FINE-TUNING VECTORIZATION AND MEMORY TRAFFIC
ON INTEL XEON PHI COPROCESSORS:
LU DECOMPOSITION OF SMALL MATRICES

Andrey Vladimirov
Colfax International

January 27, 2015

Abstract

Common techniques for fine-tuning the perfor-
mance of automatically vectorized loops in applications
for Intel Xeon Phi coprocessors are discussed. These
techniques include strength reduction, regularizing the
vectorization pattern, data alignment and aligned data
hint, and pointer disambiguation. In addition, the loop
tiling technique of memory traffic tuning is shown. The
optimization methods are illustrated on an example of
single-threaded LU decomposition of a single precision
matrix of size 128 x 128.

Benchmarks show that the discussed optimizations
improve the application performance on the coproces-
sor by a factor of 2.8 compared to the unoptimized code,
and by a factor of 1.7 on the multi-core host system,
achieving roughly the same performance on the host
and on the coprocessor.

The code discussed in the paper can be freely down-
loaded from the Colfax Research Web site.
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2 THE DOOLITTLE ALGORITHM OF LU DECOMPOSITION

1. INTEL XEON PHI COPROCESSORS,
AUTOMATIC VECTORIZATION AND
FUTURE-PROOFING

Computing accelerators marketed as Intel Xeon Phi
coprocessors are based on the Intel Many Integrated
Core (MIC) architecture, which may yield better perfor-
mance than general-purpose multi-core CPU architec-
tures for compute-bound or memory bandwidth-bound
applications. The first generation the Intel MIC archi-
tecture available today is based on the Knights Cor-
ner (KNC) chip, which supports a vector instruction set
named Initial Manycore Instructions (IMCI). The sec-
ond generation, currently in development, will be based
on the Knights Landing (KNL) chip, which will support
a different instruction set, Advanced Vector Extensions
512 (AVX-512). AVX-512 is not a superset of IMCI,
and therefore application codes that explicitly use pro-
cessor instructions will port from KNC to KNL.

At the same time, in practice, it is often unneces-
sary to express performance-critical code with explicit
vector instructions via assembly or intrinsics. That is
because Intel C, C++ and Fortran compilers have ex-
tensive support for automatic loop vectorization. That
said, a high-level language code that vectorizes and per-
forms well on KNC can be re-compiled to run on KNL,
which relieves the developer of the burden of porting to
a new instruction set.

However smart compilers may be, they still must
operate with uncertainties and possible inefficiencies of
the user code. For instance, loads and stores from mem-
ory to vector registers in KNC must be performed on
64-byte aligned addresses. If the user code does not
guarantee such alignment, the compiler must do what it
can to accommodate different runtime situations. Sim-
ilarly, vectors in KNC are 512 bit wide, which corre-
sponds to short vectors of 16 single precision or 8 dou-
ble precision numbers. If the length of the user’s loops
is not a multiple of 16 or 8, the compiler must work
around that, possibly losing performance.

The programmer can follow certain guidelines to
assist the compiler in its job of producing high-
performance executable. The present paper discusses
some of the commonly required techniques for fine-
tuning high-level language code that result in better per-

formance on coprocessors, as well as on processors.
This not only improves performance of applications on
the current generation Intel Xeon processors and Intel
Xeon Phi coprocessors, but also prepares the code for
future architectures, such as KNL.

2. THE DOOLITTLE ALGORITHM OF LU
DECOMPOSITION

2.1. NUMERICAL METHOD

To demonstrate vectorization tuning techniques, I
will use as an example the Doolittle algorithm of LU
decomposition. The purpose of this algorithm is to rep-
resent a square, non-degenerate matrix A as a product
A = LU, where L is a unit lower triangular matrix, and
U is an upper triangular matrix. Such a decomposition
is commonly used to solve systems of linear algebraic
equations.

The Doolittle algorithm applied to an n X n ma-
trix performs n — 1 iterations generally resembling the
Gaussian elimination scheme. For iteration b, matrix
row b is multiplied by a certain factor and added to ma-
trix rows b + 1 through n — 1 so that the in the resulting
matrix A, all elements in column b starting from b+ 1
are equal to zero. The coefficients of that multiplication
are recorded in a separate matrix L:

A0 — A, (1
Ab+1) L®A®) where 2)
b 1, if i = j,
ng) = < Ly, ifi>jandj=b,  (3)
0, otherwise,
b
A
lip = ——a5 (4)
App

Asaresult, U = A(”*l), and elements of L are

1, if i = j,
—lijj, if 1 < 7 5)
0, otherwise.

Lij =
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2.2. UNOPTIMIZED IMPLEMENTATION

A simplified implementation of this procedure is
shown in Listing 1. It is simplified because the algo-
rithm does not involve pivoting (i.e., choosing the best
row to eliminate elements in other rows) and is not op-
timized.

// U is ret and above ma diagonal
11 for (int b =
12 for (int i b+l; i < n; i++) {
13 Ali*n + b] = A[i*n + b]/A[bx*n + bl;
14 for (int j = b+l; Jj < n; Jj++)

15 Alixn + J] -= A[i*n + b]l*A[b*n + JI;

=

b < n; bt+) {

0;
1

Listing 1: LU decomposition, unoptimized.

Our function LU_decomp () performs LU decom-
position in-place, returning the matrix L (except its unit
main diagonal) in the space below the main diagonal of
the input matrix A, and returning U at and above the
main diagonal of A. This is the traditional approach
taken, for example, by the LAPACK implementation of
LU decomposition, ?getrf ().

The algorithm in Listing 1 is single-threaded, and
we are going to keep it this way: the assumption here
is that this function is called from a parallel region to
process multiple independent matrices concurrently as
shown in Listing 2. This is useful in applications pro-
cessing multiple small systems of linear algebraic equa-
tions.

138| const double tStart = omp_get_wtime();
139 | #pragma omp D
140 for (int m = 0; m < nMatrices; m++) {

141 float* matrixA=(floatx) (&dataA[mxctrSize]);
142 LU_decomp (n, matrixA);

1431}
144 | const double tEnd = omp_get_wtime();

parallel I0OFr

Listing 2: Calling and timing the single-threaded LU decomposi-
tion function from a parallel region to concurrently pro-
cess multiple independent matrices.

3. BENCHMARK METHODOLOGY

3.1. COMPUTING SYSTEM

All of the benchmarks presented in this section were
taken on a Colfax ProEdgeTM SXP8600 workstation
based on a two-way Intel Xeon E5-2697 v2 processor
(12 cores per socket, 24 cores total) with 128 GB DDR3
of RAM at 1600 MHz. The system contains four In-
tel Xeon Phi 7120P coprocessors (only one was used
for benchmarks). Each coprocessor contains 61 active
cores (4 hardware threads per core) clocked at 1.24 GHz
and 16 GB of GDDRS5 memory. The code was compiled
using the Intel C++ compiler version 15.0.1.133 and run
under MPSS 3.4.1 on CentOS 7.0 Linux.

3.2. PERFORMANCE MEASUREMENT

The full code discussed in the paper, with snapshots
for each optimization step, can be freely downloaded
from the Colfax Research Web site [1].

The code for the CPU was compiled with the ar-
guments —gqopenmp -xhost, and for the coproces-
sor with arguments —gqopenmp -mmic. To run the
code CPU, the thread affinity pattern was set to “scat-
ter” using the environment variable KMP _ AFFINITY.
This was not necessary for the coprocessor because the
Intel OpenMP library for the MIC architecture effects
this type of affinity by default. To run the native exe-
cutable on the coprocessor, an SSH session was used.
On the 24-core CPU, 2 threads per core were used, and
on the 61-core coprocessor — 4 threads per core. So 48
matrices were concurrently processed on the CPU and
244 on the coprocessor.

Performance was measured by timing the parallel
loop that performs LU decomposition of 10* matrices
of size 128 x 128 as shown in Listing 2. The tim-
ing was repeated 10 times; the first two measurements
were discarded and the subsequent ones were averaged.
The first one or two measurements tend to be slower on
the coprocessor, and do not reflect the sustained perfor-
mance. The execution time was translated into cumu-
lative performance measured in GFLOP/s using a con-
version factor that assumes that each LU decomposition
requires (2/3)n? operations, where n = 128 is the ma-
trix size.
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4. OPTIMIZATION

Benchmarking the unoptimized code from
Listing 1 yielded the following baseline perfor-
mance: 140.0 £ 0.6 GFLOP/s on the host and
86.3 = 0.1 GFLOP/s on the Intel Xeon Phi coprocessor.
Apparently, the inefficiencies in this code hamper the
Intel MIC architecture much more than the multi-core
Intel Xeon CPU.

4.1. CLUES FOR OPTIMIZATION

Areas for potential optimization can be inferred
from the optimization report produced by the compiler.
Listing 3 shows the relevant parts of the report produced
with the argument ~qopt-report=4.

LOOP BEGIN at main.cc(14,7) inlined into main.cc
<Peeled, Multiversioned v1>
...reference matrixA has unaligned access...
...PEEL LOOP WAS VECTORIZED
LOOP ENC
(14,7) inlined in main

Listing 3: Optimization report for Listing 1

Indeed, the report indicates that the compiler pro-
cessed different versions of the loop targeted to the dif-
ferent possible alignment and pointer aliasing situations
at runtime. Also, code for processing the peel and re-
mainder of the loop was generated.

Multi-versioning and uncertain alignment are ham-
pering the performance of this code, and in the subse-
quent sections will demonstrate how to deal with it.

4.2. STRENGTH REDUCTION

Before we even start following up on the optimiza-
tion report, we can reap a low-hanging fruit by imple-
menting an optimization known as strength reduction.

Line 13 in Listing 1 contains a division, and the de-
nominator in this expression is the same in every itera-
tion in 1. We can take advantage of this repetitive pat-
tern and replace division with multiplication, which is
a lower-latency operation (see, e.g., [2]). The corre-
sponding snippet of the code is shown in Listing 4.

11 for (int b = 0; b < n; b++) {

12 // Strength reduction:

13 const float recAbb = 1.0f/A[b*n + bl;

14 for (int i = b+1l; 1 < n; i++) |

15 Ali*n + b] = A[i*n + b]*recAbb;

16 for (int j = b+l; j < n; Jj++)

17 A[i*n + j] —-= A[i*n + bl*A[b*n + jl;

Listing 4: LU decomposition with strength reduction.

With this optimization, the performance on the host
increased only marginally, to 144.2 = 0.4 GFLOP/s,
however, on the coprocessor, the performance increased
by 12% to 96.5 & 0.1 GFLOP/s.

Replacement of division with multiplication by the
reciprocal value is an example of strength reduction.
This is a class of optimizations where expensive oper-
ations are replaced with less expensive, approximately
equivalent operations.

Due to the limitations of finite-precision arith-
metics, the programmer must always consider whether
the stability and accuracy requirements of the algorithm
permit such optimizations.

With strength reduction done, we can proceed to
more subtle optimizations for which we have hints from
the optimization report.
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4.3. REGULARIZING VECTORIZATION PATTERN

Vector processing units (VPUs) of Intel Xeon Phi
COPIoCessors can process vector instructions on vectors
of exactly 16 or 8 elements in single and double pre-
cision, respectively. Nevertheless, the Intel C++ com-
piler is able to vectorize loops for which loop count is
not known at compilation time. Furthermore, load and
store instructions in the KNC architecture can operate
only on 64-byte aligned memory regions. However, this
does not prevent the Intel C++ compiler from vector-
izing loops in which the alignment of element is not
known at compilation time.

In cases where the loop count or alignment situa-
tion is not known at compilation time, the compiler im-
plements a runtime check of alignment and loop count.
Depending on the result, the code may peel off a few
iterations at the beginning of the loop, or process the
tail of the loop with scalar or masked instructions. Nat-
urally, a loop with beginning or tail peeled off is less
efficient than a loop with only vector iterations. Peeling
is illustrated in Figure 1. “Code Path 1" and “Code Path
2” may be taken at runtime depending on the length of
the loop and on the data alignment situation at runtime.

Code Path 1: vector iteration vector iteration

data aligned from iteration 0,
n is multiple of vector length

Code Path 2:
data aligned from iteration 3,

n not multiple of vector length ] “vector iteration : vector iteration : l

Peel : ! Tail
(scalar iterations) (scalar iterations)

Optimization: : :

padded loop,

aligned data, *vector iteration : vector iteration :

regular pattem  pyqded a beginning,

patit Padlied at end,
of vectorization vector iteration

vector iteration

Figure 1: Compiler may peel an irregular loop. To prevent that, the
programmer may regularize the vectorization pattern.

The programmer can alleviate the load on the plat-
form by regularizing the pattern of vectorization, so that
the operations are always vector and always on aligned
data. This may require three measures:

1. Padding loop count to a multiple of vector length
2. Padding data to a multiple of vector length
3. Aligning data on the appropriate boundary

This paper refers to optimizations that lead to the
elimination of loop peel and tail as “regularizing the
vectorization pattern”. The regularized loop may have
more iterations, where in marginal iterations the pro-
cessor crunches dummy data (see Figure 1, case “Opti-
mization”). However, the performance of regular loops
on the Intel MIC architecture is generally better than
that of irregular loops, because the peeled iterations take
more clock cycles than a single vector iteration.

In our code (Listing 1), the inner loop in j has dif-
ferent loop counts in every iteration in b. Addition-
ally, it sometimes begins on an aligned data element,
other times it does not. To regularize this loop, in-
stead of starting the inner loop from j=b+1, let’s start
it from jMin, which is the greatest multiple of the vec-
tor/alignment length not exceeding b+1. Our procedure
assumes that the matrix size, n, is also a multiple of the
vector length. The resulting code snippet is shown in
Listing 5, and explanation of additional measures taken
in this code are provided below.

12| #ifdef MIC

13 const int tile=32;

14| #else

15 const int tile=8;

16| #endif

17 assert (n%tile==0);

18 // Must store L separately from A

19 float L[n*n] __attribute__ ((aligned(64)));
20 for (int i = 0; 1 < n; 1i++) {

21 L[i*n:n]=0.0f;

2 Lli*n+i]=1.0f;

23 }

24 for (int b = 0; b < n; b++) {
25 const int jMin = b - DbS%tile;
2

26 // Strength reduction:

27 const float recAbb = 1.0f/A[bx*n + bl;
28 for (int i = b+1l; 1 < n; 1i++) {

29 L[i*n + b] = A[i*n + b]*recAbb;

30 // Regularized pattern of vector loop:
31 for (int j = jMin; j < n; J++)

32 Alixn + j] —= L[i*n+tb]l*A[bxn + Jjl;
33 }

34 }

35 // Copy temp matrix L into matrix A

36 for (int i = 0; 1 < n; 1i++)

37 for (int j = 0; j < 1i; J++)

38 Ali*n + j] = Lli*n + Jj1;

Listing 5: LU decomposition, regularized vectorization pattern.

With the j-loop beginning at jMin<b, we have to
deal with the fact that now the loop in j will overwrite
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some of the elements of A. In order to retain correctness,
a temporary storage matrix L was introduced, which is
stored separately from A during the calculation, and is
copied into A before the function returns.

There is also freedom to choose the value into
which jMin must divide. Experiments established that
on the CPU, a multiple of 8 works well, while on the
coprocessor, multiples of 32 are better. To optimize the
code, target-specific tuning can be done using the pre-
processor macro - _MIC__.

With regularized vectorization pattern, the
performance on the host increased 20% to
173.5 + 0.1 GFLOP/s and on the coprocessor it jumped
30% to 126.0 £ 0.3 GFLOP/s.

4.4. ALIGNMENT AND ALIGNED DATA HINT

Data alignment on a 64-byte boundary is required
for vector instructions in the Many Integrated Core ar-
chitecture of Intel Xeon Phi coprocessors. The align-
ment of the first element in a pointer-based array is
generally not known at compile time. Therefore, in au-
tomatically vectorized loops, the compiler must imple-
ment a check for alignment. Depending on the results
of the check, the application may peel off several itera-
tions at the beginning of the loop in order to reach the
first aligned element. The check may take a significant
portion of the loop calculation time, especially for short
loops, and multiple versions of the code required for
execution take up space in the instruction cache.

If the programmer can guarantee that pointer-based
arrays in a vectorized loop are aligned, it is benefi-
cial inform the compiler of this. This is done using
#pragma vector aligned.

This pragma is applicable to our case. Indeed,
in the code the memory buffer for matrix A is allo-
cated on a 64-byte aligned boundary using the allocator
_mmmalloc (). Matrix L, placed on the stack, is also
allocated on a 64-byte boundary thanks to the decla-
ration _attribute__( (aligned (64))) (see line
19 of Listing 5). Additionally, the code checks that n
is a multiple of 16, which amounts to 64 bytes, and be-
gins the loop in j on jMin, which is a multiple of 32
bytes on host or 128 bytes on coprocessor. Therefore,
all arrays in line 32 of Listing 5 are aligned. However,

according to the optimization report in Listing 3 (or the
respective line in optimization report for Listing 5), the
compiler implements code that would work with both
aligned and unaligned accesses to matrix A.

Applying the aligned data hint (#pragma
vector aligned) to our LU decomposition results
in the following (the relevant snippet is shown below).

28 for (int i = b+1l; 1 < n; 1i++) |
29 L{i*n + b] = A[i*n + b]*recAbb;
30 // A red }

hint:

32 // Reg pattern of vector loop:
33 for (int j = jMin; j < n; Jj++)
1 Alixn + Jj] —-= L[i*n+b]l*Albxn + Jjl;

Listing 6: Aligned data hint in the LU decomposition code.

With #pragma vector aligned, the com-
piler report indicates only aligned accesses to matrix A
(see Listing 7).

Listing 7: Optimization report for Listing 6

Due to this optimization with aligned data hint, the
performance on the host slightly decreased to 164.1 £
0.1 GFLOP/s, but on the coprocessor it increased by 3%
to 142.4 £ 0.3 GFLOP/s.

Optimization with the aligned data hint is likely to
be important for relatively short loops with lightweight
operations, because in longer loops, the relative amount
of time used for runtime checks is smaller.
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4.5. POINTER DISAMBIGUATION

Another hint given to us by the optimization report
of the LU decomposition code (Listing 7) is that the
compiler instrumented multiversioning. This occurred
because at compilation time, it is not certain whether
pointers L and A are aliased (i.e., pointing to the same
memory regions) or not.

We can gain additional performance by eliminating
multiversioning. This can be using #pragma ivdep.
This pragma instructs the compiler to ignore assumed
vector dependencies, and assume all pointers in the
loops to be non-aliased.

The result of this optimization in shown in Listing 8.
The new pragma can be combined with the pragma used
in the previous step.

28 for (int i = b+1l; 1 < n; 1i++) {

29 = A[i*n + b]+recAbb;

30 ] data hint:

31| #pre red

32 ambiguation:

33| P

34 loop
35 for (int j = jMin; j < n; Jj++)

36 Alixn + J] -= L[i*ntb]l*A[bxn + Jjl;
37 }

Listing 8: Pointer disambiguation in the LU decomposition code.

Once assumed vector dependence was dropped, the
performance on the CPU was bumped by around 4%
to 174.7 &£ 0.1 GFLOP/s and on the coprocessor it
increased by 10% to 157 £ 1 GFLOP/s. Further-
more, the reader may check that the optimization report
no longer includes information about multiversioning,
which means that only one code path was implemented,
with non-aliased L and U.

An alternative to #pragma ivdep is the qualifier
restrict, which is useful when some pointers in the
loop are actually aliased (see [3]). Qualifier restrict
can be used to disambiguate only non-aliased pointers,
and this may be sufficient information for the compiler
to implement a more optimal code path.

It is important to remember that when #pragma
ivdep is used, the penalty for supplying aliased point-
ers may be incorrect results, without a warning or error
message.

4.6. MEMORY TRAFFIC TUNING

With vectorization optimized as done above, the
CPU still outperforms the coprocessor, albeit by a small
margin. Hints for further improvement may be obtained
from performance analysis with Intel VTune amplifier.
Figure 2 shows a screenshot of the summary screen for
performance analysis of the last code with pointer dis-
ambiguation on the coprocessor.

| Elapsed Time: 24.814s
CPU Time: 543.282s

Clockticks 85,372,857,143
Instructions Retired: 19,661,428,571
CPI Rate: 4392
The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch misprediction or long latency

instructions. Explore the other hardware-related metrics to identify what is causing high CPL.
Paused Time: 0s
@ cache Usage:
L1 Misses: 48,350,000
L1 Hit Ratio: 0.999
Estimated Latency Impact: 32,173.214
Estimated Latency Impact value is high, which likely indicates that the majority of L1 data cache misses are not being serviced by the L2
cache. Software prefetching is one strategy for improving this on the Intel Xeon Phi coprocessor. Data reorganization or traditional technit

® Vectorization Usage:

\Vectorization Intensity: 14.579
L1 Compute to Data Access Ratio: 5.020
Most codes that run well on the Intel MIC architecture should be able to achieve a ratio of computation to L1 access that is greater than o
equal to their Vectorization Intensity. This is similar to a 1:1 ratio - one data access for one computation - except that by vectorizing each
L2 Compute to Data Access Ratio 18,660.714
@ TLB Usage:
L1 TLB Miss Ratio 0.015
High ratio value indicates lack of spatial locality; the program is ot using all the data in the page. Since there are 64 cachelines in a 4 Ki
page, the LL TLB miss ratio for sequential access to all the cachelines in a page is 1/64. High value may also indicate thrashing; if multip
L2 TLB Miss Ratio: 0.000

L1 TLB Misses per L2 TLB Miss 15,240.000

Figure 2: Performance analysis with VTune.

The metrics that VTune finds suspicious is “L1
compute to data access ratio” and the related metric “es-
timated latency impact”. Both of these metrics point to
insufficient arithmetic intensity, i.e., data fetched into
caches is not used for computation a sufficient number
of times. This situation can usually be resolved with a
technique called loop tiling.

Loop tiling transforms two (or more) nested loops
into three (or more) nested loops in such a way that a
data element used once is re-used as soon as possible.
This increases the temporal locality of data access. The
basic form of loop tiling is shown in Listing 9.

1| // Before tiling:

2| for (int 1 = 0; i < n; i++)

3 for (int j = 0; Jj < n; J++)

4 Compute (A[1], B[3]);

5| // Tiled i-loop:

6| const int tile = 16;

7| for (int jj = 0; Jj < n; Jj+t=tile)

8 for (int i = 0; 1 < n; i++)

9 for (int j = jj; J < Jjttile; Jj++)
10 Compute (A[1], BI[J]1);

Listing 9: Loop tiling.

Colfax International, 2015 — http://research.colfaxinternational.com/ 7
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Loop tiling changes the order of operations, but
does not necessarily change their nature (unless vector-
ization is involved). The purpose of tiling as shown in
Listing 9istore-use B[ jj] every tile=16 iterations
rather than every n iterations. This ensures that the re-
used elements of B are still in a cache. Indeed, after n
iterations, the beginning of the array B may be evicted
from cache, depending on the size of the elements and
of the cache.

For our LU decomposition, tiling is not trivial, be-
cause one has to ensure correctness. The Doolittle algo-
rithm has sequential nature in that it cannot start elim-
inating elements in line 1 with elements in line b+1
until it has done it with elements in line b. Therefore,
opportunities for changing the order of operations in b
are limited, and correctness check must be performed.

Additionally, the inner loop in variable j conve-
niently has unit-stride access favorable for vectorization
and bandwidth. So it is best to retain unit-stride in 7j,
which further restricts the types of tiling that we can
utilize.

Tiling the loop in b leads us to the final optimized
version of the code. A snippet of the performance-
critical set of loops is shown Listing 10. Arriving to this
code required some experimentation. First, the variable
for tiling had to be chosen (b seems to work best). Af-
ter that, the order of size of the tile had to be tuned
(btile=16 for MIC and bt ile=8 for CPU seem to
provide the best results). Finally, the order of tiled loops
in i, b and j must be chosen from a total of 3! = 6 op-
tions (experiments show that jib works best for MIC
and i jb is better for the CPU).

In addition to the tuning described above, tiled code
has a few additional complications. First, it may be
necessary to manually peel off some of the iterations to
maintain correctness. Second, vectorization must be re-
tained in the dimension that is accessed with unit stride.
In our case, this is the j-dimension. In order to vector-
ize the j-loop, which, after tiling, is no longer inner, the
compiler hint #pragma simd was used.

After memory traffic optimization, performance on
the host increased by 34% to 233 GFLOP/s, and on the

coprocessor by 56% to 244 GFLOP/s. At this point, the
coprocessor marginally outperforms the host.

6| #1fdef MIC

7 const int tile=32; // Tuning parameters
8 const int btile=16; // for MIC

9| relse

10 const int tile=16; // Tuning parameters
11 const int btile=8; // for CPU

12| #endif

13

14

15

16 1
17

18 // cached data re-use

19 for (int bb = 0; bb < n; bb += btile) {

20 // ...skipped loops that compute the

21 // L rs. These loops do not take
22 // a significant fraction of time...

23

24 // This block uses the L-factors

25 /7t nate the bulk of the i-lines
26 // #pra imd vectorizes the j-loop
27 // rat an the i- or b-loop

28

29 yne

30

31 1

32 for (int j = jMin+tile; J < n; Jj++)

33 for (int i = bbt+btile; i < n; i++)

34 for (int b = bb; b < bbt+tbtile; b ++)
35 Alixn + j] -= L[i*n + b]l*A[b*n + J];
36| #else

37 for (int i = bb+btile; 1 < n; i++)

38 ma vector aligned

39

10 1

41 for (int j = jMin+t+tile; j < n; Jj++)

2 for (int b = bb; b < bbt+btile; b ++)
13 Ali*n + j] -= L[i*n + bl*A[b*n + J]
44| #endif

15 }

Listing 10: Fragment of LU decomposition, tiled.

Because the purpose of tiling is to fit certain por-
tions of the data set into the processor’s cache, the strat-
egy of tiling may vary with the problem size. This in-
cludes the choice of the tiled variable or variables and
order of loops. In our case, tiling was targeted for ma-
trix size 128 x 128, which are 64 KB in size. This is
greater than the level 1 cache, but smaller than the level
2 cache size per core on both Xeon and Xeon Phi.

Cache-oblivious algorithms [4, 5] may yield a code
less sensitive to problem size and the properties of the
computing platform. A cache-oblivious algorithm is
non-trivial to implement for LU decomposition because
of its partially sequential nature.
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5. RESULTS AND DISCUSSION

5.1. SINGLE CODE BASE

Performance summary of LU decomposition at dif-
ferent optimization stages is shown in Figure 3.
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Figure 3: Summary of LU decomposition performance.

It is evident that in all cases but one, the optimiza-
tion methods discussed here had positive impact on per-
formance both on the host and on the coprocessor. The
optimizations performed were all constrained to high-
level language programming and compiler hints:

1. strength reduction replaces expensive operations
with less expensive;

2. regularizing the vectorization pattern requires
changing the loop iteration count;

3. compiler hint on data alignment is a one-line
comment-like pragma;

4. another compiler hint for pointer disambiguation
is also a pragma;

5. memory traffic tuning requires changing the or-
der of operations in loops.

We ended up with a single code (except for platform-
specific tuning parameters and different order of loops),
which may be used with high performance both on the
multi-core and the manycore platforms. In this sense,
the educational goal of the paper is achieved. However,
to put the result in context, let us also discuss the abso-
lute value of achieved performance.

Two questions that remain to be clarified are: (i)
how do the achieved results compare to results with
other optimization methods, and (ii) are the perfor-
mance results “good enough”?

5.2. PRIOR ART: INTEL MKL

In order to assess the absolute performance
achieved, we can use the LU decomposition function
from the Intel Math Kernel Library (MKL), which is
implemented as a LAPACK function sgetrf. The
MKL implementation is more general and complex than
ours. First, it is tuned for a greater range of matrix sizes,
and second, it may use pivoting (interchanging rows to
reduce rounding errors). However, for clarity of experi-
ment, the benchmark code uses a diagonally-dominated
matrix, for which pivoting does not kick in.

The performance of MKL is compared to the per-
formance of this work in Figure 4.

500 \ T
@ MKL on CPU
& 400 - MKL on MIC - ® 7
) This work on CPU —&— *
3 300 - This work on MIC e~ _ ]
g g -

200 - o 7
g / od
S e s =
£ 100p ° - - = T
B = _ =

0 ™ i | | | | | |

32 64 96 128 160 192 224 256

Matrix size, n

Figure 4: LU decomposition: this work and Intel MKL. Reported
performance is for 48 concurrent single-threaded decom-
positions on a 24-core Intel Xeon E5-2697 V2 proces-
sor, and 244 concurrent decompositions on a 61-core In-
tel Xeon Phi 7120P coprocessor.

This figure leads to two conclusions:

1. On the host’s Intel Xeon CPU, our high-level lan-
guage code performs on par with the industry-
leading MKL implementation at our target matrix
size 128 x 128. For smaller matrices, our code is ac-
tually more efficient than MKL, however, for larger
matrices, MKL performs better. Indeed, optimiza-
tion techniques such as loop regularization are only
important for short loops; for longer loops, other
strategies may be used, such as tiling the j-loop or
multiple loops.
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2. On the Intel Xeon Phi coprocessor, the MKL imple-
mentation loses by a large factor to both the MKL
code on the CPU, and to our high-level language
code on CPU and coprocessor. It indicates that the
MKL code, likely hand-tuned with explicit assembly
or intrinsics, is not portable to the MIC architecture,
while our high-level language approach with tuning
for the CPU also results in high performance on the
coprocessor. While the MKL developers have yet to
approach optimizing ?getrf () for Intel Xeon Phi
coprocessors, we developed for two platforms al-
most for the effort of one. The word “almost” is used
because we did tune the sizes of tiles and the order
of loops separately for the CPU and MIC; however,
even without this fine-tuning the loss of performance
on either platform is relatively small. The reader can
verify this using the code supplied with this paper.

5.3. VALUE OF INTEL XEON PHI WITH 1.0X
ACCELERATION

In the past, Colfax Research has published case
studies that show versus CPU speedups of up to 3x
(e.g., [6, 7, 8, 9]). Here, the application only achieved
the same performance on the coprocessor and on the
host. This is in part because this is a complicated prob-
lem to optimize: with small matrices, intricate details
of vectorization and cache operation are crucial for per-
formance. Additionally, not helping the value of the ac-
celeration factor is the fact that the CPU used for base-
line is the fastest model in the Ivy Bridge architecture
generation. However, the bottom line is 1x acceleration
factor through the use of an Intel Xeon Phi coprocessor.
Is it good enough to justify using a coprocessor?

“Good enough” has different meanings in different
usage scenarios. Sometimes it is important to max-
imize performance per watt (e.g., in computing cen-
ters for which the operating costs are the major con-
cern). Other times, performance to set-up cost ratio is
important (when purchasing budget is the limitation).
Finally, the sought-for metric may be the best perfor-
mance per system (for users of a single workstation and
in cases where rack space in computing facility is lim-
ited). Where the 1x acceleration factor stands in terms
of these metrics is addressed in a companion publica-
tion [10].
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