
Primer on Computing with
Intel Xeon Phi Coprocessors

Part 1 of 2: Introduction and Programming Models

Vadim Karpusenko and Andrey Vladimirov
Colfax International

Intel HPC Developer Conference at SC14 in New Orleans, LA — November 16, 2014
Compututing with Xeon Phi Welcome © Colfax International, 2014

Contents

§1 MIC Architecture, Programmer’s Perspective
§2 Programming Models

Ï Native Programming
Ï Offload Programming

§3 Heterogeneous Computing with the MIC
Architecture

Ï Inter-Operation of Offload, MPI and OpenMP
Ï File I/O in MPI Applications on Coprocessors

§4 Future-Proofing and Knights Landing

§5 Resources

Compututing with Xeon Phi Welcome © Colfax International, 2014

§1. MIC Architecture from Developer’s
Perspective

Compututing with Xeon Phi MIC Architecture from Developer’s Perspective © Colfax International, 2014

Intel Xeon Phi Coprocessors and the MIC Architecture

PCIe end-point device

High Power efficiency

∼ 1 TFLOP/s in DP

Heterogeneous clustering

For highly parallel applications which reach the scaling limits
on Intel Xeon processors

Compututing with Xeon Phi MIC Architecture from Developer’s Perspective © Colfax International, 2014

Xeon and Xeon Phi Family Product Performance

Many-core Coprocessors
(Xeon Phi) vs Multi-core
Processors (Xeon) —

Better performance per
system & performance
per watt for parallel
applications

Same programming
methods, same
development tools.

Source: “Intel Xeon Product Family:
Performance Brief”

Compututing with Xeon Phi MIC Architecture from Developer’s Perspective © Colfax International, 2014

https://www-ssl.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-brief.html
https://www-ssl.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-brief.html

Intel Xeon Phi Coprocessors and the MIC Architecture

C/C++/Fortran; OpenMP/MPI

Standard Linux OS

Up to 768 GB of DDR3 RAM

≤12 cores/socket ≈3 GHz

2-way hyper-threading

256-bit AVX vectors

C/C++/Fortran; OpenMP/MPI

Special Linux µOS distribution

6–16 GB cached GDDR5 RAM

57 to 61 cores at ≈1 GHz

4 hardware threads per core

512-bit IMCI vectors
Compututing with Xeon Phi MIC Architecture from Developer’s Perspective © Colfax International, 2014

Linux µOS on Intel Xeon Phi coprocessors (part of MPSS)
user@host% lspci | grep -i "co-processor"
06:00.0 Co-processor: Intel Corporation Xeon Phi coprocessor 3120 series (rev 20)
82:00.0 Co-processor: Intel Corporation Xeon Phi coprocessor 3120 series (rev 20)
user@host% sudo service mpss status
mpss is running
user@host% cat /etc/hosts | grep mic
172.31.1.1 host-mic0 mic0
172.31.2.1 host-mic1 mic1
user@host% ssh mic0
user@mic0% cat /proc/cpuinfo | grep proc | tail -n 3
processor : 237
processor : 238
processor : 239
user@mic0% ls /
amplxe dev home lib64 oldroot proc sbin sys usr
bin etc lib linuxrc opt root sep3.10 tmp var

Compututing with Xeon Phi MIC Architecture from Developer’s Perspective © Colfax International, 2014

Details of the MIC Architecture

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

Die Organization Diagram

CORE

L2

GBOX
(memory

controller)

GBOX
(memory

controller)

SBOX
PCIe v2.0
controller,

DMA engines
ADDRESS

DATA

COHERENCE

Core Ring
Interconnect (CRI)

GDDR5

GDDR5

GDDR5

GDDR5

TD TD TD TD

TD

TD

TD TD TD TD

TD

TD

GDDR5

GDDR5

GDDR5

GDDR5

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

COREL2

COREL2CORE L2

CORE L2 Distributed tag
directory (DTD)

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

Core Topology

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

SIMD Operations

SIMD — Single Instruction Multiple Data

Scalar Loop SIMD Loop

1 for (i = 0; i < n; i++)
2 A[i] = A[i] + B[i];

1 for (i = 0; i < n; i += 16)
2 A[i:(i+16)] = A[i:(i+16)] + B[i:(i+16)];

Each SIMD addition operator acts on 16 numbers at a time.

Instruction Pool

D
at

a
Po

ol

PU

PU

PU

PU

SIMD

Ve
ct

or
 U

ni
t

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

Instruction Sets in Intel Architectures

Instruction
Set

Year and Intel Processor Vector
registers

Packed Data Types

MMX 1997, Pentium 64-bit 8-, 16- and 32-bit integers
SSE 1999, Pentium III 128-bit 32-bit single precision FP
SSE2 2001, Pentium 4 128-bit 8 to 64-bit integers; SP & DP FP
SSE3–SSE4.2 2004 – 2009 128-bit (additional instructions)
AVX 2011, Sandy Bridge 256-bit single and double precision FP
AVX2 2013, Haswell 256-bit integers, additional instructions
IMCI 2012, Knights Corner 512-bit 32- and 64-bit integers;

Intel Xeon Phi coproc. single & double precision FP
AVX-512 (future) Knights Landing 512-bit 32- and 64-bit integers;

single & double precision FP

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

Three Layers of Parallelism

Instruction Pool

D
a
ta

 P
o
o
l

PU

PU

PU

PU

SIMD

V
e
ct

o
r

U
n
it

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

Three Layers of Parallelism

Instruction Pool

D
a
ta

 P
o
o
l

PU

PU

PU

PU

SIMD

V
e
ct

o
r

U
n
it

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

Three Layers of Parallelism

Instruction Pool

D
a
ta

 P
o
o
l

PU

PU

PU

PU

SIMD

V
e
ct

o
r

U
n
it

Compute Node 1

MPI

Host CPUs Xeon Phi coprocessor Xeon Phi coprocessor

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

Examples of Solutions with the Intel MIC Architecture

Colfax’s CXP7450 workstation with
two Intel Xeon Phi coprocessors

Colfax’s CXP9000 server with eight
Intel Xeon Phi coprocessors

xeonphi.com

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

http://www.colfax-intl.com/nd/workstations/sxp7450.aspx
http://www.colfax-intl.com/xeonphi/cxp9000.html
xeonphi.com

Data and Task Parallelism (Vectors and Cores)

 Scalar,
One Core

 Vectorized,
One Core

 Scalar,
All Cores

 Vectorized,
All Cores

0

200

400

600

800

1000
 D

ou
bl

e
Pr

ec
is

io
n

G
FL

O
P/

s

5.0 20.0
100.0

400.0

2.1 16.9
126.0

1010.9
 Theoretical Peak Arithmetic Performance

 Intel Xeon E5-2670 v2 dual-socket CPU
 Intel Xeon Phi 5110P coprocessor

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

Memory Access Pattern

 STREAM
TRIAD

 TRIAD on
Random 4 kB Blocks

 TRIAD on
Random 1 kB Blocks

0

20

40

60

80

100

120

140

160

180
 B

an
dw

id
th

, G
B

/s

58.5

28.5
17.6

159.0

23.3
5.7

 Measured Memory Performance

 Intel Xeon E5-2630 v2 dual-socket CPU
 Intel Xeon Phi 7120P coprocessor

Compututing with Xeon Phi Details of the MIC Architecture © Colfax International, 2014

§2. Programming Models and Application
Porting

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Offload and Native modes
Explicit offload mode:

Native mode:

Compututing with Xeon Phi Programming Models and Application Porting © Colfax International, 2014

Native Programming

Compututing with Xeon Phi Native Programming © Colfax International, 2014

Native Execution

“Hello World” application:
1 #include <stdio.h>
2 #include <unistd.h>
3 int main(){
4 printf("Hello world! I have %ld logical cores.\n",
5 sysconf(_SC_NPROCESSORS_ONLN));
6 }

Compile and run on host:
user@host% icc hello.c
user@host% ./a.out
Hello world! I have 32 logical cores.
user@host%

Compututing with Xeon Phi Native Programming © Colfax International, 2014

Native Execution
Compile and run the same code on the coprocessor in the native mode:

user@host% icc hello.c -mmic
user@host% scp a.out mic0:~/
a.out 100% 10KB 10.4KB/s 00:00
user@host% ssh mic0
user@mic0% pwd
/home/user
user@mic0% ls
a.out
user@mic0% ./a.out
Hello world! I have 240 logical cores.
user@mic0%

Use -mmic to produce executable for MIC architecture

Must transfer executable to coprocessor (or NFS-share) and run from shell

Native MPI applications work the same way (need Intel MPI library)

Compututing with Xeon Phi Native Programming © Colfax International, 2014

Porting User Applications for Native Execution

Simple CPU applications can be compiled for native execution on Xeon
Phi coprocessors by supplying the flag “-mmic” to the Intel compiler:

user@host% icpc -c myobject1.cc -mmic
user@host% icpc -c myobject2.cc -mmic
user@host% icpc -o myapplication myobject1.o myobject2.o -mmic

Same for coprocessor-only MPI applications:

user@host% mpiicpc -c myobject1.cc -mmic
user@host% mpiicpc -c myobject2.cc -mmic
user@host% mpiicpc -o myapplication myobject1.o myobject2.o -mmic

Compututing with Xeon Phi Native Programming © Colfax International, 2014

Native Applications with Autotools

Use the Intel compiler with flag -mmic
Eliminate assembly and unncecessary dependencies

Use --host=x86_64 to avoid “program does not run” errors

Example, the GNU Multiple Precision Arithmetic Library (GMP):

user@host% wget https://ftp.gnu.org/gnu/gmp/gmp-5.1.3.tar.bz2
user@host% tar -xf gmp-5.1.3.tar.bz2
user@host% cd gmp-5.1.3
user@host% ./configure CC=icc CFLAGS="-mmic" --disable-assembly --host=x86_64
...
user@host% make
...

Compututing with Xeon Phi Native Programming © Colfax International, 2014

Running Native MPI Applications on Coprocessors

user@host% export I_MPI_MIC=1
user@host% mpiicpc -mmic -o HelloMPI.MIC HelloMPI.c
user@host% scp HelloMPI.MIC mic0:~/
user@host% mpirun -host mic0 -np 2 ~/HelloMPI.MIC
Hello World from rank 1 running on host-mic0!
Hello World from rank 0 running on host-mic0!
MPI World size = 2 processes

Enable the MIC architecture in Intel MPI: I_MPI_MIC=1
Copy or NFS-share MPI library & executables with coprocessor

Use mpiicpc with -mmic to compile

Launch as if mic0 is a remote host

Compututing with Xeon Phi Native Programming © Colfax International, 2014

Native Heterogeneous Clustering in Action

More information in paper at xeonphi.com/papers/heterogeneous
Compututing with Xeon Phi Native Programming © Colfax International, 2014

http://youtu.be/GffmChTcWf8
xeonphi.com/papers/heterogeneous

Offload Programming

Compututing with Xeon Phi Offload Programming © Colfax International, 2014

Explicit Offload Programming Model
“Hello World” in the explicit offload model:

1 #include <stdio.h>
2

3 int main(int argc, char * argv[]) {
4

5 printf("Hello World from host!\n");
6

7 #pragma offload target(mic)
8 {
9 printf("Hello World from coprocessor!\n"); fflush(0);

10 }
11

12 printf("Bye\n");
13 }

Application launches and runs on the host, but some parts of code and
data are moved (“offloaded”) the coprocessor.

Compututing with Xeon Phi Offload Programming © Colfax International, 2014

Compiling and Running an Offload Application

user@host% icpc hello_offload.cpp -o hello_offload
user@host% ./hello_offload
Hello World from host!
Bye
Hello World from coprocessor!

Code inside of #pragma offload is offloaded automatically

Console output on Intel Xeon Phi coprocessor is buffered and
mirrored to the host console

If coprocessor is not installed, code inside #pragma offload may
fall back to the host system

Compututing with Xeon Phi Offload Programming © Colfax International, 2014

Offloading Functions and Data
1 int* __attribute__((target(mic))) data;
2

3 __attribute__((target(mic))) void MyFunction(int* foo) {
4 // ... implement function as usual
5 }
6

7 int main(int argc, char * argv[]) {
8 // ...
9 #pragma offload target(mic) inout(data : length(N))

10 {
11 MyFunction(data);
12 }
13 }

Functions and data used on coprocessor must be marked with the
specifier __attribute__((target(mic)))

Compututing with Xeon Phi Offload Programming © Colfax International, 2014

Data Marshalling for Dynamically Allocated Data
1 double *p1=(double*)malloc(sizeof(double)*N);
2 // ...
3

4 #pragma offload target(mic) \
5 in (p1 : length(N) alloc_if(1) free_if(0)) \
6 out (p2 : length(N) align(4096)) \
7 inout(p3[0:N/2] : into(p4[N/2:N/2]))
8 {
9 // ...

10 }

#pragma offload recognizes clauses in, out, inout and nocopy
Data size (length), alignment, redirection, retention, and other
properties may be specified

Marshalling is required for pointer-based data
Compututing with Xeon Phi Offload Programming © Colfax International, 2014

Multiple Coprocessors and Fallback to Host

1 const int nDevices = _Offload_number_of_devices();
2 #pragma omp parallel num_threads(nDevices) if(nDevices>0)
3 {
4 const int iDevice = omp_get_thread_num();
5 #pragma offload target(mic: iDevice) if(nDevices>0)
6 {
7 MyFunction(/*...*/);
8 }
9 }

Up to 8 coprocessors, up to 32 host threads

All offloads start simultaneously and block the respective thread

Compututing with Xeon Phi Offload Programming © Colfax International, 2014

Asynchronous Offload

By default, #pragma offload blocks until offload completes

Use clause “signal” with any pointer to avoid blocking

Use #pragma offload_wait to block where needed

1 char* offload0;
2 #pragma offload target(mic:0) signal(offload0) in(data : length(N))
3 { /* ... will not block code execution because of clause "signal" */ }
4

5 DoSomethingElse();
6

7 /* Now block until offload signalled by pointer "offload0" completes */
8 #pragma offload_wait target(mic:0) wait(offload0)

Used to overlap communication with computation

Compututing with Xeon Phi Offload Programming © Colfax International, 2014

Alternative: Virtual-shared Memory Model
1 _Cilk_shared int arr[N]; // This is a virtual-shared array
2

3 _Cilk_shared void Compute() { // This function may be offloaded
4 // ... function uses array arr[]
5 }
6

7 int main() {
8 // arr[] can be initialized on the host
9 _Cilk_offload Compute(); // and used on coprocessor

10 // and the values are returned to the host
11 }

Alternative to Explicit Offload

Data synced from host to coprocessor before the start of offload

Data synced from coprocessor to host at the end of offload
Compututing with Xeon Phi Offload Programming © Colfax International, 2014

§3. Heterogeneous Computing with the
MIC Architecture

Compututing with Xeon Phi Heterogeneous Computing with the MIC Architecture © Colfax International, 2014

Inter-Operation of Offload, MPI and OpenMP

Compututing with Xeon Phi Inter-Operation of Offload, MPI and OpenMP © Colfax International, 2014

Teaming Xeon and Xeon Phi Coprocessors

Programming models allow a range of CPU+MIC coupling modes

Xeon - Multi-Core Centric MIC - Many-Core Centric

Multi-Core Hosted

General serial and
parallel computing

Offload

Code with highly-
parallel phases

Symmetric

Codes with
balanced needs

Many Core Hosted

Highly-parallel
codes

Breadth

Compututing with Xeon Phi Inter-Operation of Offload, MPI and OpenMP © Colfax International, 2014

Heterogeneous Distributed Computing with Xeon Phi

Option 1: MPI+OpenMP with
Offload.

MPI processes are
multi-threaded with
OpenMP.

MPI runs only on CPUs.

MPI processes offload to
coprocessor(s).

OpenMP in offload regions.

Compututing with Xeon Phi Inter-Operation of Offload, MPI and OpenMP © Colfax International, 2014

Heterogeneous Distributed Computing with Xeon Phi

Option 2: Symmetric pure MPI
(native mode).

MPI processes on hosts

Native MPI processes on
the coprocessor.

No OpenMP.

xeonphi.com/papers/p2p

Compututing with Xeon Phi Inter-Operation of Offload, MPI and OpenMP © Colfax International, 2014

xeonphi.com/papers/p2p

Heterogeneous Distributed Computing with Xeon Phi

Option 3: Symmetric hybrid
MPI+OpenMP.

MPI processes on hosts

Native MPI processes on
the coprocessor.

Multi-threading with
OpenMP.

xeonphi.com/papers/p2p

Compututing with Xeon Phi Inter-Operation of Offload, MPI and OpenMP © Colfax International, 2014

xeonphi.com/papers/p2p

File I/O in MPI Applications on Coprocessors

Compututing with Xeon Phi File I/O in MPI Applications on Coprocessors © Colfax International, 2014

RAM Filesystem

Files are stored in the
coprocessor RAM

Does not survive MPSS restart or
host reboot

Fastest method

Good for local pre-staged input
or runtime scratch data

Compututing with Xeon Phi File I/O in MPI Applications on Coprocessors © Colfax International, 2014

http://research.colfaxinternational.com/post/2014/07/28/io.aspx

Virtio Transfer to Local Host Drives

Files are stored on a physical or
virtual drive on the host

Written data persistent across
reboots

Fast method

Cannot share a drive between
coprocessors

Good for distributed
checkpointing

Compututing with Xeon Phi File I/O in MPI Applications on Coprocessors © Colfax International, 2014

http://research.colfaxinternational.com/post/2014/07/28/io.aspx

Network Storage

Files are stored on a remote file
server

Can share a mount point across
the cluster

Lustre has scalable performance

NFS is slow but easy to set up

More information:
xeonphi.com/papers/io

Compututing with Xeon Phi File I/O in MPI Applications on Coprocessors © Colfax International, 2014

xeonphi.com/papers/io
http://research.colfaxinternational.com/post/2014/07/28/io.aspx

§4. Future-Proofing and Knights Landing

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

Future-Proofing: Reliance on Compiler and Libraries
Ease of use

Fine control

Threading Options Vector Options

Intel® Math Kernel Library

Array Notation: Intel® Cilk™ Plus

Auto vectorization

Semi-auto vectorization:
#pragma (vector, simd)

OpenCL*

C/C++ Vector Classes
(F32vec16, F64vec8)

Intel® Math Kernel Library API*

Intel® Threading Building
Blocks

Intel® Cilk™ Plus

OpenMP*

Pthreads*

D
e

p
th

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

Next Generation MIC: Knights Landing (KNL)

2nd generation MIC product: code
name Knights Landing (KNL)

Intel’s 14 nm manufacturing process

A processor (running the OS) or a
coprocessor (PCIe device)

On-package high-bandwidth
memory w/flexible memory models:
flat, cache, & hybrid

Intel Advanced Vector Extensions
AVX-512 (public)

Source: Intel Newsroom

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

http://newsroom.intel.com/community/intel_newsroom/blog/2013/11/19/chip-shot-at-sc13-intel-reveals-more-details-of-its-next-generation-intelr-xeon-phi-tm-processor

Getting Ready for the Future

Porting HPC applications to today’s
MIC architecture makes them ready for
future architectures, such as KNL

Xeon, KNC and KNL are not binary
compatible, therefore assembly-level
tuning will not scale forward.

Reliance on compiler optimization and
using optimized libraries (such as Intel
MKL) ensures future-readiness.

Source: Intel Newsroom

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

http://newsroom.intel.com/community/intel_newsroom/blog/2013/11/19/chip-shot-at-sc13-intel-reveals-more-details-of-its-next-generation-intelr-xeon-phi-tm-processor

11

Intel® Xeon Phi™ Product Family Roadmap

22 nm process

Coprocessor

Over 1 TF DP Peak

Up to 61 Cores

Up to 16GB GDDR5

Available Today
Knights Corner
Intel® Xeon Phi™
x100 Product Family

2H’15*
Knights Landing
Intel® Xeon Phi™
x200 Product Family

Future
TBA
3rd generation

14 nm process

Server Processor &
Coprocessor

Over 3 TF DP Peak1

60+ cores

And new

details

today…

In planning

The Faster Path to Discovery

* First commercial systems
All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
1 Over 3 Teraflops of peak theoretical double-precision performance is preliminary and based on current expecations of cores, clock frequency and floating point operations per cycle. FLOPS = cores x clock frequency x floating-point operations per second per cycle.

Knights Landing

Knights Landing

with Fabric

Source: https://www.brighttalk.com/webcast/10773/116329

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

https://www.brighttalk.com/webcast/10773/116329
https://www.brighttalk.com/webcast/10773/116329

13

MKL MPI TBB

OpenMP Cilk
Plus™ OpenCL

Knights Landing Enabled
Performance Libraries & Runtimes

Intel® AVX-512

Cache Mode For
High Bandwidth Memory

Knights Landing Enabled Compilers

MOST significant code
modernizations carry

forward

KNL
Enhance-
ments

(memory,
architecture,
bandwidth,

etc.)

Recompile Tuning

ADDITIONAL
 tuning gains

Today’s Parallel Investment Carries Forward

Native
or

Symmetric
or

Offload

Knights Landing

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel® Xeon Phi™
x100 Product

Family

Parallelization, threading,
vectorization, cache-blocking,

MPI+OpenMP hybridization & more.

Exploiting NEW
features and
structures

Source: https://www.brighttalk.com/webcast/10773/116329

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

https://www.brighttalk.com/webcast/10773/116329
https://www.brighttalk.com/webcast/10773/116329

Colfax Developer Training

Colfax runs one-day and four-day
trainings for organizations and indi-
viduals on parallel programming with
Intel Xeon Phi coprocessors.

Information: xeonphi.com/training

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

http://www.colfax-intl.com/nd/xeonphi/training.aspx
xeonphi.com/training

Additional Reading

Intel® Xeon Phi™ Coprocessor High Performance Programming,
Jim Jeffers, James Reinders, (c) 2013, publisher: Morgan Kaufmann

It all comes down to
PARALLEL
PROGRAMMING !
(applicable to processors
and Intel® Xeon Phi™
coprocessors both)

Forward, Preface
Chapters:
1. Introduction
2. High Performance Closed

Track
Test Drive!

3. A Friendly Country Road Race
4. Driving Around Town:

Optimizing A Real-World
Code Example

5. Lots of Data (Vectors)
6. Lots of Tasks (not Threads)
7. Offload
8. Coprocessor Architecture
9. Coprocessor System Software
10. Linux on the Coprocessor
11. Math Library
12. MPI
13. Profiling and Timing
14. Summary
Glossary, Index

Available since February 2013.

This book belongs on the
bookshelf of every HPC

professional. Not only does it
successfully and accessibly

teach us how to use and
obtain high performance on

the Intel MIC architecture, it is
about much more than that. It
takes us back to the universal

fundamentals of high-
performance computing

including how to think and
reason about the performance

of algorithms mapped to
modern architectures, and it

puts into your hands powerful
tools that will be useful for

years to come.
—Robert J. Harrison

Institute for Advanced
Computational Science,

Stony Brook University

Learn more about this book:

lotsofcores.com

“© 2013, James Reinders & Jim Jeffers, book image used with permission

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

Additional Reading

Available November 17, 2014

www.lotsofcores.com

28 chapters

69 expert contributors

Numerous “Real World” Code
“Recipes” and examples using
OpenMP, MPI, TBB, C, C++,
OpenCL, Fortran.

Successful techniques, tips for
vectorization, scalable parallel coding,
load balancing, data structure and
memory tuning, applicable to both
processors and coprocessors!

All figures, diagrams and code freely
downloadable. (Nov’14)

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

www.lotsofcores.com

Next Session Starting in 15 Minutes

- Example: N-body simulation

- Optimization essentials

- Node-level tuning

- Scalability in a cluster

 Initial Multi-
threaded

 Vectorized
with SoA

 Scalar
Tuning

 Tiled,
Unrolled

0

500

1000

1500

2000

 S
in

gl
e

Pr
ec

is
io

n
G

FL
O

P/
s

5.3
140 180

480 520

0.8
120

220

870

1620

 N-Body Simulation Performance

 Processor: Intel Xeon E5-2697 v2
 Coprocessor: Intel Xeon Phi 7120P

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 8 12 16
P
er

fo
rm

an
ce

, T
F
L
O

P
/s

Number of Nodes or Coprocessors (P)

92% eff

76% eff

Intel Xeon E5-2697 v2 CPUs (4 nodes)

Intel Xeon Phi 7120P coprocesors (4 per node)
N=220 particles (strong scaling)

1 Xeon Phi/node

2 Xeon Phi/node

3 Xeon Phi/node

4 Xeon Phi/node

Xeon Phi,
native MPI

Xeon Phi,
MPI+Offload

CPU

Compututing with Xeon Phi Future-Proofing and Knights Landing © Colfax International, 2014

Thank you for tuning in,
and

have a wonderful journey
to the Parallel World!

http://research.colfaxinternational.com/

P.S.: We are hiring! xeonphi.com/jobs

Compututing with Xeon Phi © Colfax International, 2014

http://research.colfaxinternational.com/
xeonphi.com/jobs

§5. Resources/Backup Slides

Compututing with Xeon Phi Resources/Backup Slides © Colfax International, 2014

Reference Guides

Intel C++ Compiler 14.0 User and Reference Guide

Intel VTune Amplifier XE User’s Guide

Intel Trace Analyzer and Collector Reference Gude

Intel MPI Library for Linux* OS Reference Manual

Intel Math Kernel Library Reference Manual

Intel Software Documentation Library

MPI Routines on the ANL Web Site

OpenMP Specifications

Compututing with Xeon Phi Resources/Backup Slides © Colfax International, 2014

http://software.intel.com/en-us/node/459680
http://software.intel.com/en-us/vtuneampxe_2013_ug_lin
http://software.intel.com/en-us/itac_8.1.4_itarefg
http://software.intel.com/en-us/itac_8.1.4_itcrefg
http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/index.htm
http://software.intel.com/en-us/mkl_11.1_ref
http://software.intel.com/en-us/intel-software-technical-documentation
http://www.mcs.anl.gov/research/projects/mpi/www/
http://openmp.org/wp/openmp-specifications/

Intel’s Top 10 List
1 Download programming books: “Intel Xeon Phi Coprocessor High

Performance Programming” by Jeffers & Reinders, and “Parallel
Programming and Optimization with Intel Xeon Phi Coprocessors”
by Colfax.

2 Watch the parallel programming webinar
3 Bookmark and browse the mic-developer website
4 Bookmark and browse the two developer support forums: “Intel

MIC Architecture” and “Threading on Intel Parallel Architectures”.
5 Consult the “Quick Start” guide to prepare your system for first use,

learn about tools, and get C/C++ and Fortran-based programs up
and running

Intel’s Top 10 resources list: http://xeonphi.com/top10
Compututing with Xeon Phi Resources/Backup Slides © Colfax International, 2014

http://store.elsevier.com/product.jsp?&isbn=9780124104143
http://store.elsevier.com/product.jsp?&isbn=9780124104143
https://www.colfax-intl.com/xeonphi/book/buybook.aspx
https://www.colfax-intl.com/xeonphi/book/buybook.aspx
http://software.intel.com/en-us/articles/intel-xeon-phi-webinar
http://software.intel.com/mic-developer
http://software.intel.com/en-us/forums/intel-many-integrated-core
http://software.intel.com/en-us/forums/intel-many-integrated-core
http://software.intel.com/en-us/forums/threading-on-intel-parallel-architectures
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide
http://xeonphi.com/top10

Intel’s Top 10 List (continued)

6 Try your hand at the beginning lab exercises
7 Try your hand at the beginner/intermediate real world app exercises
8 Browse the case studies webpage to view examples from many

segments
9 Begin optimizing your application(s); consult your programming

books, the ISA reference manual, and the support forums for
assistance.

10 Hone your skills by watching more advanced video workshops

Intel’s Top 10 resources list: http://xeonphi.com/top10

Compututing with Xeon Phi Resources/Backup Slides © Colfax International, 2014

http://software.intel.com/mic-developer#pid-13664-1280
http://software.intel.com/mic-developer#pid-13664-1280
http://software.intel.com/mic-developer#pid-11724-1231
http://software.intel.com/mic-developer#pid-12678-1280
http://xeonphi.com/top10

	Welcome
	MIC Architecture from Developer's Perspective
	Details of the MIC Architecture

	Programming Models and Application Porting
	Native Programming
	Offload Programming

	Heterogeneous Computing with the MIC Architecture
	Inter-Operation of Offload, MPI and OpenMP
	File I/O in MPI Applications on Coprocessors

	Future-Proofing and Knights Landing
	Resources/Backup Slides

