
FINE-TUNING VECTORIZATION AND MEMORY TRAFFIC
ON INTEL XEON PHI COPROCESSORS:

LU DECOMPOSITION OF SMALL MATRICES

Andrey Vladimirov
Colfax International

January 27, 2015

Abstract

Common techniques for fine-tuning the perfor-
mance of automatically vectorized loops in applications
for Intel Xeon Phi coprocessors are discussed. These
techniques include strength reduction, regularizing the
vectorization pattern, data alignment and aligned data
hint, and pointer disambiguation. In addition, the loop
tiling technique of memory traffic tuning is shown. The
optimization methods are illustrated on an example of
single-threaded LU decomposition of a single precision
matrix of size 128× 128.

Benchmarks show that the discussed optimizations
improve the application performance on the coproces-
sor by a factor of 2.8 compared to the unoptimized code,
and by a factor of 1.7 on the multi-core host system,
achieving roughly the same performance on the host
and on the coprocessor.

The code discussed in the paper can be freely down-
loaded from the Colfax Research Web site.

Table of Contents

1 Intel Xeon Phi Coprocessors, Automatic Vec-
torization and Future-Proofing 2

2 The Doolittle Algorithm of LU Decomposition . 2
2.1 Numerical Method 2
2.2 Unoptimized Implementation 3

3 Benchmark Methodology 3
3.1 Computing System 3
3.2 Performance Measurement 3

4 Optimization . 4
4.1 Clues for Optimization 4
4.2 Strength Reduction 4
4.3 Regularizing Vectorization Pattern 5
4.4 Alignment and Aligned Data Hint 6
4.5 Pointer Disambiguation 7
4.6 Memory Traffic Tuning 7

5 Results and Discussion 9
5.1 Single Code Base 9
5.2 Prior Art: Intel MKL 9
5.3 Value of Intel Xeon Phi with 1.0x Acceleration 10

Colfax International (http://www.colfax-intl.com/) is a leading provider of innovative and expertly en-
gineered workstations, servers, clusters, storage, and personal supercomputing solutions. Colfax Inter-
national is uniquely positioned to offer the broadest spectrum of high performance computing solutions,
all of them completely customizable to meet your needs - far beyond anything you can get from any
other name brand. Ready-to-go Colfax HPC solutions deliver significant price/performance advantages,
and increased IT agility, that accelerates your business and research outcomes. Colfax International’s
extensive customer base includes Fortune 1000 companies, educational institutions, and government
agencies. Founded in 1987, Colfax International is based in Sunnyvale, California and is privately held.

Colfax International, 2015 — http://research.colfaxinternational.com/ 1

http://www.colfax-intl.com
http://research.colfaxinternational.com/

2 THE DOOLITTLE ALGORITHM OF LU DECOMPOSITION

1. INTEL XEON PHI COPROCESSORS,
AUTOMATIC VECTORIZATION AND
FUTURE-PROOFING

Computing accelerators marketed as Intel Xeon Phi
coprocessors are based on the Intel Many Integrated
Core (MIC) architecture, which may yield better perfor-
mance than general-purpose multi-core CPU architec-
tures for compute-bound or memory bandwidth-bound
applications. The first generation the Intel MIC archi-
tecture available today is based on the Knights Cor-
ner (KNC) chip, which supports a vector instruction set
named Initial Manycore Instructions (IMCI). The sec-
ond generation, currently in development, will be based
on the Knights Landing (KNL) chip, which will support
a different instruction set, Advanced Vector Extensions
512 (AVX-512). AVX-512 is not a superset of IMCI,
and therefore application codes that explicitly use pro-
cessor instructions will port from KNC to KNL.

At the same time, in practice, it is often unneces-
sary to express performance-critical code with explicit
vector instructions via assembly or intrinsics. That is
because Intel C, C++ and Fortran compilers have ex-
tensive support for automatic loop vectorization. That
said, a high-level language code that vectorizes and per-
forms well on KNC can be re-compiled to run on KNL,
which relieves the developer of the burden of porting to
a new instruction set.

However smart compilers may be, they still must
operate with uncertainties and possible inefficiencies of
the user code. For instance, loads and stores from mem-
ory to vector registers in KNC must be performed on
64-byte aligned addresses. If the user code does not
guarantee such alignment, the compiler must do what it
can to accommodate different runtime situations. Sim-
ilarly, vectors in KNC are 512 bit wide, which corre-
sponds to short vectors of 16 single precision or 8 dou-
ble precision numbers. If the length of the user’s loops
is not a multiple of 16 or 8, the compiler must work
around that, possibly losing performance.

The programmer can follow certain guidelines to
assist the compiler in its job of producing high-
performance executable. The present paper discusses
some of the commonly required techniques for fine-
tuning high-level language code that result in better per-

formance on coprocessors, as well as on processors.
This not only improves performance of applications on
the current generation Intel Xeon processors and Intel
Xeon Phi coprocessors, but also prepares the code for
future architectures, such as KNL.

2. THE DOOLITTLE ALGORITHM OF LU
DECOMPOSITION

2.1. NUMERICAL METHOD

To demonstrate vectorization tuning techniques, I
will use as an example the Doolittle algorithm of LU
decomposition. The purpose of this algorithm is to rep-
resent a square, non-degenerate matrix A as a product
A = LU , where L is a unit lower triangular matrix, and
U is an upper triangular matrix. Such a decomposition
is commonly used to solve systems of linear algebraic
equations.

The Doolittle algorithm applied to an n × n ma-
trix performs n − 1 iterations generally resembling the
Gaussian elimination scheme. For iteration b, matrix
row b is multiplied by a certain factor and added to ma-
trix rows b+1 through n− 1 so that the in the resulting
matrix A(b), all elements in column b starting from b+1
are equal to zero. The coefficients of that multiplication
are recorded in a separate matrix L:

A(0) = A, (1)

A(b+1) = L(b)A(b), where (2)

L
(b)
ij =

1, if i = j,
li,b, if i > j and j = b,
0, otherwise,

(3)

li,b = −
A

(b)
i,b

A
(b)
b,b

. (4)

As a result, U ≡ A(n−1), and elements of L are

Li,j =

1, if i = j,

−li,j , if i < j,
0, otherwise.

(5)

Colfax International, 2015 — http://research.colfaxinternational.com/ 2

http://research.colfaxinternational.com/

3 BENCHMARK METHODOLOGY

2.2. UNOPTIMIZED IMPLEMENTATION

A simplified implementation of this procedure is
shown in Listing 1. It is simplified because the algo-
rithm does not involve pivoting (i.e., choosing the best
row to eliminate elements in other rows) and is not op-
timized.

 void LU_decomp(const int n, float* const A) {
 // LU decomposition (Doolittle algorithm)
 // In-place decomposition of form A=LU
 // L is returned below main diagonal of A

 // U is returned at and above main diagonal
 for (int b = 0; b < n; b++) {
 for (int i = b+1; i < n; i++) {
 A[i*n + b] = A[i*n + b]/A[b*n + b];
 for (int j = b+1; j < n; j++)
 A[i*n + j] -= A[i*n + b]*A[b*n + j];
 }
 }
 }

Listing 1: LU decomposition, unoptimized.

Our function LU decomp() performs LU decom-
position in-place, returning the matrix L (except its unit
main diagonal) in the space below the main diagonal of
the input matrix A, and returning U at and above the
main diagonal of A. This is the traditional approach
taken, for example, by the LAPACK implementation of
LU decomposition, ?getrf().

The algorithm in Listing 1 is single-threaded, and
we are going to keep it this way: the assumption here
is that this function is called from a parallel region to
process multiple independent matrices concurrently as
shown in Listing 2. This is useful in applications pro-
cessing multiple small systems of linear algebraic equa-
tions.

 const double tStart = omp_get_wtime();
 #pragma omp parallel for
 for (int m = 0; m < nMatrices; m++) {
 float* matrixA=(float*)(&dataA[m*ctrSize]);
 LU_decomp(n, matrixA);
 }
 const double tEnd = omp_get_wtime();

Listing 2: Calling and timing the single-threaded LU decomposi-
tion function from a parallel region to concurrently pro-
cess multiple independent matrices.

3. BENCHMARK METHODOLOGY

3.1. COMPUTING SYSTEM

All of the benchmarks presented in this section were
taken on a Colfax ProEdge

TM
SXP8600 workstation

based on a two-way Intel Xeon E5-2697 v2 processor
(12 cores per socket, 24 cores total) with 128 GB DDR3
of RAM at 1600 MHz. The system contains four In-
tel Xeon Phi 7120P coprocessors (only one was used
for benchmarks). Each coprocessor contains 61 active
cores (4 hardware threads per core) clocked at 1.24 GHz
and 16 GB of GDDR5 memory. The code was compiled
using the Intel C++ compiler version 15.0.1.133 and run
under MPSS 3.4.1 on CentOS 7.0 Linux.

3.2. PERFORMANCE MEASUREMENT

The full code discussed in the paper, with snapshots
for each optimization step, can be freely downloaded
from the Colfax Research Web site [1].

The code for the CPU was compiled with the ar-
guments -qopenmp -xhost, and for the coproces-
sor with arguments -qopenmp -mmic. To run the
code CPU, the thread affinity pattern was set to “scat-
ter” using the environment variable KMP AFFINITY.
This was not necessary for the coprocessor because the
Intel OpenMP library for the MIC architecture effects
this type of affinity by default. To run the native exe-
cutable on the coprocessor, an SSH session was used.
On the 24-core CPU, 2 threads per core were used, and
on the 61-core coprocessor – 4 threads per core. So 48
matrices were concurrently processed on the CPU and
244 on the coprocessor.

Performance was measured by timing the parallel
loop that performs LU decomposition of 104 matrices
of size 128 × 128 as shown in Listing 2. The tim-
ing was repeated 10 times; the first two measurements
were discarded and the subsequent ones were averaged.
The first one or two measurements tend to be slower on
the coprocessor, and do not reflect the sustained perfor-
mance. The execution time was translated into cumu-
lative performance measured in GFLOP/s using a con-
version factor that assumes that each LU decomposition
requires (2/3)n3 operations, where n = 128 is the ma-
trix size.

Colfax International, 2015 — http://research.colfaxinternational.com/ 3

http://www.colfax-intl.com/nd/workstations/sxp8600.aspx
http://research.colfaxinternational.com/

4 OPTIMIZATION

4. OPTIMIZATION

Benchmarking the unoptimized code from
Listing 1 yielded the following baseline perfor-
mance: 140.0± 0.6 GFLOP/s on the host and
86.3± 0.1 GFLOP/s on the Intel Xeon Phi coprocessor.
Apparently, the inefficiencies in this code hamper the
Intel MIC architecture much more than the multi-core
Intel Xeon CPU.

4.1. CLUES FOR OPTIMIZATION

Areas for potential optimization can be inferred
from the optimization report produced by the compiler.
Listing 3 shows the relevant parts of the report produced
with the argument -qopt-report=4.

LOOP BEGIN at main.cc(14,7) inlined into main.cc
<Peeled, Multiversioned v1>

...reference matrixA has unaligned access...

...PEEL LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at main.cc(14,7) inlined into main.cc
<Multiversioned v1>

...Loop multiversioned for Data Dependence

...reference matrixA has aligned access...
LOOP WAS VECTORIZED
...

LOOP END

...

LOOP BEGIN at main.cc(14,7) inlined into main.cc
<Remainder, Multiversioned v1>

...reference matrixA has aligned access...

...reference matrixA has unaligned access...
REMAINDER LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at main.cc(14,7) inlined into main.cc
<Multiversioned v2>

loop was not vectorized: non-vectorizable
loop instance from multiversioning

...
LOOP END

Listing 3: Optimization report for Listing 1

Indeed, the report indicates that the compiler pro-
cessed different versions of the loop targeted to the dif-
ferent possible alignment and pointer aliasing situations
at runtime. Also, code for processing the peel and re-
mainder of the loop was generated.

Multi-versioning and uncertain alignment are ham-
pering the performance of this code, and in the subse-
quent sections will demonstrate how to deal with it.

4.2. STRENGTH REDUCTION

Before we even start following up on the optimiza-
tion report, we can reap a low-hanging fruit by imple-
menting an optimization known as strength reduction.

Line 13 in Listing 1 contains a division, and the de-
nominator in this expression is the same in every itera-
tion in i. We can take advantage of this repetitive pat-
tern and replace division with multiplication, which is
a lower-latency operation (see, e.g., [2]). The corre-
sponding snippet of the code is shown in Listing 4.

 for (int b = 0; b < n; b++) {
 // Strength reduction:
 const float recAbb = 1.0f/A[b*n + b];
 for (int i = b+1; i < n; i++) {
 A[i*n + b] = A[i*n + b]*recAbb;
 for (int j = b+1; j < n; j++)
 A[i*n + j] -= A[i*n + b]*A[b*n + j];
 }
 }

Listing 4: LU decomposition with strength reduction.

With this optimization, the performance on the host
increased only marginally, to 144.2± 0.4 GFLOP/s,
however, on the coprocessor, the performance increased
by 12% to 96.5± 0.1 GFLOP/s.

Replacement of division with multiplication by the
reciprocal value is an example of strength reduction.
This is a class of optimizations where expensive oper-
ations are replaced with less expensive, approximately
equivalent operations.

Due to the limitations of finite-precision arith-
metics, the programmer must always consider whether
the stability and accuracy requirements of the algorithm
permit such optimizations.

With strength reduction done, we can proceed to
more subtle optimizations for which we have hints from
the optimization report.

Colfax International, 2015 — http://research.colfaxinternational.com/ 4

http://research.colfaxinternational.com/

4 OPTIMIZATION

4.3. REGULARIZING VECTORIZATION PATTERN

Vector processing units (VPUs) of Intel Xeon Phi
coprocessors can process vector instructions on vectors
of exactly 16 or 8 elements in single and double pre-
cision, respectively. Nevertheless, the Intel C++ com-
piler is able to vectorize loops for which loop count is
not known at compilation time. Furthermore, load and
store instructions in the KNC architecture can operate
only on 64-byte aligned memory regions. However, this
does not prevent the Intel C++ compiler from vector-
izing loops in which the alignment of element is not
known at compilation time.

In cases where the loop count or alignment situa-
tion is not known at compilation time, the compiler im-
plements a runtime check of alignment and loop count.
Depending on the result, the code may peel off a few
iterations at the beginning of the loop, or process the
tail of the loop with scalar or masked instructions. Nat-
urally, a loop with beginning or tail peeled off is less
efficient than a loop with only vector iterations. Peeling
is illustrated in Figure 1. “Code Path 1” and “Code Path
2” may be taken at runtime depending on the length of
the loop and on the data alignment situation at runtime.

Figure 1: Compiler may peel an irregular loop. To prevent that, the
programmer may regularize the vectorization pattern.

The programmer can alleviate the load on the plat-
form by regularizing the pattern of vectorization, so that
the operations are always vector and always on aligned
data. This may require three measures:

1. Padding loop count to a multiple of vector length

2. Padding data to a multiple of vector length

3. Aligning data on the appropriate boundary

This paper refers to optimizations that lead to the
elimination of loop peel and tail as “regularizing the
vectorization pattern”. The regularized loop may have
more iterations, where in marginal iterations the pro-
cessor crunches dummy data (see Figure 1, case “Opti-
mization”). However, the performance of regular loops
on the Intel MIC architecture is generally better than
that of irregular loops, because the peeled iterations take
more clock cycles than a single vector iteration.

In our code (Listing 1), the inner loop in j has dif-
ferent loop counts in every iteration in b. Addition-
ally, it sometimes begins on an aligned data element,
other times it does not. To regularize this loop, in-
stead of starting the inner loop from j=b+1, let’s start
it from jMin, which is the greatest multiple of the vec-
tor/alignment length not exceeding b+1. Our procedure
assumes that the matrix size, n, is also a multiple of the
vector length. The resulting code snippet is shown in
Listing 5, and explanation of additional measures taken
in this code are provided below.

 #ifdef __MIC__
 const int tile=32;
 #else
 const int tile=8;
 #endif
 assert(n%tile==0);
 // Must store L separately from A
 float L[n*n] __attribute__((aligned(64)));
 for (int i = 0; i < n; i++) {
 L[i*n:n]=0.0f;
 L[i*n+i]=1.0f;
 }
 for (int b = 0; b < n; b++) {
 const int jMin = b - b%tile;
 // Strength reduction:
 const float recAbb = 1.0f/A[b*n + b];
 for (int i = b+1; i < n; i++) {
 L[i*n + b] = A[i*n + b]*recAbb;
 // Regularized pattern of vector loop:
 for (int j = jMin; j < n; j++)
 A[i*n + j] -= L[i*n+b]*A[b*n + j];
 }
 }
 // Copy temp matrix L into matrix A
 for (int i = 0; i < n; i++)
 for (int j = 0; j < i; j++)
 A[i*n + j] = L[i*n + j];

Listing 5: LU decomposition, regularized vectorization pattern.

With the j-loop beginning at jMin≤b, we have to
deal with the fact that now the loop in j will overwrite

Colfax International, 2015 — http://research.colfaxinternational.com/ 5

http://research.colfaxinternational.com/

4 OPTIMIZATION

some of the elements of A. In order to retain correctness,
a temporary storage matrix L was introduced, which is
stored separately from A during the calculation, and is
copied into A before the function returns.

There is also freedom to choose the value into
which jMin must divide. Experiments established that
on the CPU, a multiple of 8 works well, while on the
coprocessor, multiples of 32 are better. To optimize the
code, target-specific tuning can be done using the pre-
processor macro MIC .

With regularized vectorization pattern, the
performance on the host increased 20% to
173.5± 0.1 GFLOP/s and on the coprocessor it jumped
30% to 126.0± 0.3 GFLOP/s.

4.4. ALIGNMENT AND ALIGNED DATA HINT

Data alignment on a 64-byte boundary is required
for vector instructions in the Many Integrated Core ar-
chitecture of Intel Xeon Phi coprocessors. The align-
ment of the first element in a pointer-based array is
generally not known at compile time. Therefore, in au-
tomatically vectorized loops, the compiler must imple-
ment a check for alignment. Depending on the results
of the check, the application may peel off several itera-
tions at the beginning of the loop in order to reach the
first aligned element. The check may take a significant
portion of the loop calculation time, especially for short
loops, and multiple versions of the code required for
execution take up space in the instruction cache.

If the programmer can guarantee that pointer-based
arrays in a vectorized loop are aligned, it is benefi-
cial inform the compiler of this. This is done using
#pragma vector aligned.

This pragma is applicable to our case. Indeed,
in the code the memory buffer for matrix A is allo-
cated on a 64-byte aligned boundary using the allocator
mm malloc(). Matrix L, placed on the stack, is also

allocated on a 64-byte boundary thanks to the decla-
ration attribute ((aligned(64))) (see line
19 of Listing 5). Additionally, the code checks that n
is a multiple of 16, which amounts to 64 bytes, and be-
gins the loop in j on jMin, which is a multiple of 32
bytes on host or 128 bytes on coprocessor. Therefore,
all arrays in line 32 of Listing 5 are aligned. However,

according to the optimization report in Listing 3 (or the
respective line in optimization report for Listing 5), the
compiler implements code that would work with both
aligned and unaligned accesses to matrix A.

Applying the aligned data hint (#pragma
vector aligned) to our LU decomposition results
in the following (the relevant snippet is shown below).

 for (int i = b+1; i < n; i++) {
 L[i*n + b] = A[i*n + b]*recAbb;
 // Aligned data hint:
 #pragma vector aligned
 // Regularized pattern of vector loop:
 for (int j = jMin; j < n; j++)
 A[i*n + j] -= L[i*n+b]*A[b*n + j];
 }

Listing 6: Aligned data hint in the LU decomposition code.

With #pragma vector aligned, the com-
piler report indicates only aligned accesses to matrix A
(see Listing 7).

LOOP BEGIN at main.cc(33,7) inlined into main.cc
<Multiversioned v1>

Loop multiversioned for Data Dependence
...reference matrixA has aligned access...
LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at main.cc(33,7) inlined into main.cc
<Remainder, Multiversioned v1>

...reference matrixA has aligned access...
remark #15301: REMAINDER LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at main.cc(33,7) inlined into main.cc
<Multiversioned v2>

loop was not vectorized: non-vectorizable
loop instance from multiversioning

LOOP END

Listing 7: Optimization report for Listing 6

Due to this optimization with aligned data hint, the
performance on the host slightly decreased to 164.1 ±
0.1 GFLOP/s, but on the coprocessor it increased by 3%
to 142.4± 0.3 GFLOP/s.

Optimization with the aligned data hint is likely to
be important for relatively short loops with lightweight
operations, because in longer loops, the relative amount
of time used for runtime checks is smaller.

Colfax International, 2015 — http://research.colfaxinternational.com/ 6

http://research.colfaxinternational.com/

4 OPTIMIZATION

4.5. POINTER DISAMBIGUATION

Another hint given to us by the optimization report
of the LU decomposition code (Listing 7) is that the
compiler instrumented multiversioning. This occurred
because at compilation time, it is not certain whether
pointers L and A are aliased (i.e., pointing to the same
memory regions) or not.

We can gain additional performance by eliminating
multiversioning. This can be using #pragma ivdep.
This pragma instructs the compiler to ignore assumed
vector dependencies, and assume all pointers in the
loops to be non-aliased.

The result of this optimization in shown in Listing 8.
The new pragma can be combined with the pragma used
in the previous step.

 for (int i = b+1; i < n; i++) {
 L[i*n + b] = A[i*n + b]*recAbb;
 // Aligned data hint:
 #pragma vector aligned
 // Pointer disambiguation:
 #pragma ivdep
 // Regularized pattern of vector loop:
 for (int j = jMin; j < n; j++)
 A[i*n + j] -= L[i*n+b]*A[b*n + j];
 }

Listing 8: Pointer disambiguation in the LU decomposition code.

Once assumed vector dependence was dropped, the
performance on the CPU was bumped by around 4%
to 174.7 ± 0.1 GFLOP/s and on the coprocessor it
increased by 10% to 157 ± 1 GFLOP/s. Further-
more, the reader may check that the optimization report
no longer includes information about multiversioning,
which means that only one code path was implemented,
with non-aliased L and U.

An alternative to #pragma ivdep is the qualifier
restrict, which is useful when some pointers in the
loop are actually aliased (see [3]). Qualifier restrict
can be used to disambiguate only non-aliased pointers,
and this may be sufficient information for the compiler
to implement a more optimal code path.

It is important to remember that when #pragma
ivdep is used, the penalty for supplying aliased point-
ers may be incorrect results, without a warning or error
message.

4.6. MEMORY TRAFFIC TUNING

With vectorization optimized as done above, the
CPU still outperforms the coprocessor, albeit by a small
margin. Hints for further improvement may be obtained
from performance analysis with Intel VTune amplifier.
Figure 2 shows a screenshot of the summary screen for
performance analysis of the last code with pointer dis-
ambiguation on the coprocessor.

Figure 2: Performance analysis with VTune.

The metrics that VTune finds suspicious is “L1
compute to data access ratio” and the related metric “es-
timated latency impact”. Both of these metrics point to
insufficient arithmetic intensity, i.e., data fetched into
caches is not used for computation a sufficient number
of times. This situation can usually be resolved with a
technique called loop tiling.

Loop tiling transforms two (or more) nested loops
into three (or more) nested loops in such a way that a
data element used once is re-used as soon as possible.
This increases the temporal locality of data access. The
basic form of loop tiling is shown in Listing 9.

 // Before tiling:
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 Compute(A[i], B[j]);
 // Tiled i-loop:
 const int tile = 16;
 for (int jj = 0; jj < n; jj+=tile)
 for (int i = 0; i < n; i++)
 for (int j = jj; j < jj+tile; j++)

 Compute(A[i], B[j]);

Listing 9: Loop tiling.

Colfax International, 2015 — http://research.colfaxinternational.com/ 7

http://research.colfaxinternational.com/

4 OPTIMIZATION

Loop tiling changes the order of operations, but
does not necessarily change their nature (unless vector-
ization is involved). The purpose of tiling as shown in
Listing 9 is to re-use B[jj] every tile=16 iterations
rather than every n iterations. This ensures that the re-
used elements of B are still in a cache. Indeed, after n
iterations, the beginning of the array B may be evicted
from cache, depending on the size of the elements and
of the cache.

For our LU decomposition, tiling is not trivial, be-
cause one has to ensure correctness. The Doolittle algo-
rithm has sequential nature in that it cannot start elim-
inating elements in line i with elements in line b+1
until it has done it with elements in line b. Therefore,
opportunities for changing the order of operations in b
are limited, and correctness check must be performed.

Additionally, the inner loop in variable j conve-
niently has unit-stride access favorable for vectorization
and bandwidth. So it is best to retain unit-stride in j,
which further restricts the types of tiling that we can
utilize.

Tiling the loop in b leads us to the final optimized
version of the code. A snippet of the performance-
critical set of loops is shown Listing 10. Arriving to this
code required some experimentation. First, the variable
for tiling had to be chosen (b seems to work best). Af-
ter that, the order of size of the tile had to be tuned
(btile=16 for MIC and btile=8 for CPU seem to
provide the best results). Finally, the order of tiled loops
in i, b and j must be chosen from a total of 3! = 6 op-
tions (experiments show that jib works best for MIC
and ijb is better for the CPU).

In addition to the tuning described above, tiled code
has a few additional complications. First, it may be
necessary to manually peel off some of the iterations to
maintain correctness. Second, vectorization must be re-
tained in the dimension that is accessed with unit stride.
In our case, this is the j-dimension. In order to vector-
ize the j-loop, which, after tiling, is no longer inner, the
compiler hint #pragma simd was used.

After memory traffic optimization, performance on
the host increased by 34% to 233 GFLOP/s, and on the
coprocessor by 56% to 244 GFLOP/s. At this point, the
coprocessor marginally outperforms the host.

 #ifdef __MIC__
 const int tile=32; // Tuning parameters
 const int btile=16; // for MIC
 #else

 const int tile=16; // Tuning parameters
 const int btile=8; // for CPU
 #endif

 // ...header code skipped...

 // Tiling in b allows to eliminate line i
 // using several lines b, facilitating
 // cached data re-use for b-lines
 for (int bb = 0; bb < n; bb += btile) {
 // ...skipped loops that compute the
 // L-factors. These loops do not take
 // a significant fraction of time...

 // This block uses the L-factors
 // to eliminate the bulk of the i-lines
 // #pragma simd vectorizes the j-loop
 // rather than the i- or b-loop
 #ifdef __MIC__
 #pragma vector aligned
 #pragma ivdep
 #pragma simd
 for (int j = jMin+tile; j < n; j++)
 for (int i = bb+btile; i < n; i++)
 for (int b = bb; b < bb+btile; b ++)
 A[i*n + j] -= L[i*n + b]*A[b*n + j];
 #else
 for (int i = bb+btile; i < n; i++)
 #pragma vector aligned
 #pragma ivdep
 #pragma simd
 for (int j = jMin+tile; j < n; j++)
 for (int b = bb; b < bb+btile; b ++)
 A[i*n + j] -= L[i*n + b]*A[b*n + j];
 #endif
 }

Listing 10: Fragment of LU decomposition, tiled.

Because the purpose of tiling is to fit certain por-
tions of the data set into the processor’s cache, the strat-
egy of tiling may vary with the problem size. This in-
cludes the choice of the tiled variable or variables and
order of loops. In our case, tiling was targeted for ma-
trix size 128 × 128, which are 64 KB in size. This is
greater than the level 1 cache, but smaller than the level
2 cache size per core on both Xeon and Xeon Phi.

Cache-oblivious algorithms [4, 5] may yield a code
less sensitive to problem size and the properties of the
computing platform. A cache-oblivious algorithm is
non-trivial to implement for LU decomposition because
of its partially sequential nature.

Colfax International, 2015 — http://research.colfaxinternational.com/ 8

http://research.colfaxinternational.com/

5 RESULTS AND DISCUSSION

5. RESULTS AND DISCUSSION

5.1. SINGLE CODE BASE

Performance summary of LU decomposition at dif-
ferent optimization stages is shown in Figure 3.

 Unoptimized Strength
Reduction

 Regularized
Vectorization

 Aligned Data
Hint

 Pointer
Disambiguation

 Memory Traffic
Tuning

0

50

100

150

200

250

 P
er

fo
rm

an
ce

, G
FL

O
P/

s (
hi

gh
er

 is
 b

et
te

r)

140 144

173
164

174

233

86
97

126
142

156

244 Intel Xeon Processor E5-2697 V2
 Intel Xeon Phi Coprocessor 7120P

Figure 3: Summary of LU decomposition performance.

It is evident that in all cases but one, the optimiza-
tion methods discussed here had positive impact on per-
formance both on the host and on the coprocessor. The
optimizations performed were all constrained to high-
level language programming and compiler hints:

1. strength reduction replaces expensive operations
with less expensive;

2. regularizing the vectorization pattern requires
changing the loop iteration count;

3. compiler hint on data alignment is a one-line
comment-like pragma;

4. another compiler hint for pointer disambiguation
is also a pragma;

5. memory traffic tuning requires changing the or-
der of operations in loops.

We ended up with a single code (except for platform-
specific tuning parameters and different order of loops),
which may be used with high performance both on the
multi-core and the manycore platforms. In this sense,
the educational goal of the paper is achieved. However,
to put the result in context, let us also discuss the abso-
lute value of achieved performance.

Two questions that remain to be clarified are: (i)
how do the achieved results compare to results with
other optimization methods, and (ii) are the perfor-
mance results “good enough”?

5.2. PRIOR ART: INTEL MKL

In order to assess the absolute performance
achieved, we can use the LU decomposition function
from the Intel Math Kernel Library (MKL), which is
implemented as a LAPACK function sgetrf. The
MKL implementation is more general and complex than
ours. First, it is tuned for a greater range of matrix sizes,
and second, it may use pivoting (interchanging rows to
reduce rounding errors). However, for clarity of experi-
ment, the benchmark code uses a diagonally-dominated
matrix, for which pivoting does not kick in.

The performance of MKL is compared to the per-
formance of this work in Figure 4.

 0

 100

 200

 300

 400

 500

 32 64 96 128 160 192 224 256

P
er
fo
rm
an
ce
, G
F
L
O
P
/s

Matrix size, n

MKL on CPU
MKL on MIC

This work on CPU
This work on MIC

Figure 4: LU decomposition: this work and Intel MKL. Reported
performance is for 48 concurrent single-threaded decom-
positions on a 24-core Intel Xeon E5-2697 V2 proces-
sor, and 244 concurrent decompositions on a 61-core In-
tel Xeon Phi 7120P coprocessor.

This figure leads to two conclusions:

1. On the host’s Intel Xeon CPU, our high-level lan-
guage code performs on par with the industry-
leading MKL implementation at our target matrix
size 128×128. For smaller matrices, our code is ac-
tually more efficient than MKL, however, for larger
matrices, MKL performs better. Indeed, optimiza-
tion techniques such as loop regularization are only
important for short loops; for longer loops, other
strategies may be used, such as tiling the j-loop or
multiple loops.

Colfax International, 2015 — http://research.colfaxinternational.com/ 9

http://research.colfaxinternational.com/

5 RESULTS AND DISCUSSION

2. On the Intel Xeon Phi coprocessor, the MKL imple-
mentation loses by a large factor to both the MKL
code on the CPU, and to our high-level language
code on CPU and coprocessor. It indicates that the
MKL code, likely hand-tuned with explicit assembly
or intrinsics, is not portable to the MIC architecture,
while our high-level language approach with tuning
for the CPU also results in high performance on the
coprocessor. While the MKL developers have yet to
approach optimizing ?getrf() for Intel Xeon Phi
coprocessors, we developed for two platforms al-
most for the effort of one. The word “almost” is used
because we did tune the sizes of tiles and the order
of loops separately for the CPU and MIC; however,
even without this fine-tuning the loss of performance
on either platform is relatively small. The reader can
verify this using the code supplied with this paper.

5.3. VALUE OF INTEL XEON PHI WITH 1.0X

ACCELERATION

In the past, Colfax Research has published case
studies that show versus CPU speedups of up to 3x
(e.g., [6, 7, 8, 9]). Here, the application only achieved
the same performance on the coprocessor and on the
host. This is in part because this is a complicated prob-
lem to optimize: with small matrices, intricate details
of vectorization and cache operation are crucial for per-
formance. Additionally, not helping the value of the ac-
celeration factor is the fact that the CPU used for base-
line is the fastest model in the Ivy Bridge architecture
generation. However, the bottom line is 1x acceleration
factor through the use of an Intel Xeon Phi coprocessor.
Is it good enough to justify using a coprocessor?

“Good enough” has different meanings in different
usage scenarios. Sometimes it is important to max-
imize performance per watt (e.g., in computing cen-
ters for which the operating costs are the major con-
cern). Other times, performance to set-up cost ratio is
important (when purchasing budget is the limitation).
Finally, the sought-for metric may be the best perfor-
mance per system (for users of a single workstation and
in cases where rack space in computing facility is lim-
ited). Where the 1x acceleration factor stands in terms
of these metrics is addressed in a companion publica-
tion [10].

REFERENCES

[1] Landing page for this paper, “Fine-Tuning Vectorization and
Memory Traffic...”.
http://research.colfaxinternational.com/post/2015/01/27/LU.
aspx.

[2] Andrey Vladimirov. Arithmetics on Intels Sandy Bridge and
Westmere CPUs: not all FLOPs are created equal.
http://research.colfaxinternational.com/post/2012/04/30/
FLOPS.aspx.

[3] User and Reference Guide for the Intel C++ Compiler 15.0:
restrict, Qrestrict.
https://software.intel.com/en-us/node/523123.

[4] Harald Prokop. Cache-Oblivious Algorithms. Master’s thesis,
Massachusetts Institute of Technology, 1999.
http://supertech.csail.mit.edu/papers/Prokop99.pdf.

[5] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and
Sridhar Ramachandran. Cache-Oblivious Algorithms. In 40th
Annual Symposium on Foundations of Computer Science,
1999.
http://doi.ieeecomputersociety.org/10.1109/SFFCS.1999.
814600.

[6] Andrey Vladimirov and Cliff Addison. Cluster-Level Tuning
of a Shallow Water Equation Solver on the Intel MIC Archi-
tecture.
http://research.colfaxinternational.com/post/2014/05/12/
Shallow-Water.aspx.

[7] Crash Course on Programming and Optimization with Intel
Xeon Phi Coprocessors at SC14.
http://research.colfaxinternational.com/post/2014/11/16/
SC14.aspx.

[8] Andrey Vladimirov. Multithreaded Transposition of Square
Matrices with Common Code for Intel Xeon Processors and
Intel Xeon Phi Coprocessors.
http://research.colfaxinternational.com/post/2013/08/12/
Trans-7110.aspx.

[9] Accelerated Simulations of Cosmic Dust Heating Using the
Intel Many Integrated Core Architecture.
http://research.colfaxinternational.com/post/2013/06/07/
HEATCODE.aspx.

[10] Andrey Vladimirov. Performance to Power and Performance
to Cost Ratios with Intel Xeon Phi Coprocessors (and why 1x
Acceleration May Be Enough).
http://research.colfaxinternational.com/post/2015/01/27/1x.
aspx.

Colfax International, 2015 — http://research.colfaxinternational.com/ 10

http://research.colfaxinternational.com/post/2015/01/27/LU.aspx
http://research.colfaxinternational.com/post/2015/01/27/LU.aspx
http://research.colfaxinternational.com/post/2012/04/30/FLOPS.aspx
http://research.colfaxinternational.com/post/2012/04/30/FLOPS.aspx
https://software.intel.com/en-us/node/523123
http://supertech.csail.mit.edu/papers/Prokop99.pdf
http://doi.ieeecomputersociety.org/10.1109/SFFCS.1999.814600
http://doi.ieeecomputersociety.org/10.1109/SFFCS.1999.814600
http://research.colfaxinternational.com/post/2014/05/12/Shallow-Water.aspx
http://research.colfaxinternational.com/post/2014/05/12/Shallow-Water.aspx
http://research.colfaxinternational.com/post/2014/11/16/SC14.aspx
http://research.colfaxinternational.com/post/2014/11/16/SC14.aspx
http://research.colfaxinternational.com/post/2013/08/12/Trans-7110.aspx
http://research.colfaxinternational.com/post/2013/08/12/Trans-7110.aspx
http://research.colfaxinternational.com/post/2013/06/07/HEATCODE.aspx
http://research.colfaxinternational.com/post/2013/06/07/HEATCODE.aspx
http://research.colfaxinternational.com/post/2015/01/27/1x.aspx
http://research.colfaxinternational.com/post/2015/01/27/1x.aspx
http://research.colfaxinternational.com/

	Intel Xeon Phi Coprocessors, Automatic Vectorization and Future-Proofing
	The Doolittle Algorithm of LU Decomposition
	Numerical Method
	Unoptimized Implementation

	Benchmark Methodology
	Computing System
	Performance Measurement

	Optimization
	Clues for Optimization
	Strength Reduction
	Regularizing Vectorization Pattern
	Alignment and Aligned Data Hint
	Pointer Disambiguation
	Memory Traffic Tuning

	Results and Discussion
	Single Code Base
	Prior Art: Intel MKL
	Value of Intel Xeon Phi with 1.0x Acceleration

