
INTEL PYTHON ON 2ND GENERATION INTEL XEON PHI PROCESSORS:
OUT-OF-THE-BOX PERFORMANCE

Tony Yoo, Ryo Asai, Andrey Vladimirov

Colfax International

June 20, 2016

Abstract

This paper reports on the value and performance for
computational applications of the Intel distribution for
Python* 2017 Beta on 2nd generation Intel R© Xeon Phi

TM

processors (formerly codenamed Knights Landing). Bench-
marks of LU decomposition, Cholesky decomposition, sin-
gular value decomposition and double precision general
matrix-matrix multiplication routines in the SciPy and
NumPy libraries are presented, and tuning methodology for
use with high-bandwidth memory (HBM) is laid out.
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2 BENCHMARKS

1. A CASE FOR PYTHON IN COMPUTING

Python1 is a popular scripting language in com-
putational applications. Empowered with the funda-
mental tools for scientific computing, NumPy2 and
SciPy3 libraries, Python applications can express in
brief and convenient form basic linear algebra subrou-
tines (BLAS) and linear algebra package (LAPACK)
functions for operations on matrices and systems of lin-
ear algebraic equations.

The recently released 2nd generation Intel Xeon Phi
processors (formerly codenamed Knights Landing, or
KNL) have high performance capabilities in BLAS and
LAPACK, which makes them well-suited as computing
platforms for Python/NumPy/SciPy applications. How-
ever, the standard Python distribution, CPython, is not
yet able to take advantage of the many integrated core
(MIC) architecture that Intel Xeon Phi processors are
based on.

To address this problem, Intel Distribution for
Python4 uses the performance library Intel MKL5 to
accelerate linear algebra. Additionally, this distribu-
tion provides interfaces to Intel Threading Building
Blocks (TBB), Intel Data Analytics Acceleration Li-
brary (DAAL) and Intel Message Passing Interface
(MPI) libraries.

In this publication we report on the usability and
performance on Intel Xeon Phi processors of an essen-
tial subset of BLAS and LAPACK: LU decomposition,
Cholesky decomposition, singular value decomposition
(SVD) and general matrix-matrix multiplication. We
compare the benchmarks taken with CPython to those
taken with Intel Python.

2. BENCHMARKS

The core of the benchmark code for our routines is
shown in Listing 1. We used the SciPy and NumPy li-
braries with CPython and only SciPy with Intel Python.
Time measurements were repeated 10 times in a loop,
and there was a warm-up calculation prior to each re-
spective benchmark.

We used Python 2.7 with Intel Distribution for
Python 2017 Beta and the standard build of Python
2.7.5 in CentOS 7.2. Our system was built on an In-
tel Xeon Phi processor 7210 with 64 cores clocked at
1.3 GHz, 96 GiB of DDR4 and 16 GiB of MCDRAM
memory (high-bandwidth memory, HBM). The HBM
was used in flat mode, i.e., exposed to the programmer
as addressable memory in a separate NUMA node (see
this paper for more information).

 # LU decomposition benchmark
 import time
 from scipy.linalg import \
 lu_factor as lu_factor
 ...
 start = time.time()
 LU,piv = lu_factor(A, overwrite_a=True, \
 check_finite=False)
 stop = time.time()

 # Cholesky decomposition benchmark
 from scipy.linalg import \
 cholesky as cholesky
 ...
 start = time.time()
 L = cholesky(A, overwrite_a=True, \
 check_finite=False)
 stop = time.time()

 # SVD benchmark
 from scipy.linalg import \
 svd as svd
 ...
 start = time.time()
 U, s, V = svd(A)
 stop = time.time()

 # DGEMM benchmark
 from scipy.linalg.blas import \
 dgemm as dgemm
 ...
 start = time.time()
 C=dgemm(alpha=1.0, a=A, b=B, c=C, \
 overwrite_c=1, trans_b=1)
 stop = time.time()

Listing 1: Snippets of benchmark code

1www.python.org
2numpy.org
3www.scipy.org
4software.intel.com/en-us/python-distribution
5software.intel.com/en-us/intel-mkl
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3 RESULTS AND DISCUSSION

We did not tune the execution environment of MKL
via environment variables. Experiments proved that de-
fault choice of the number of threads and thread affinity
that MKL makes provides better performance than any
alternative settings.

However, to take advantage of the high-bandwidth
memory, we placed the entire application in HBM by
running the benchmarks with the numactl tool as
shown below.

user@knl% numactl -m 1 benchmark-script.py

Listing 2: Using numactl to bind the application to HBM.

3. RESULTS AND DISCUSSION

The summary of our benchmarks for matrix size
N = 5000 is shown in Figure 1. Additional bench-
marks are provided in Appendix A.
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Figure 1: Performance gains with Intel Python.

Intel Python showed significant performance gain
out-of-the-box with no code tampering.

We have observed that the computation time re-
ported by the Intel MKL library (obtained by setting
the environment variable MKL VERBOSE=1) was lower
than the time of the Python call. The difference between
them varied from 0.2% to 25% in DGEMM (smaller for
larger matrices), from 23% to 60% in LU, from 4% to
to 7% in SVD and was over 65% in Cholesky decompo-

sition. We have not investigated the cause of this over-
head as our goal was to report out-of-box performance.
That said, applications that depend critically on BLAS
and LAPACK distribution may benefit from implemen-
tation in a compiled language such as C or Fortran.

Additionally, we observed that all tested routines
are significantly faster in NumPy than in SciPy in
CPython (up to a factor of 7 for DGEMM). However,
this performance difference is not significant compared
to the speedup obtained with Intel Python (up to a factor
of 150 for DGEMM). For DGEMM, the attained perfor-
mance for N = 5000 is 1.85 TFLOP/s in double pre-
cision (see Section A), which is 70% of the theoretical
peak performance of our processor. Therefore, the us-
age of Intel MKL remains crucial for extracting the best
performance out of Intel architecture.

Performance optimization brought about by Intel
Python is not limited to Intel Xeon Phi processors. In-
tel’s own reports indicate similar high performance gain
on general-purpose Intel Xeon processors6. This is
good news for applications that are not highly parallel –
either by nature, or due to sub-optimal implementation.
High-clock speed cores in Intel Xeon CPUs are better
suited for serial workloads than Intel Xeon Phi cores
designed for high parallelism.

Intel MKL and Intel distribution for Python are
available at no cost7. This makes it straightforward
to recommend Intel’s software stack over CPython for
performance-sensitive computational applications on
Intel Xeon Phi processors.

This paper, along with downloadable
code of the benchmarks, may be found at
colfaxresearch.com/isc16-intel-python.

6See Intel Python page
7software.intel.com/en-us/articles/free-mkl
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A ADDITIONAL BENCHMARKS

A. ADDITIONAL BENCHMARKS

Performance measurements for a range of problem
sizes for each of the benchmarked functions are re-
ported below. For DGEMM, we report absolute per-
formance in addition to the relative performance. See
remark in Section 3 on the overhead in this function.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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