process pinning, memory page sharing,
and other aspects.

Listings 3 and 4 demonstrate our methodology for
obtaining benchmarks of parallel I/O performance on
Intel Xeon Phi coprocessors. Note that each reader or
writer accesses a different file:

root@lyra-mic0% # write test with 2 threads:
root@lyra-mic0% ./iozone.MIC -i 0 -r 4M -s 32M \
> -e -T -t 2
... (use the "write" result for children)
root@lyra-mic0% # write+sync, 2 threads:
root@lyra-mic0% ./iozone.MIC -i 0 -r 4M -s 32M \
> -T -t 2
... (use the "write" result for children)

Listing 3: Parallel write tests (this example uses t=2 threads).

root@lyra-mic0% # Drop cold read and re-read:
root@lyra-mic0% # 1) Create files for reading:
root@lyra-mic0% for i in {1..5}; do
> cat ˜/pattern >> /nfs/file32M-1
> cat ˜/pattern >> /nfs/file32M-2
> done
root@lyra-mic0% # 2) Unmount the file system:
root@lyra-mic0% umount /nfs
root@lyra-mic0% # 3) Drop caches on coprocessor:
root@lyra-mic0% echo 3 >/proc/sys/vm/drop_caches
root@lyra-mic0% # 4) and on storage server:
root@lyra-mic0% ssh nfs-server \
> "echo 3 > /proc/sys/vm/drop_caches"
root@lyra-mic0% # 5) Mount the file system:
root@lyra-mic0% mount /nfs
root@lyra-mic0% # 6) run the benchmarks, 2 thr:
root@lyra-mic0% ./iozone.MIC -i 1 -+E -r 4M \
> -s 32M -T -t 2 -F file32M-1 file32M-2
... (use "read" and "re-read" for children)

Listing 4: Parallel read tests (this example uses t=2 threads).

With benchmark methodology established, in sub-
sequent sections we configure and benchmark the above
mentioned file systems available to Intel Xeon Phi co-
processors.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 5

http://research.colfaxinternational.com/

3 SYSTEM ADMINISTRATION PROCEDURES

3. SYSTEM ADMINISTRATION PROCEDURES

This section describes the steps necessary to set up
access to the tmpfs, ramfs, VirtIO, NFS and Lustre
file systems from Intel Xeon Phi coprocessors.

3.1. USING RAM DISKS

3.1.1. CONFIGURATION OF TMPFS

Intel Xeon Phi coprocessor operation is controlled
by a stack of drivers and utilities called Intel MPSS [8].
MPSS tools create a file system image containing the
root directory of the coprocessor OS and use this image
to boot the coprocessor. During the boot process, this
image is unpacked into a tmpfs file system residing in
the onboard memory of the coprocessor.

This means that nothing needs to be done to use
a tmpfs RAM disk in a native coprocessor applica-
tion. When a user application operates in the native
mode, it can perform I/O in the user’s home directory
on the coprocessor, or other directories, as long as di-
rectory permissions allow the requested I/O operations.
The size of this RAM disk is limited by the available
amount of RAM. Listing 5 demonstrates querying and
using tmpfs in the user’s home directory.

vega@lyra% ssh mic0 # Log in to the coprocessor
vega@lyra-mic0% mount # View mounted filesystems
rootfs on / type rootfs (rw)
none on /proc type proc (rw,relatime)
none on / type tmpfs (rw,relatime,size=4996868k,

mode=755)
proc on /proc type proc (rw,relatime)
sysfs on /sys type sysfs (rw,relatime)
none on /dev type tmpfs (rw,relatime,mode=755)
devpts on /dev/pts type devpts (rw,relatime,

gid=5,mode=620)
none on /var/volatile/tmp/COI2MB type hugetlbfs

(rw,relatime)

vegar@lyra-mic0% df -h # Query available space
Filesystem Size Used Availbl Use% Mounted on
none 12.9G 162.0M 12.7G 1% /
none 7.6G 44.0K 7.6G 0% /dev

vega@lyra-mic0% # Create a file and check on it:
vega@lyra-mic0% touch /home/vega/foo
vega@lyra-mic0% ls -l /home/vega
-rw-r--r-- 1 vega vega 0 Jul 21 16:13 foo

Listing 5: Using tmpfs on an Intel Xeon Phi coprocessor.

3.1.2. CONFIGURATION OF RAMFS

Administrator of the coprocessor OS can also
mount a RAM disk with the ramfs file system. This
file system does not perform checks for exceeding the
RAM disk storage capacity. The ramfs disk grows as
more data is written into it. Because of this difference,
ramfs may perform faster than tmpfs. However, the
cost of the added performance is that with ramfs the
coprocessor may crash if it runs out of memory. List-
ing 6 shows how to mount and use ramfs in an Intel
Xeon Phi coprocessor.

root@lyra% ssh mic0 # Log in to the coprocessor
root@lyra-mic0% mkdir /scratch # Mount point
root@lyra-mic0% mount -t ramfs ramfs /scratch
root@lyra-mic0% mount | grep scratch
ramfs on /scratch type ramfs (rw,relatime)
root@lyra-mic0% chmod 777 /scratch # Open access
root@lyra-mic0% su vega # Try it
vega@lyra-mic0% touch /scratch/bar

Listing 6: Mounting ramfs on a coprocessor.

3.1.3. MPSS OPTIMIZATIONS

MPSS supports experimental optimiza-
tions of RAM disk filesystems described in
[11]. As of MPSS 3.3, these optimizations
must be manually enabled by including addi-
tional parameters to ExtraCommandLine in
/etc/mpss/default.conf as shown in Listing 7.
After that, the administrator must stop MPSS, run
micctrl --resetconfig and start MPSS again.

root@lyra% cat /etc/mpss/default.conf
...
Additional command line parameters.
ExtraCommandLine "highres=off \

vfs_write_optimization=on \
vfs_read_optimization=on"

...

Listing 7: Enabling additional MPSS optimizations (necessary for
MPSS 3.3; put all arguments in one line)

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 6

http://research.colfaxinternational.com/

3 SYSTEM ADMINISTRATION PROCEDURES

3.2. ACCESS TO HOST DRIVES WITH VIRTIO

The VirtIO block device support in MPSS allows
the virtualization of physical storage media such as hard
drives in the Intel Xeon Phi coprocessor OS.

3.2.1. PREPARATION OF A LOGICAL VOLUME

A reliable way to designate how much space on
the physical drive will be given to the coprocessor is
to create an LVM logical volume on the drive. List-
ing 8 demonstrates the process of configuring a phys-
ical volume on the RAID device /dev/md0, creating
a volume group vg phi containing that physical vol-
ume, and partitioning it with a logical volume lvol0
that occupies 30 GB.

root@lyra% pvcreate /dev/md0
Physical volume "/dev/md0" successfully created
root@lyra% vgcreate vg_phi /dev/md0
Volume group "vg_phi" successfully created
root@lyra% lvcreate vg_phi -L 30GB

Logical volume "lvol0" created

Listing 8: Creating a logical volume for VirtIO.

3.2.2. USING A LOGICAL VOLUME IN VIRTIO

The next step is instructing MPSS to enable
VirtIO on that logical volume. This is done by
echoing the path to the logical volume into the
file /sys/class/mic/mic0/virtblk file, as
seen in Listing 9. The path contains mic0, which in
this procedure indicates that VirtIO is configured for the
first coprocessor. After that, MPSS must be restarted.

root@lyra% echo "/dev/mapper/vg_phi-lvol0" >\
> /sys/class/mic/mic0/virtblk_file
root@lyra% service mpss restart
root@lyra% ssh mic0
root@lyra-mic0% mkfs.ext2 /dev/vda # Format
root@lyra-mic0% mkdir /virtio # Create mnt point
root@lyra-mic0% mount /dev/vda /virtio # Mount
root@lyra-mic0% df -h # Check result
Filesystem Size Used Availbl Use% Mounted on
none 12.9G 56.1M 12.8G 0% /
none 7.6G 48.0K 7.6G 0% /dev
/dev/vda 46.7G 59.4M 139.2G 0% /virtio
...

Listing 9: Giving control of the logical volume to mic0.

When MPSS boots, the user will find a new device
on mic0 at /dev/vda. If the logical volume is al-
ready formatted, then the coprocessor OS will automat-
ically mount this drive at /media/vda. Otherwise,
/dev/vda may be formatted from the coprocessor us-
ing mkfs.ext2 and thereafter mounted at any mount
point. We choose /virtio for the mount point loca-
tion. When that is done, user applications can write into
/virtio as long as Linux permissions allow that. The
files written into that directory will be physically stored
on the RAID array /dev/md0, which is installed in the
host system.

Some peculiarities of VirtIO that we observed dur-
ing testing are:

a) Once shared /dev/mapper/vg phi-lvol0 is
virtualized as /dev/vda on the coprocessor, the
coprocessor OS owns this device. That means that
the files written to it cannot be viewed on the host or
shared with other coprocessors until the drive is un-
mounted on the coprocessor and re-mounted on the
host.

b) The host OS refuses to change the contents of
/sys/class/mic/mic0/virtblk file if
MPSS is loaded. In order to change it, the adminis-
trator must run on the host the command “service
mpss unload” followed by “modprobe mic”.

c) The VirtIO block device has an upper size limit of
2 TB, as seen by the tool fdisk on the coproces-
sor. That is, for logical volumes smaller than 2 TB,
the VirtIO device on the coprocessor has the same
size as the logical volume. However, for logical vol-
umes greater than 2 TB, the coprocessor sees only
the fraction of the logical volume size above 2 TB
or above a multiple of 2 TB. For example, a 2.5 TB
logical volume on host appears as a 0.5 TB device
on the coprocessor.

d) Instead of a logical volume, it is also possible to ex-
port a file in the host file system. We have not tested
the performance or limitations of this method.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 7

http://research.colfaxinternational.com/

3 SYSTEM ADMINISTRATION PROCEDURES

3.3. NFS OVER GIGABIT ETHERNET

NFS distributed storage is a standard tool in Linux
systems [6]. It allows to share a mount point hosted by
the NFS server with a number of clients communicating
with the server over TCP/IP.

3.3.1. NETWORK CONFIGURATION

In order to NFS-share a directory with Intel Xeon
Phi coprocessors, networking on coprocessors must be
configured so that TCP packets are able to travel be-
tween the NFS server and the coprocessors. If the NFS
server is the OS hosting the coprocessors, then default
network configuration of MPSS is sufficient. This con-
figuration has the static pair topology, in which copro-
cessors form a private network within the host.

However, if the NFS server is a remote machine,
then network configuration on coprocessors must have
the external bridge topology. This allows coprocessors
to direct TCP/IP packets to the private network of the
host via the host’s Ethernet adapter. Thus, the copro-
cessor can communicate with other servers and copro-
cessors in other compute nodes on the network. List-
ing 10 shows an example of bridged networking config-
uration on a system with two Intel Xeon Phi coproces-
sors. More details on bridged networking are given in
our publication [5].

root@lyra% service mpss stop
root@lyra% micctrl --addbridge=br0 \
> --type=external --ip=10.33.1.2
root@lyra% micctrl --network=static \
> --bridge=br0 --ip=10.33.1.22:10.33.1.42
root@lyra% service mpss start
root@lyra% cat /etc/hosts | grep "nfs\|mic"
10.33.1.1 nfs-server
10.33.1.22 lyra-mic0 mic0 #Generated-by-micctrl
10.33.1.42 lyra-mic1 mic1 #Generated-by-micctrl
root@lyra% ssh mic0 # Log in to coprocessor
root@lyra-mic0% ping 10.33.1.1 # Check
... (ping must succeed) ...

Listing 10: Configuration of bridged networking on coprocessors.

3.3.2. CLIENT CONFIGURATION

Listing 11 demonstrates how NFS client software
can be configured on an Intel Xeon Phi coprocessor. For
manual mounting, it is sufficient to run the command

“mount -t nfs” with the arguments pointing to the
storage server and to the local mount point. This mount
will be gone if the coprocessor is rebooted. In order to
make the mount persistent, micctrl may be used on
host, as shown in the continuation of Listing 11. Note
that by default, micctrl will add the NFS mount to
all coprocessors installed in the host.

root@lyra-mic0% # First, mount manually:
root@lyra-mic0% mkdir /nfs # Create mount point
root@lyra-mic0% mount -t nfs \
> 10.33.1.1:/nfs-exp /nfs
root@lyra-mic0% df -h | grep -v none
Filesystem Size Used Availb Use% Mounted on
10.33.1.2:/nfs 1.8T 11.3G 1.7T 1% /nfs
root@lyra-mic0% exit
root@lyra% # Now configure automatic mounting:
root@lyra% service mpss stop
root@lyra% micctrl --addnfs=10.33.1.1:/nfs-exp \
> --dir=/nfs
root@lyra% service mpss start
root@lyra% ssh mic0 # Log in to coprocessor
root@lyra-mic0% df -h | grep -v none
Filesystem Size Used Availb Use% Mounted on
10.33.1.2:/nfs 1.8T 11.3G 1.7T 1% /nfs

Listing 11: Mounting an NFS share on a coprocessor.

For additional options of NFS mounting on copro-
cessors, run micctrl --addnfs --help.

Note: with IPoIB configured (see Section 3.4), one
can mount an NFS share over the InfiniBand network.
However, we have found in our testing that, as of
MPSS 3.3, single-threaded performance on coproces-
sors of NFS over InfiniBand is not different from per-
formance over Ethernet. Because of this, we do not re-
port results of NFS over InfiniBand here.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 8

http://research.colfaxinternational.com/

3 SYSTEM ADMINISTRATION PROCEDURES

3.4. LUSTRE OVER INFINIBAND

Lustre is a scalable distributed file system used for
large-scale cluster computing and data storage. Intel
Xeon Phi coprocessors support mounting Lustre shares
over the InfiniBand fabric.

All machines in the Lustre solution and the bench-
mark compute node are interconnected with Mellanox
InfiniBand links (see Section 2.1). The setup of Lus-
tre server is fairly complicated, requiring multiple ma-
chines with different functions. Information on Intel
Enterprise Edition Lustre server configuration can be
found in [9]; also, Colfax offers turn-key Lustre solu-
tions [12]. In Section 3.4, only client-side configuration
steps for mounting a Lustre share on an Intel Xeon Phi
coprocessor are discussed.

3.4.1. IPOIB CONFIGURATION

Prior to mounting Lustre, the administrator must
configure IPoIB on the host as well as on the copro-
cessor. Listing 12 demonstrates that procedure.

root@lyra% # Configure IPoIB on host
root@lyra% cat \
> /etc/sysconfig/network-scripts/ifcfg-ib0
DEVICE=ib0
HWADDR=80:00:00:48:FE:80:00:00:00:00:00:00:00...
TYPE=InfiniBand
UUID=c8ab4dab-4672-4044-93f2-94d8423dd6de
ONBOOT=yes
NM_CONTROLLED=no
BOOTPROTO=static
IPADDR=10.34.1.2
NETMASK=255.255.0.0
root@lyra% # Configure IPoIB on coprocessors
root@lyra% cat /etc/mpss/ipoib.conf
... (comments omitted) ...
ipoib_enabled=yes
mic0_ib0="10.34.1.22 netmask 255.255.0.0"
mic1_ib0="10.34.1.42 netmask 255.255.0.0"
root@lyra% service mpss stop
root@lyra% # Propagate configuration to MPSS
root@lyra% micctrl --resetconfig
root@lyra% service mpss start
root@lyra% service ofed-mic restart
root@lyra% ssh mic0 # Go to the coprocessor and
root@lyra-mic0% # ping Lustre metadata server:
root@lyra-mic0% ping 10.34.0.2
... (ping must succeed) ...

Listing 12: Configuring IPoIB.

3.4.2. CLIENT CONFIGURATION

To install Lustre client for Intel Xeon Phi coproces-
sors, we chose to use RPMs provided in IEEL 2.0.0.
These RPMs are compiled for MPSS 3.1.2 in Cen-
tOS Linux with kernel 2.6.32-431.17.1.el6.x86 64 and
OFED 1.5.4.1. So we had to install these specific ker-
nel and MPSS versions. Importantly, MPSS and OFED
modules for this kernel version are not included in the
MPSS 3.1.2 distribution, so we had to recompile these
kernel modules. Instructions for these procedures are
given in MPSS User’s Guide [8].

After installing MPSS and OFED, the administra-
tor may install the Lustre client for Xeon Phi RPMs as
shown in Listing 13.

root@lyra% tar -xf ieel-2.0.0.tar.gz
root@lyra% cd ieel-2.0.0/
root@lyra% tar -xf \
> xeon-phi-client-2.5.19-bundle.tar.gz
root@lyra% name="lustre-client-mic"
root@lyra% vers="2.5.19"
root@lyra% mpss="2.6.38.8+mpss3.1.2"
root@lyra% rpm -ivh --nodeps \
> ${name}-${vers}-${mpss}.x86_64.rpm \
> ${name}-modules-${vers}-${mpss}.x86_64.rpm

Listing 13: Installing Lustre client for Intel Xeon Phi coprocessors
from IEEL 2.0.0 RPM packages.

Finally, to mount a Lustre file system, steps shown
in Listing 14 must be performed on the coprocessor.

root@lyra-mic0% echo \
> ’options lnet networks=o2ib0(ib0)’ > \
> /etc/modprobe.d/lustre.conf
root@lyra-mic0% mkdir /lustre # mount point
root@lyra-mic0% mount.lustre \
> 10.34.0.2@o2ib0:/lustre /lustre
root@lyra-mic0% df -h | grep -v none
Filesystem Size Used ...Mounted on
10.34.0.2@o2ib:/lustre 14.5T 42.8G.../lustre

Listing 14: Mounting a Lustre share on a coprocessor.

The administrator may make the file
lustre.conf and the mount point persistent across
coprocessor reboots. This is done by adding these files
and directories to the MIC root directory image located
at /var/mpss/mic* on the host. Instructions for
that are given in MPSS User’s Guide [8].

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 9

http://research.colfaxinternational.com/

4 BENCHMARK RESULTS

4. BENCHMARK RESULTS

4.1. PHYSICAL MEDIA BENCHMARKS

Before proceeding with benchmarks of file systems
on Intel Xeon Phi coprocessors, it is informative to
study the storage media that we use for backing these
file systems. All disk-based storage options: VirtIO,
NFS and Lustre use the Toshiba MG03ACAxxx fam-
ily HDDs. In this section, we measure the performance
of these drives on the host with our “write+sync” and
“cold read” tests.

The methodology for this testing is described in
Sections 2.3 and 2.4. We benchmark three configura-
tions: a stand-alone MG03ACA200 drive, a RAID0 ar-
ray of two drives, and a RAID0 array of four drives.
The drives and RAID arrays are formatted with the ext4
file system. For benchmarks, we use a file size of 1 GB
(large enough so that it exceeds the combined 64 MB
data buffers of the drives) and a record size of 4 MB.

0

100

200

300

400

500

600

700

800

900

One Drive Two Drives
in RAID0

Four Drives
in RAID0

P
er
fo
rm

an
ce
, M

B
/s

http://research.colfaxinternational.com/

Local HDDsWrite+Sync

153±1

263±3

435±3

Cold Read

173±1

324±2

649±7

Figure 5: Benchmarks of the storage media on the host.

Results are shown in Figure 5. They set the upper
bound on the performance of file systems mounted on
Intel Xeon Phi coprocessors.

4.2. SINGLE-THREADED I/O BENCHMARKS

We conducted single-threaded “write+sync”, “cold
read”, “write” and “re-read” benchmarks on the filesys-
tems discussed above. The results are shown in Figure 6
with bars labelled “1 thread”.

Horizontal dashed lines in Figure 6 are the results of
the storage media tests also shown in Figure 5 and the

theoretical maximum throughput of Gigabit Ethernet.
These lines are added for convenience so that the reader
may judge whether the measured I/O speed is limited
by the disk cache, storage media or network bandwidth.

All measurements in Figure 6 are for a file size of
32 MB and a record size of 4 MB. We do not report re-
sults with other file sizes in these plots, because we have
found the benchmarks to be only weakly dependent on
the file size. Interested reader may refer to Appendix 5
for a study of file sizes in the range from 4 MB to 1 GB.

4.3. PARALLEL I/O BENCHMARKS

We also performed multi-threaded “write+sync”,
“cold read”, “write” and “re-read” benchmarks on the
filesystems discussed above. The parallel speedup of
performance of these tests, as a function of the number
of threads, is shown in Figure 7. The performance with
the best speedup is shown in Figure 6 with bars labelled
“N threads”, where N is the optimal number of threads.

All measurements of parallel I/O performance are
for file size of 32 MB, except for tmpfs and ramfs,
where we used 128 MB files. That is because the over-
head of multi-threading in IOzone reduces reported per-
formance if the amount of I/O per thread is too low.

Table 1 contains a summary of the measurements.
It also contains miscellaneous information on the usage
models and limitations of the tested file systems.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 10

https://storage.toshiba.eu/cms/en/hdd/enterprise/product_detail.jsp?productid=527
http://research.colfaxinternational.com/

4 BENCHMARK RESULTS

100

101

102

103

104

Write+Sync Write Cold Read Re-Read

P
er
fo
rm

an
ce
, M

B
/s

http://research.colfaxinternational.com/

TMPFS

739 733
1626 2036

2817±1036 2677±995
1578±563

1
 t
hr
ea
d

1
 t
hr
ea
d

1
 t
hr
ea
d

1
 t
hr
ea
d

8
 t
hr
ea
d
s

8
 t
hr
ea
d
s

4
 t
hr
ea
d
s

2
4
0
 t
h
re
ad
s

100

101

102

103

104

Write+Sync Write Cold Read Re-Read

P
er

fo
rm

an
ce

, M
B

/s

(may by unstable)
http://research.colfaxinternational.com/

RAMFS

1117 1112
1842 2326

3019±1122 2842±1024
1565±613

6872±8419(may by unstable)

1
th

re
ad

1
th

re
ad

1
th

re
ad

1
th

re
ad

8
th

re
ad

s

8
th

re
ad

s

2
th

re
ad

s

16
 t
h
re

ad
s

100

101

102

103

104

Write+Sync Write Cold Read Re-Read

P
er
fo
rm

an
ce
,
M
B
/s

2xHDD Write
 (263 MB/s)

2xHDD Read
 (324 MB/s)

http://research.colfaxinternational.com/

VIRTIO

23

218 294

976

25±10

1830±692

246±94

1214±472
2xHDD Write
 (263 MB/s)

2xHDD Read
 (324 MB/s)

1
th
re
ad

1
th
re
ad

1
th
re
ad

1
th
re
ad

12
0
 t
hr
ea
ds

16
 t
h
re
ad
s

4
th
re
ad
s

4
th
re
ad
s

100

101

102

103

104

Write+Sync Write Cold Read Re-Read

P
er

fo
rm

an
ce

, M
B

/s

(over Gigabit Ethernet)

2xHDD Write
 (263 MB/s)

2xHDD Read
 (324 MB/s)

Gigabit Network
 125 MB/s

http://research.colfaxinternational.com/

NFS

14

290

25

1005

16±12

2029±731

17±8

1612±625

(over Gigabit Ethernet)

2xHDD Write
 (263 MB/s)

2xHDD Read
 (324 MB/s)

Gigabit Network
 125 MB/s

1
th

re
ad

1
th

re
ad

1
th

re
ad

1
th

re
ad

8
th

re
ad

s

16
 t
h
re

ad
s

1
th

re
ad

s

4
th

re
ad

s

100

101

102

103

104

Write+Sync Write Cold Read Re-Read

P
er

fo
rm

an
ce

,
M

B
/s

(over InfiniBand)

4xHDD Write
 (435 MB/s)

4xHDD Read
 (649 MB/s)

http://research.colfaxinternational.com/

LUSTRE

103 111 114

577343±122
578±205 407±145

1232±450

(over InfiniBand)

4xHDD Write
 (435 MB/s)

4xHDD Read
 (649 MB/s)

1
th

re
ad

1
th

re
ad

1
th

re
ad

1
th

re
ad

8
th

re
ad

s

8
th

re
ad

s

16
 t
h
re

ad
s

4
th

re
ad

s

Figure 6: I/O performance in tmpfs, ramfs, VirtIO, NFS and Lus-
tre filesystems on an Intel Xeon Phi coprocessor. For each
test, single-threaded and best multi-threaded performance
are shown. Horizontal dashed lines indicate the limits im-
posed by the media or network throughput.

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 60 120 240

P
ar
al
le
l
S
pe

ed
up

Number of Readers/Writers

http://research.colfaxinternational.com/

TMPFS
Write+Sync

Write
Cold Read

Re-read

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 60 120 240

P
ar
al
le
l
S
pe

ed
up

Number of Readers/Writers

http://research.colfaxinternational.com/

RAMFS
Write+Sync

Write
Cold Read

Re-read

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 60 120 240

P
ar
al
le
l
S
pe

ed
u
p

Number of Readers/Writers

http://research.colfaxinternational.com/

VIRTIO
Write+Sync

Write
Cold Read

Re-read

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 60 120 240

P
ar
al
le
l
S
pe

ed
up

Number of Readers/Writers

http://research.colfaxinternational.com/

NFS
Write+Sync

Write
Cold Read

Re-read

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 60 120 240

P
ar
al
le
l
S
pe

ed
up

Number of Readers/Writers

http://research.colfaxinternational.com/

LUSTRE
Write+Sync

Write
Cold Read

Re-read

Figure 7: Parallel scalability of I/O performance in tmpfs, ramfs,
VirtIO, NFS and Lustre filesystems on an Intel Xeon Phi
coprocessor. Speedup is the ratio of multithreaded perfor-
mance to single-threaded performance for the same test on
the same file system.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 11

http://research.colfaxinternational.com/

4 BENCHMARK RESULTS

Property tmpfs ramfs VirtIO NFS Lustre
Configuration Difficulty none one line minutes minutes 1 hour×

Requires root access no yes yes yes yes
Data persistence across reboots no no yes? yes yes

File sharing across cluster no no no yes yes
Can be used as swap space no no yes no no

“Write+sync”, MB/s 700 1100 23 14 100
Parallel “write+sync”, MB/s 3000±1000 3000 25 16±12 350±100

“Write”, MB/s 700 1100 220 300
Parallel “write”, MB/s 3000±1000 3000 2000 2000±700 600±200

“Cold read”, MB/s 1600 1800 300 25
Parallel “cold read”, MB/s 1600±600 1600±600 250±100 17±8 400±150

“Re-read”, MB/s 2000 2300 900 1000
Parallel “Re-read”, MB/s ≈20000 unstable 1200±500 1600±600 1200±450

Scales across multiple threads yes unstable no/yes# no/yes# yes
Max file system size 13.8 GB+ 13.8 GB+ 2 TB† Unknown∗ Unknown‡

Table 1: Summary of file systems available to native applications on Intel Xeon Phi coprocessors.
× Lustre client setup takes up to 1 hour, which includes MPSS and OFED installation, networking configuration and Lustre client
RPM installation. Lustre server-side configuration depends on the scale of the system and may take considerably longer.
? We noticed that the write performance of the partition shared with VirtIO degrades after MPSS restart, and is restored after re-
formatting the partition.
In VirtIO and NFS, only cache-backed write operation can be accelerated by multi-threading. All other operations (cold and warm
read and write operation that has to be synced with the media or network) gain little or no additional performance from parallel I/O.
+ Measured on a coprocessor with 16 GB onboard memory, without any running user applications. This limit is determined by the
amount of installed onboard GDDR5 memory, which is dependent upon the coprocessor SKU.
† Empirically determined value (see Section 3.2).
∗ We did not detect a limit on Intel Xeon Phi coprocessors for NFS share sizes in our tests. The practical limit on the server side is
determined by NFS limitations.
‡ We did not detect a limit on Intel Xeon Phi coprocessors for Lustre share sizes in our tests. Reportedly, the maximum theoretical
Lustre file system size is 64 PB, and production deployments come close to that value.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 12

http://wiki.lustre.org/manual/LustreManual18_HTML/SystemLimits.html#50651287_11452
https://computing.llnl.gov/?set=resources&page=lc_lustre
http://research.colfaxinternational.com/

5 DISCUSSION

5. DISCUSSION

We measured the performance of RAM disks
(tmpfs and ramfs filesystems), VirtIO block device,
NFS and Lustre shares on an Intel Xeon Phi coproces-
sors. We provide results of single-threaded and multi-
threaded (parallel) sequential file writing and reading
for two situations:

a) Disk cache in the coprocessor OS serves the I/O
operations. This is the situation measured by the
“write” and “re-read” tests. These results pertain for
low-intensity I/O (“write”) or accesses to previously
read files (“re-read”).

b) The data are served by the physical storage media
or the network. This is the situations measured by
the “write+sync” and “cold read” tests. These re-
sults simulate to high-intensity, long-duration I/O
(“write+sync”) or access to previously not read data
or large data sets (“cold read”).

Below, we discuss the results and their implications
for the different file systems in detail.

RAM DISKS

As expected, RAM disks with the tmpfs and
ramfs file systems are the fastest storage option for In-
tel Xeon Phi applications. Single-threaded “write” test
in tmpfs achieves 700 MB/s, and there is no differ-
ence between “write” and “write+sync”, because this
file system is not cached. Single-threaded “read” and
“re-read” achieve 1600 and 2000 MB/s, respectively.

Multi-threading can further improve performance:
parallel “write” can be accelerated by a factor of 4x and
“re-read” by 10x; however, “cold read” does not scale
with the number of threads.

For all but the least arithmetically intensive work-
loads, RAM disks provide performance so high that file
I/O is likely to take a negligible amount of time. The
disadvantage of these file systems is that they are lim-
ited in size by the amount of onboard memory in the
coprocessor, and files stored in them reduce the amount
of RAM available to computing applications.

Regarding the use of ramfs, which provides
marginal speedup over tmpfs, we need to report that

multi-threaded tests in ramfs consistently crashed for
large numbers of threads. For that reason, we mention
ramfs as “unstable” in Table 1.

VIRTIO

VirtIO allows the coprocessor to read and write files
from/to a partition on a hard drive in the host system.

For low-intensity I/O backed by the OS disk cache,
performance of VirtIO is high and scalable, with
“write”, “re-read” achieving 220 and 355 MB/s, respec-
tively, and scaling up to ≈2000 and 1200 MB/s, respec-
tively, with multi-threading.

However, in situations operations calling for actual
data transfer to/from the storage media (“write+sync”
and “cold read”), there is a striking difference be-
tween writing and reading. “Cold read” performance at
≈300 MB/s comes close to the read speed of the phys-
ical media, at least for the two-drive RAID0 that we
tested. At the same time, “write+sync” is very slow,
reaching just over 20 MB/s and not scaling with the
number of threads.

Based on our testing, VirtIO is a great way to give
the coprocessor access to read-only file data, such as
large (up to 2 TB) static data sets. It can also be used for
storing large libraries, which would otherwise take up
valuable memory if they are stored on a RAM disk. For
output, VirtIO provides reasonable performance only if
write speed is absorbed by disk caches (i.e., in low-
intensity output situations). However, dumping large
amounts of output data of a coprocessor application into
a VirtIO device with intensity over 20 MB/s is likely to
slow the application down. Large in this context means
greater than the amount of coprocessor RAM available
for disk cache.

VirtIO is the only file system that can be used as
a Linux swap partition. While swap space is rarely
needed in HPC applications, it may be helpful in some
debugging tasks.

NFS

The performance of NFS in the coprocessor OS is
very similar to the performance of VirtIO, with the ex-
ception that “cold read” in NFS is also very slow at

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 13

http://research.colfaxinternational.com/

REFERENCES

≈20 MB/s. Therefore, for the purpose of distributing
large read-only data sets, NFS is inferior to VirtIO.

Parallelism in I/O with NFS can be beneficial, but
only in cases handled by the disk cache (read-only small
data sets or low-intensity write operations).

However, NFS has a very significant functional dif-
ference from VirtIO: it allows to share a directory be-
tween multiple coprocessors and/or hosts. This makes
NFS a convenient solution when it comes to access to
shared data, or when file I/O performance is not sig-
nificant. That includes producing a parallel application
log file, sharing configuration files and small libraries
across the cluster, etc.

LUSTRE

According to our test results, a Lustre file sys-
tem shared over InfiniBand can provide single-threaded
read and write performance of order 100 MB/s, and
multi-threaded I/O can come close to saturating the
speed of the 4-drive parallel array (around 350 MB/s
for “write+sync” and 400 MB/s for “cold read”). These
benchmarks demonstrate the versatility of Lustre:

- Write speeds that Lustre yields are orders of magni-
tude better than in VirtIO and NFS.

- Lustre offers the file system sharing functionality of
NFS, but a much better “cold read” speed.

- Unlike VirtIO, Lustre does not have the 2 TB size lim-
itation. Lustre is highly scalable in terms of size.

- Parallelism in I/O is beneficial for all operations in
the Lustre file system.

It is worth mentioning that parallel I/O in Lustre on
Xeon Phi has a “sweet spot” between 8 and 16 threads.
Greater numbers of threads are counter-productive to
I/O performance.

The practical disadvantage of Lustre as a storage so-
lution for clusters with Intel Xeon Phi coprocessors is
relative difficulty in Lustre server system configuration
compared to VirtIO and NFS. This can difficulty be al-
leviated with OEM-provided solutions such as [12].

This work did not pursue the goal of determin-
ing the maximum performance of Lustre on an Intel
Xeon Phi coprocessor. Lustre performance may vary
depending on the configuration of the storage server,

fabrics and software (see, e.g., [13]). However, what
we demonstrated here is that in today’s state of the art,
Lustre scales far beyond the 20 MB/s limit experienced
by VirtIO and NFS.

REFERENCES

[1] Landing page for this paper ”File I/O on Intel Xeon Phi
Coprocessors...”.
http://research.colfaxinternational.com/post/2014/07/28/
MIC-IO.aspx.

[2] Hetetogeneous Clustering with Homogeneous Code.
http://research.colfaxinternational.com/post/2013/10/17/
Heterogeneous-Clustering.aspx.

[3] Primer on Computing with Intel Xeon Phi Coprocessors.
Slides from a presentation, with links to additional resources.
http://research.colfaxinternational.com/post/2014/03/06/
Geant4-Tutorial.aspx.

[4] Colfax International. Parallel Programming and Optimization
with Intel Xeon Phi Coprocessors. ISBN: 978-0-9885234-1-
8. Colfax International, 2013.
http://www.colfax-intl.com/xeonphi/book.html.

[5] Configuration and Benchmarks of Peer-to-Peer Communica-
tion over Gigabit Ethernet and InfiniBand in a Cluster with
Intel Xeon Phi Coprocessors.
http://research.colfaxinternational.com/post/2014/03/11/
InfiniBand-for-MIC.aspx.

[6] Linux NFS Overview, FAQ and HOWTO Documents.
http://nfs.sourceforge.net/.

[7] Lustre (file system).
http://en.wikipedia.org/wiki/Lustre (file system).

[8] Intel Manycore Platform Software Stack (MPSS).
http://software.intel.com/en-us/articles/intel-manycore-
platform-software-stack-mpss.

[9] Intel Solutions for Lustre software.
http://www.intel.com/content/www/us/en/software/intel-
enterprise-edition-for-lustre-software.html.

[10] IOzone Filesystem Benchmark.
http://www.iozone.org/.

[11] Ravi Murty and Rajesh Sudarsan. Improving File IO perfor-
mance on Intel Xeon Phi Coprocessors.
https://software.intel.com/en-us/blogs/2014/01/07/
improving-file-io-performance-on-intel-xeon-phi.

[12] Intel Enterprise Edition for Lustre: information and solutions
on the Colfax International Web site.
http://www.colfax-intl.com/nd/solutions/intel-enterprise-
edition-for-lustre.aspx.

[13] Dmitry Eremin, Zhiqi Tao, and Gabriele Paciucci. Running
Native Lustre Client inside Xeon Phi.
http://cdn.opensfs.org/wp-content/uploads/2014/04/
D2 S17 RunningNativeLustreClientInsideXeonPhi.pdf.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 14

http://research.colfaxinternational.com/post/2014/07/28/MIC-IO.aspx
http://research.colfaxinternational.com/post/2014/07/28/MIC-IO.aspx
http://research.colfaxinternational.com/post/2013/10/17/Heterogeneous-Clustering.aspx
http://research.colfaxinternational.com/post/2013/10/17/Heterogeneous-Clustering.aspx
http://research.colfaxinternational.com/post/2014/03/06/Geant4-Tutorial.aspx
http://research.colfaxinternational.com/post/2014/03/06/Geant4-Tutorial.aspx
http://www.colfax-intl.com/xeonphi/book.html
http://research.colfaxinternational.com/post/2014/03/11/InfiniBand-for-MIC.aspx
http://research.colfaxinternational.com/post/2014/03/11/InfiniBand-for-MIC.aspx
http://nfs.sourceforge.net/
http://en.wikipedia.org/wiki/Lustre_(file_system)
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://www.intel.com/content/www/us/en/software/intel-enterprise-edition-for-lustre-software.html
http://www.intel.com/content/www/us/en/software/intel-enterprise-edition-for-lustre-software.html
http://www.iozone.org/
https://software.intel.com/en-us/blogs/2014/01/07/improving-file-io-performance-on-intel-xeon-phi
https://software.intel.com/en-us/blogs/2014/01/07/improving-file-io-performance-on-intel-xeon-phi
http://www.colfax-intl.com/nd/solutions/intel-enterprise-edition-for-lustre.aspx
http://www.colfax-intl.com/nd/solutions/intel-enterprise-edition-for-lustre.aspx
http://cdn.opensfs.org/wp-content/uploads/2014/04/D2_S17_RunningNativeLustreClientInsideXeonPhi.pdf
http://cdn.opensfs.org/wp-content/uploads/2014/04/D2_S17_RunningNativeLustreClientInsideXeonPhi.pdf
http://research.colfaxinternational.com/

REFERENCES

APPENDIX: ADDITIONAL DATA

NOTE ON STORAGE MEDIA DIFFERENCES

Even though in our tests, VirtIO and NFS RAID0
arrays of two drives, and Lustre used four drives, it
does not bias our results. This is because, according
to our benchmarks, I/O performance in VirtIO and NFS
is bottlenecked by the throughput of the software imple-
menting them, rather than by the read and write speeds
of the storage media. Namely, NFS “cold read” and
“write+sync” and VirtIO “write+sync” are all limited at
≈20 MB/s regardless of the physical media, and Vir-
tIO “cold read” saturates at ≈350 MB/s when the read
speed of the media exceeds 500 MB/s. We confirmed
that by running benchmarks on a single HDD, and a
two-drive, three-drive and a four-drive RAID0 array.
Results are shown in Figure 8.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700

P
er

fo
rm

an
ce

, M
B

/s

RAID0 Array Read or Write Speed, MB

http://research.colfaxinternational.com/

One HDD

2-drive
RAID0

3-drive
RAID0

4-drive
RAID0

Write+Sync, NFS
Write+Sync, VirtIO

Cold Read, NFS
Cold Read, VirtIO

Figure 8: Performance of NFS and VirtIO with different media.

Furthermore, using a two-drive RAID0 array for
NFS and VirtIO and four drives in parallel on Lustre
simulates a realistic situation. Indeed, in practice, one
would rarely configure a RAID0 in a compute node or
an NFS server on as many as four drives. Similarly, a
complex, scalable file system such as Lustre is unlikely
to use as few as two drives in a practical solution.

ADDITIONAL PERFORMANCE PLOTS

In Figure 9 we display the results of single-threaded
tests on all five file systems that report the dependence
of the I/O speed on the file size. Record size is 4 MB in
all tests.

 0

 500

 1000

 1500

 2000

 2500

 4 8 16 32 64 128 256 512 1024

P
er
fo
rm

an
ce
,
M
B
/s

File size, MB

http://research.colfaxinternational.com/

TMPFS

Write+Sync
Write

Cold Read
Re-read

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 8 16 32 64 128 256 512 1024

P
er
fo
rm

an
ce
,
M
B
/s

File size, MB

http://research.colfaxinternational.com/

RAMFS

Write+Sync
Write

Cold Read
Re-read

 0

 200

 400

 600

 800

 1000

 1200

 4 8 16 32 64 128 256 512 1024

P
er
fo
rm

an
ce
, M

B
/s

File size, MB

http://research.colfaxinternational.com/

VIRTIO

Write+Sync
Write

Cold Read
Re-read

 0

 200

 400

 600

 800

 1000

 1200

 4 8 16 32 64 128 256 512 1024

P
er
fo
rm

an
ce
, M

B
/s

File size, MB

http://research.colfaxinternational.com/

NFS

Write+Sync
Write

Cold Read
Re-read

 0

 100

 200

 300

 400

 500

 600

 700

 4 8 16 32 64 128 256 512 1024

P
er
fo
rm
an
ce
, M

B
/s

File size, MB

http://research.colfaxinternational.com/

LUSTRE

Write+Sync
Write

Cold Read
Re-read

Figure 9: Single-threaded performance of file systems on copro-
cessor as a function of file size.

c© Colfax International, 2014 — http://research.colfaxinternational.com/ 15

http://research.colfaxinternational.com/

	File I/O on Intel Xeon Phi coprocessors
	Methodology
	System configuration
	IOzone cross-compilation
	``Write'' and ``write+sync''
	``Cold read'' and ``re-read''
	Parallel I/O Scalability

	System administration procedures
	Using RAM disks
	Configuration of tmpfs
	Configuration of ramfs
	MPSS optimizations

	Access to host drives with VirtIO
	Preparation of a logical volume
	Using a logical volume in VirtIO

	NFS over Gigabit Ethernet
	Network configuration
	Client configuration

	Lustre over InfiniBand
	IPoIB configuration
	Client configuration

	Benchmark results
	Physical media benchmarks
	Single-threaded I/O benchmarks
	Parallel I/O benchmarks

	Discussion

