
FALCON LIBRARY: FAST IMAGE CONVOLUTION IN NEURAL NETWORKS
ON INTEL ARCHITECTURE

Sangamesh Ragate, Andrey Vladimirov, Bonan Zhang

Colfax International

November 9, 2016

Abstract

We describe FALCON, an original open-source imple-
mentation of image convolution with a 3 × 3 filter based on
Winograd’s minimal filtering algorithm. Compared to direct
convolution, Winograd’s algorithm reduces the number of
arithmetic operations at the cost of complicating the mem-
ory access pattern. This study is carried out in the context of
image analysis in convolutional neural networks.

Our implementation combines C language code with
BLAS function calls for general matrix-matrix multiplica-
tion. The code is optimized for Intel Xeon Phi processors
x200 (formerly Knights Landing) with Intel Math Kernel Li-
brary (MKL) used for BLAS call to the SGEMM function.

To test the performance of FALCON in the context of
machine learning, we benchmarked it for a set of image and
filter sizes corresponding to the VGG Net architecture. In
this test, FALCON achieves 10% greater overall performance
than convolution from DNN primitives in Intel MKL. How-
ever, for some layers, FALCON is faster than MKL by 1.5x,
but for other layers slower by as much as 4x. This indicates
a possibility of a hybrid implementation with fast and direct
convolution for a 30% speedup. High-bandwidth memory
(MCDRAM) in Intel Xeon Phi x200 product family is a sig-
nificant factor in the efficiency of the fast convolution algo-
rithm.

���

���

���

���

���

���

���

���

���

���

� � � � � � � � � �� �� �� ��

�������

������������������

�
��
��
��

�
��
��

�
�
��
��
��
��
��
�
��
��
��

�������������

�

��������������

Colfax International is a leading provider of high-performance computing solutions and expert-level educational programs for
parallel computing. Ready-to-go Colfax systems include workstations, servers, clusters, storage and personal supercomputing
solutions. Educational programs provided by Colfax enable software developers to achieve top performance on cutting-edge
computing platforms, closing the loop between hardware innovation and progress in computational disciplines. The comprehen-
sive set of services provided by Colfax delivers to its clients significant price/performance advantages and increased IT agility,
which accelerates their business outcomes and paves the path to discovery. Colfax International’s extensive customer base
includes Fortune 1000 companies, educational institutions, and government agencies. Founded in 1987, Colfax International is
based in Sunnyvale, California and is privately held.

c© Colfax International, 2016 — http://colfaxresearch.com/ 1

http://www.colfax-intl.com/
http://colfaxresearch.com/

2 WINOGRAD’S MINIMAL FIR FILTERING

1. CONVOLUTION IN MACHINE LEARNING

Applications of deep neural networks (DNNs) to
machine learning are diverse and promptly emerging,
reaching the fields of assistive technologies, commerce,
fundamental sciences, medical imaging and security
(see, e.g., [1]). DNNs thrive with abundant data. As
a consequence, training DNNs often requires expensive
development time and powerful computing resources.
Therefore, even small improvements in the efficiency
of the fundamental building blocks of DNNs can bene-
fit the field of machine learning.

In image analysis with DNNs, one building block
has gained particular importance in recent years: the
operation of convolution of images with a filter. This
operation is used in convolutional DNNs (ConvNets),
which rely on the mathematical operation of convo-
lution for position-independent object identification in
images [2].

Numerically, convolution may be performed di-
rectly. This method is expensive in terms of computa-
tional complexity. For an image of sizeH×W and filter
of size R × S, direct convolution requires O(HWRS)
operations. However, arithmetic operations in direct
convolution can easily be collapsed to form the gen-
eral matrix-matrix multiplication (GEMM) pattern [3].
This simplifies the design of convolution functions be-
cause the complexity of memory and cache traffic man-
agement is delegated to the implementation of GEMM.
Efficient GEMM code exists in Basic Linear Algebra
Subroutine (BLAS) libraries for nearly every computer
architecture. In the case of Intel architecture, Intel Math
Kernel Library (MKL) has highly efficient implementa-
tion of GEMM and of direct convolution expressed with
matrix-matrix multiplication [4].

At the same time, it is possible to compute
convolution with alternative methods that perform
fewer arithmetic operations than the direct method.
For example, fast Fourier transform (FFT) may be
used to compute image convolution with complex-
ity O (HW log(HW)) [5]. The asymptotic behav-
ior of this algorithm predicts fewer operations than
in direct method only if the filter is large enough:
RS � log(HW). However, this approach is not useful
for ConvNets because they typically use filters as small
as 2×2 or 3×3 pixels. In this range, the performance of

the FFT method is poor compared to the direct method.
In the domain of small filters, Winograd’s minimal fil-
tering algorithm may be a better choice [6, 7]. This
approach has the same asymptotic complexity as the di-
rect method, O(HWRS), but it reduces the number of
operations by a constant factor. In this paper we present
the implementation of convolution based on Winograd’s
minimal filtering algorithm for a filter size R = S = 3.

From here on, we refer to the convolution algorithm
based on Winograd’s algorithm as “fast convolution”.
This term, chosen by analogy with fast Fourier trans-
form, signifies the algorithm performs fewer floating-
point operations than the direct approach. At the same
time, it is not trivial to implement a computer program
performing “fast” convolution in less time than the di-
rect method. This is because the fast algorithm requires
data transformation with a complex memory access pat-
tern, making it more difficult to express efficiently in
code. The choice between an expensive yet simple algo-
rithm (direct convolution) and less expensive but com-
plicated algorithm (fast convolution) is not straightfor-
ward. It is difficult to predict, for instance, how well
the hierarchy of memory and caches is able to serve the
complex data access pattern of an algorithm based on
strided or indirect memory access.

2. WINOGRAD’S MINIMAL FIR FILTERING

The original Winograd’s algorithm is applied to the
computation of finite impulse response (FIR) filters. Di-
rect application of 2 consecutive steps of a 3-tap FIR fil-
ter with coefficients gi to a set of 4 elements di requires
6 additions and 6 multiplications:

F0 = g0d0 + g1d1 + g2d2, (1)

F1 = g0d1 + g1d2 + g2d3. (2)

The idea of Winograd’s method is to compute these two
filter outputs as

m1 = (d0 − d2)g0, (3)

m2 = (d1 + d2)
g0 + g1 + g2

2
, (4)

m3 = (d1 − d3)g2, (5)

m4 = (d2 − d1)
g0 − g1 + g2

2
, (6)

F0 = m1 +m2 +m3, (7)

F1 = m2 +m3 −m4. (8)

c© Colfax International, 2016 — http://colfaxresearch.com/ 2

http://colfaxresearch.com/

4 TRANSFORMATION TO GEMM

If we precompute the expressions (g0 + g1 + g2)/2 and
(g0 − g1 + g2)/2, then this procedure requires 8 addi-
tions and 4 multiplications, which is equal to number of
floating point operations in the direct method. However,
if our goal is to apply multiple filters gi to the same data
di, then we can also precompute (d0 − d2), (d1 + d2),
(d1 − d3) and (d2 − d1). With this done, calculations
(3) - (8) would only require 4 additions and 4 multipli-
cations, yielding a speedup of (6 + 6)/(4 + 4) = 1.5.

3. APPLICATION TO CONVNETS

In the context of ConvNets, the operation of con-
volution applies a total of F filters of size R × S to a
batch of N images of size H ×W with C channels in
each. We enumerate filters with f , and channels with c.
Each image we split into T = (H − 2) × (W − 2)/4
tiles and enumerate these tiles within the image with t,
which ranges from 0 to T . The images within a batch
are enumerated with n, which ranges from 0 to N .

Direct convolution of a 3× 3 filter gf,c with a 4× 4
image dc,t to generate a 2×2 output tile Yn,t,f,c requires
3 × 3 × 2 × 2 = 36 multiplications and 36 additions.
As shown in [7], Winograd’s fast FIR filter computation
can be generalized to 2D filters, which are mathemati-
cally similar to convolution. The fast method can be
expressed as shown below:

Yn,t,f,c = AT
[(
BTdn,t,cB

)
�
(
GT gc,fG

)]
A, (9)

where dn,t,c is a 4 × 4 matrix representing the image
tile, gc,f is a 3× 3 matrix representing channel c of fil-
ter f , Yn,t,f,c is a 2 × 2 matrix with the output of the
convolution of dn,t,c with gc,f ,

BT =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , (10)

G =

1 0 0
1/2 1/2 1/2
1/2 −1/2 1/2
0 0 1

 , (11)

AT =

[
1 1 1 0
0 1 −1 −1

]
. (12)

In Equation (9) � indicates element-wise multiplica-
tion. Assuming that we have many image tiles and
multiple filters, we can precompute transformed im-
age tiles Un,t,c ≡

(
BTdn,t,cB

)
and transformed filters

Vc,f ≡
(
GT gc,fG

)
. With that done, the algorithm re-

quires 4 × 4 = 16 multiplications between the trans-
formed input and filters. For inverse transformations, 24
additions are required. This is already (36+ 36)/(16+
24) = 1.8 times fewer operations than in the di-
rect method. In addition to this, for the purposes of
ConvNets, convolution must be applied to C image
channels, and results for individual channels must be
summed:

Yt,f ≡
∑
c

Yn,t,f,c =
∑
c

AT [Un,t,c � Vc,f]A. (13)

This allows one to perform the summation over chan-
nels first (16 additions per tile per channel) and apply
inverse transformation after the summation,

Yn,t,f = AT

[∑
c

Un,t,c � Vc,f

]
A, (14)

thereby making its contribution to the operation count
negligible. This results in net savings in the number of
operations by a factor of (36 + 36 + 4)/(16 + 16) =
2.3751.

The expectation of speedup in the fast algorithm due
to reduced number of operations hinges on the assump-
tion that the precomputation of the forward and back-
ward transformation of data takes little time. In reality,
our experiments revealed that the straightforward im-
plementation of the above algorithm does not provide
high performance, and platform-specific optimization is
required.

4. TRANSFORMATION TO GEMM

In the above reasoning, we were making a silent as-
sumption that the arithmetic throughput is the limiting
factor of performance, i.e., memory traffic is completely
overlapped with computation. This assumption holds
true only if the order of tile convolutions is tuned to ef-
fectively re-use data in the processor’s caches. To avoid
this complexity, as shown [7], we we can express the
arithmetic operations in Equation (14) as matrix mul-
tiplication, which allows us to delegate the complexity

1We factored in the need to do 4 additions per channel in the direct method

c© Colfax International, 2016 — http://colfaxresearch.com/ 3

http://colfaxresearch.com/

5 IMPLEMENTATION IN CODE

of overlapping memory traffic and computation to the
GEMM function of a BLAS library.

Expressing the calculations through GEMM is pos-
sible because a transformed input tile Un,t,c can be
reused to multiply with multiple corresponding filter
tiles, and, similarly, a transformed filter tile Vc,f can be
reused to multiply with corresponding input tiles across
all the batches. In addition, the input and filter tiles that
are multiplied across C channels are accumulated into
one output tile. Denoting the elements of the 4× 4 ma-
trix Un,t,c as Ux,y

n,t,c, and denoting elements of Vc,f as
V x,y
c,f , we can define a 4× 4 matrix Pn,t,f with elements

P x,y
n,t,f =

∑
c

Ux,y
n,t,cV

x,y
c,f . (15)

For each pair (x, y), Equation (15) expresses the multi-
plication of matrixUx,y by matrix V x,y. The final result
of convolution can then be written as

Yn,t,f = ATPn,t,fA. (16)

To further improve performance, we collapse mul-
tiple matrices Ux,y, which results in the first matrix in
GEMM having greater number of rows.

5. IMPLEMENTATION IN CODE

To compute convolution with the fast algorithm we
follow approach similar to that shown in [7]. There are
three stages in this algorithm.

1. Input transformation: scattering on the image and
filter data sets to form the input matrices.

2. Computation of product between transformed
data and filter, and summation over channels ex-
pressed as GEMM, and

3. Output transformation: gathering the elements
from the product matrices and their transforma-
tion to form the actual output of the convolution

Data transformation and the procedure for expressing
the computation with GEMM are explained thoroughly
in [7]. We have modified the data layout and way the
input matrices for GEMM are formed and the pseudo
codes in Algorithm 1 below illustrate the procedure.

Algorithm 1 Fast convolution of the form F(2x2,3x3)
1: N ← batch size
2: C ← image channels
3: F ← filters
4: T ← (H − 2)(W − 2)/4, tiles per input channel
5: dn,t,c ∈ IR4×4 is tile t in input channel c of batch n
6: gc,f ∈ IR3×3 is filter channel c of filter f
7: Yn,t,f ∈ IR2×2 is tile t in output channel f of batch n
8: BT , G and AT are input, filter and output transforms
9: Neighboring tiles overlap by 2 pixels

10: procedure INPUT TRANSFORM

11: for n← 0, N do
12: for c← 0, C do
13: for t← 0, T do
14: u← BTdn,t,cB ∈ IR4×4

15: Scatter Ux,y
n,t,c ← ux,y

16: end procedure

17: procedure FILTER TRANSFORM

18: for c← 0, C do
19: for f ← 0, F do
20: v ← GT gc,fG ∈ IR4×4

21: Scatter V x,y
c,f ← vx,y

22: end procedure

23: procedure GEMM
24: for x← 0, 4 do
25: for y ← 0, 4 do
26: for n← 0, N do
27: P x,y

n,t,f ← Ux,y
n,t,cV

x,y
c,f

28: end procedure

29: procedure OUTPUT TRANSFORM

30: for n← 0, N do
31: for f ← 0, F do
32: for t← 0, T do
33: Gather px,y ← P x,y

n,t,f ∈ IR4×4

34: Yn,t,f ← AT px,yA

35: end procedure

The input data format is flexible and can be tuned
with the help of merge factorM to achieve high GEMM
performance. Here, M = 1 results in NCHW format,

c© Colfax International, 2016 — http://colfaxresearch.com/ 4

http://colfaxresearch.com/

7 PERFORMANCE

M = N results in CNHW format, and (1 < M < N)
shuffles N and C, keeping HW as fixed inner dimen-
sions.

6. THE FALCON LIBRARY

Our implementation of image convolution with a
3× 3 filter, codenamed FALCON (FAst paralleL CON-
volution) is available under the MIT license on GitHub2

The code contains initialization and cleanup routines
and a single interface function for performing a con-
volution. The syntax of the routines is described in the
header file included in the GitHub repository.

The code of the initial implementation is optimized
to perform with high efficiency on Intel Xeon Phi x200
product family (formerly Knights Landing). Optimiza-
tion measures that ensure high efficiency in the trans-
formation step include:

1. Organizing the data structures in a way that, al-
lows unit-stride access to input data and constant-
stride access to output data;

2. Tiling the loops to maximize register data re-use
in cores;

3. Unrolling inner loops to maximize the utilization
of the register file and eliminate the dependence
on the compiler estimate of the unroll factor;

4. Automatically vectorizing inner loops with com-
piler hints;

5. Tuning the count and affinity of OpenMP threads
for maximum memory bandwidth;

6. Placing scratch data in the high-bandwidth on-
package memory of the Intel Xeon Phi processor;

7. Tuning the inner dimension of data structures to
be a multiple of 64 bytes (for aligned vector loads
and stores), but not a multiple of 4096 bytes (to
avoid cache associativity conflicts);

8. Pre-allocating and re-using scratch data struc-
tures to avoid dynamic memory allocation in
computation.

The code of the matrix multiplication step is opti-
mized by:

1. Using the BLAS implementation of single pre-
cision matrix-matrix multiplication (SGEMM),
which in our tests was linked to the Intel Math
Kernel library (MKL);

2. Falling back to custom C language code instead
of BLAS for tall and narrow (in column-major
format) matrices, which are not handled effi-
ciently by MKL;

3. Fusing multiplication of multiple matrices with
low row counts into a single larger GEMM;

4. Using nested parallelism to process multiple
matrix multiplications in parallel, with several
threads working on each multiplication;

5. Tuning thread affinity and using the “hot teams”
functionality in Intel OpenMP to persist the affin-
ity within inner thread teams across parallel re-
gions.

We ensured the functionality of the code and tuned
performance only for the hardware and software config-
uration described in the next section. Special attention
was paid to optimize the performance of the code for
convolution sizes used in VGG Net [8].

7. PERFORMANCE

Results reported here are obtained on a 68-core Intel
Xeon Phi processor 7250 with 96 GiB of DDR4 RAM
and 16 GiB of MCDRAM in flat mode. The system
is running CentOS 7.2 with stock kernel. The code
was compiled with Intel C compiler 17.0.0.098 (Build
20160721) and linked with Intel MKL 2017 (build date
20160802).

To benchmark the convolution routine, we opted to
construct a benchmark based on a practical application:
the forward pass of VGG Net. For that purpose, we
built a driver application that performs and times con-
volutions for input sizes corresponding to the 13 lay-
ers of the VGG Net configuration D [8]. We compare
performance of FALCON with that of the convolution

2github.com/ColfaxResearch/FALCON

c© Colfax International, 2016 — http://colfaxresearch.com/ 5

http://github.com/ColfaxResearch/FALCON/
http://colfaxresearch.com/

7 PERFORMANCE

operation of the DNN primitives module of Intel MKL.
We tested the performance with a batch size ofN = 64.

Our results are detailed in Table 1 and graphi-
cally presented in Figure 1. The x-axis in the plot
is the time elapsed from the beginning of the calcu-
lation for a batch of N input images. The y-axis is
the effective performance of each layer in Intel MKL
(blue rectanges with dashed outline) and FALCON (yel-
low rectangles with solid outline). Rectangles corre-
sponding to different layers are labeled in their corners
with numbers from 1 to 13. Effective performance is
measured in TFLOP/s. It is computed as the ratio of
the number of operations in direct convolution, esti-
mated as 2× (H − 2)(W − 2)RSNCF , to the mea-
sured wall clock time, τtot. Labels indicate the total
time of processing of all layers (0.42 s for FALCON,
0.47 s for MKL) and the corresponding effective per-
formance (4.7 TFLOP/s for FALCON and 4.2 TFLOP/s
for MKL).

Details of Figure 1 show that the direct method used
in Intel MKL performs better than FALCON for the
first 3 layers. Indeed, the tall and skinny matrix used

in these first three layers results in poor performance
of GEMM in FALCON. However, starting from layer
4, the method based on Winograd’s algorithm used
in FALCON is faster, and this performance advantage
compensates for the time lost in the first three layers.

Convolution DNN in MKL FALCON
W C F Cost,

GFLOP
τtot,
ms

Peff ,
TFLOP/s

τtot,
ms

Peff ,
TFLOP/s

1 226 3 64 11.1 8.6 1.30 32.8 0.34
2 226 64 64 236.8 58.2 4.07 84.4 2.80
3 114 64 128 118.4 29.2 4.06 31.9 3.71
4 114 128 128 236.8 56.1 4.22 52.6 4.50
5 58 128 256 118.4 28.1 4.21 22.3 5.30
6 58 256 256 236.8 57.0 4.16 39.6 5.98
7 58 256 256 236.8 57.3 4.14 39.6 5.98
8 30 256 512 118.4 27.5 4.30 17.8 6.65
9 30 512 512 236.8 54.0 4.39 32.9 7.21
10 30 512 512 236.8 52.8 4.48 32.7 7.24
11 16 512 512 59.2 14.1 4.21 9.4 6.32
12 16 512 512 59.2 14.2 4.18 9.4 6.33
13 16 512 512 59.2 14.4 4.12 9.3 6.34
Net 1964 471 4.17 415 4.74

Table 1: Convolution performance in MKL and FALCON.

���

���

���

���

���

����

���� ���� ���� ���� ���� ����

�������
������

���������
���������

���������
���������

�
��
��
��
��

�
�
��
��
��
��
��
���
�
�
�
�
��

���������������

�

�

�

�

�

� �

�

� ��

�� �� ��

�

� �
� � � �

� � ��
�� �� ��

���
������

Figure 1: Convolution of VGG Net layers in FALCON and Intel MKL on Intel Xeon Phi 7250 processor (flat MCDRAM, quadrant mode).

c© Colfax International, 2016 — http://colfaxresearch.com/ 6

http://colfaxresearch.com/

7 PERFORMANCE

Fast Convolution FALCON in MCDRAM FALCON in DDR4
Layer m n k M τin,

ms
Pin,
GB/s

τout,
ms

Pout,
GB/s

τMM,
ms

PMM,
TFLOP/s

τin,
ms

Pin,
GB/s

τout,
ms

Pout,
GB/s

τMM,
ms

PMM,
TFLOP/s

1 12544 64 3 1 1.3 149 14.1 292 17.4 0.28 4.1 47 60.2 68 85.4 0.06
2 12544 64 64 1 25.2 164 13.8 298 45.5 2.31 89.9 46 59.8 69 124.3 0.85
3 12544 128 64 4 6.3 166 6.9 296 18.7 2.81 22.4 46 30.3 68 51.4 1.02
4 12544 128 128 4 12.4 167 6.9 299 33.3 3.16 45.1 46 30.3 68 66.3 1.59
5 6272 256 128 8 3.2 163 3.5 290 15.6 3.38 11.4 46 15.0 69 27.3 1.93
6 6272 256 256 8 6.4 164 3.6 287 29.6 3.55 22.7 46 14.9 69 35.1 3.00
7 6272 256 256 8 6.3 166 3.5 290 29.7 3.54 22.8 46 14.9 69 35.1 3.00
8 3136 512 256 16 1.8 153 1.8 292 14.2 3.70 5.9 47 9.2 56 15.3 3.43
9 3136 512 512 16 3.7 149 1.7 296 27.4 3.84 11.8 47 7.5 69 29.9 3.52
10 3136 512 512 16 3.5 157 1.7 294 27.4 3.83 11.9 47 7.5 68 30.0 3.51
11 784 512 512 16 1.2 133 0.5 262 7.6 3.44 3.3 49 1.9 68 9.0 2.93
12 784 512 512 16 1.2 134 0.5 258 7.6 3.44 3.3 49 1.9 68 9.0 2.93
13 784 512 512 16 1.2 133 0.5 258 7.6 3.46 3.3 50 1.9 68 9.0 2.93

Table 2: Effective bandwidth of input and output data transformation and performance of matrix multiplication.

Based on the timing of MKL and FALCON perfor-
mance, we argue that for specific DNN architectures, it
may be possible to construct a hybrid convolution rou-
tine, in which for each layer either direct, or fast convo-
lution is used, whichever is faster. In our example, using
the direct method for the first 3 layers can save around
0.05 seconds, promising a total speedup over the direct
method of 0.47/(0.42− 0.05) ≈ 1.3.

Table 2 presents additional timing details. For each
layer we report the time and effective bandwidth of in-
put transformation τin and output transformation τout.
We also indicate the size {m,n, k} and the performance
of the GEMM used for filter application. Two sets
of results are reported: with FALCON and the bench-
mark pinned to the high-bandwidth on-package mem-
ory (MCDRAM) and the on-platform memory (DDR4).

For high-bandwidth memory benchmarks, because
our data structures were less than 16 GiB in size, we
could fit them in the available MCDRAM. The proces-
sor was in flat memory mode, and so we ran the entire
application in MCDRAM by setting the default NUMA
policy with the numactl tool [9]. We also tested
performance with the processor in the cache memory
mode, and observed similar results. However, running
the calculation in the on-platform memory (DDR4), we
observed performance degradation by a factor of 2.5.

With MCDRAM, the input transformation achieves
between 130 and 160 GB/s of memory access band-
width. This is only around 30% of the bidirectional
MCDRAM bandwidth. This is related to asymmetric

traffic (more writes than reads), scattered memory pat-
tern, and the presence of computation mixed in with
data access. The output transformation achieves a better
performance between 260 and 300 GB/s. In our experi-
ments, the data layout that we ended up using optimizes
the memory bandwidth as well as the overall timing.

The information about GEMM performance shows
that with MCDRAM, it achieves between 3.2 and 3.8
TFLOP/s for layers 4-13, which is a large fraction of
SGEMM performance in the ideal case of large square
matrices (we measured 4.5 TFLOP/s). However, for
layers 2 and 3, GEMM achieves only 2.3-2.8 TFLOP/s
due to the small size of the inner matrix dimension, k.
For layer 1, k = 3, and this computation is memory-
bound. This is the case where we used custom C code
instead of the BLAS call because in this case MKL de-
livered significantly worse GEMM performance.

Future optimization should focus the input transfor-
mation, as it operates at a low efficiency compared to
its theoretical peak value. At the same time, the out-
put transformation and GEMM are performing well.
Poor performance in the first 3 layers may be ignored
as MKL can be used in place of FALCON in this case.

Timing information in Table 2 shows that the
memory-bound data transformation takes around 30%
of execution time with the compute-bound GEMM tak-
ing the rest. We speculate that additional performance
improvement may be obtained by splitting the batch of
images into several sub-batches and overlapping in time
the data transformation and GEMM computation.

c© Colfax International, 2016 — http://colfaxresearch.com/ 7

http://colfaxresearch.com/

8 CONCLUSION

8. CONCLUSION

We presented the FALCON library, which imple-
ments fast convolution based on Winograd’s algorithm
with performance optimization for Intel Xeon Phi pro-
cessors x200 (formerly Knights Landing).

8.1. PERFORMANCE OPTIMIZATION

Even though Winograd’s minimal filtering algo-
rithm reduces the number of floating-point operations
necessary to compute convolution, it is not trivial to
take advantage of these savings. Complex memory ac-
cess pattern in input and output data transformations
prompted us to carefully control data containers and
memory access patterns in FALCON. Performing ma-
trix multiplication also required thorough tuning by fus-
ing smaller matrices into bigger ones, adjusting the
strategy of multi-threading, and injecting custom code
in place of BLAS routines in special cases.

8.2. HIGH-LEVEL LANGUAGE

Despite the complexity of code optimization, the
FALCON code does not use any assembly or intrin-
sic functions for explicit access to platform-specific in-
structions. Instead, it relies on automatic vectoriza-
tion in the compiler, on standard functionality of the
OpenMP framework, and on traditional BLAS routines.
This simplifies future code maintenance and adapta-
tion of the application to the upcoming computing plat-
forms. Additionally, our case study proves by example
the possibility of using high-level languages and frame-
works in computational applications for Intel Xeon Phi
processors.

8.3. SPEEDUP OVER DIRECT METHOD

In the context of machine learning, we achieved
convolution performance greater than that of the direct
method implemented in the industry-leading mathemat-
ical library for Intel Xeon Phi processors. The per-
formance advantage of approximately 10% was mea-
sured for a workload simulating VGG Net forward pass.
Based on our argument for hybrid approach combining
direct and fast algorithms (see Section 7), the speedup

for this ConvNet may be improved to 30%. In some
layers of VGG Net, FALCON is faster than MKL by
as much as 50%, so the application of Winograd’s al-
gorithm to convolution in other DNN architectures may
yield even more significant speedups.

8.4. IMPORTANCE OF HIGH-BANDWIDTH MEMORY

According to our comparison testing, high-
bandwidth memory is the key element of the Intel
Xeon Phi processor architecture that makes fast con-
volution perform better than the direct method. This
is not an obvious result because ML tasks are gener-
ally considered compute-bound. However, as long as
upcoming models of Intel Xeon Phi products retain the
MCDRAM, they can benefit from fast convolution. In
particular, performance advantage of fast convolution
may develop strongly in the upcoming Knights Mill ar-
chitecture specifically tuned for deep learning applica-
tions [10]. In addition, the upcoming coprocessor form-
factor of Intel Xeon Phi coprocessors is a suitable plat-
form for ConvNets with fast convolution. Indeed, the
data structures used for our VGG Net benchmark are
under 16 GiB in size. This is suitable for offloading cal-
culations to coprocessors, assuming that they are man-
ufactured with at least the same amount of MCDRAM
as their bootable counterparts.

8.5. APPLICATION TO MACHINE LEARNING

To our knowledge, the FALCON library is the first
open-source implementation of fast convolution for In-
tel Xeon Phi processors. We publish it under a permis-
sive MIT license3 in hopes that the high-performance
computing community can contribute to the improve-
ment of the code and to its adoption in production ma-
chine learning libraries.

Modern machine learning frameworks are layered,
exposing a DNN interface to the computer scientist,
but delegating convolution to an intermediate layer, and
relying on GEMM in the underlying BLAS library.
Therefore, regardless of the complexity of the fast or
hybrid convolution, as long as it is implemented in the
intermediate layer, ML application developers are going
to experience performance improvement all the while
retaining their code and computing solutions.

3github.com/ColfaxResearch/FALCON

c© Colfax International, 2016 — http://colfaxresearch.com/ 8

http://github.com/ColfaxResearch/FALCON/
http://colfaxresearch.com/

REFERENCES REFERENCES

ACKNOWLEDGEMENTS

We thank Alexander Heinecke (Intel) for his review
that led to a bug fix in reported performance values.

REFERENCES

[1] Nicole Hemsoth. The next wave of deep learning applications.
http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/.

[2] Wikipedia. Convolutional neural network.
https://en.wikipedia.org/wiki/Convolutional neural network.

[3] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural networks for document processing. Tenth
International Workshop on Frontiers in Handwriting Recognition, 2016.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.137.482.

[4] Intel Math Kernel Library.
https://software.intel.com/intel-mkl.

[5] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. 1997.
http://www.dspguide.com/ch24/2.htm.

[6] Shmuel Winograd. Arithmetic complexity of computations.
http://dx.doi.org/10.1137/1.9781611970364.

[7] Andrew Lavin and Scott Gray. Fast Algorithms for Convolutional Neural Networks, 2015.
https://arxiv.org/abs/1509.09308.

[8] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014.
https://arxiv.org/abs/1409.1556.

[9] Colfax Research. Hands-On Workshop “Performance Optimization for Intel Xeon Phi x200 Product Family” (HOW Series), 2016.
http://colfaxresearch.com/how-knl/.

[10] top500. Intel Unveils Plans for Knights Mill, a Xeon Phi for Deep Learning, 2016.
https://www.top500.org/news/intel-unveils-plans-for-deep-learning-processor-in-xeon-phi-lineup/.

c© Colfax International, 2016 — http://colfaxresearch.com/ 9

http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/
https://en.wikipedia.org/wiki/Convolutional_neural_network
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.137.482
https://software.intel.com/intel-mkl
http://www.dspguide.com/ch24/2.htm
http://dx.doi.org/10.1137/1.9781611970364
https://arxiv.org/abs/1509.09308
https://arxiv.org/abs/1409.1556
http://colfaxresearch.com/how-knl/
https://www.top500.org/news/intel-unveils-plans-for-deep-learning-processor-in-xeon-phi-lineup/
http://colfaxresearch.com/

	Convolution in Machine Learning
	Winograd's Minimal FIR Filtering
	Application to ConvNets
	Transformation to GEMM
	Implementation in Code
	The FALCON Library
	Performance
	Conclusion
	Performance Optimization
	High-Level Language
	Speedup over Direct Method
	Importance of High-Bandwidth Memory
	Application to Machine Learning

