
MACHINE LEARNING ON INTEL ARCHITECTURE:
IMAGE CAPTIONING ON 2ND GENERATION INTEL XEON PHI PROCESSORS

WITH NEURALTALK2, TORCH

Bonan Zhang, Ryo Asai, Yuanzhe Li, Andrey Vladimirov

Colfax International

June 20, 2016

Abstract

In this case study, we describe a proof-of-concept imple-
mentation of a highly optimized machine learning applica-
tion for Intel Architecture. Our results demonstrate the ca-
pabilities of Intel Architecture, particularly the 2nd genera-
tion Intel Xeon Phi processors (formerly codenamed Knights
Landing), in the machine learning domain.

Table of Contents

1 Case Study . 2
2 Optimization Work 2
3 Preliminary Results 3
4 Conclusion . 3

Colfax International is a leading provider of high-performance computing solutions and expert-level educational programs for
parallel computing. Ready-to-go Colfax systems include workstations, servers, clusters, storage and personal supercomputing
solutions. Educational programs provided by Colfax enable software developers to achieve top performance on cutting-edge
computing platforms, closing the loop between hardware innovation and progress in computational disciplines. The compre-
hensive set of services provided by Colfax delivers to its clients significant price/performance advantages, and increased IT
agility, that accelerates their business outcomes and paves the path to discovery. Colfax International’s extensive customer base
includes Fortune 1000 companies, educational institutions, and government agencies. Founded in 1987, Colfax International is
based in Sunnyvale, California and is privately held.

c© Colfax International, 2016 — http://colfaxresearch.com/ 1

http://www.colfax-intl.com/
http://colfaxresearch.com/

2 OPTIMIZATION WORK

1. CASE STUDY

It is common in the machine learning (ML) domain
to see applications implemented with the use of frame-
works and libraries such as Torch, Caffe, TensorFlow,
and similar. This approach allows the computer sci-
entist to focus on the learning algorithm, leaving the
details of performance optimization to the framework.
Similarly, the ML frameworks usually rely on a third-
party library such as Atlas, CuBLAS, OpenBLAS or
Intel MKL to implement basic linear algebra subrou-
tines (BLAS), particularly general matrix-matrix mul-
tiplications (GEMMs) which are an essential building
block of convolutional neural networks and other ML
methods. This layered approach allows to adapt ML
applications to different underlying computer architec-
tures with relative ease, by optimizing the middleware
(the ML framework), which may include linking it to
the appropriate BLAS library.

Because the recently released 2nd generation In-
tel Xeon Phi processors (formerly codenamed Knights
Landing, or KNL), have high performance capabilities
in BLAS, they are well-suited as computing platforms
for ML applications. Ideally, computer scientists should
not need to modify their code at all, and only the frame-
work must be updated to extract the performance ca-
pabilities out of the new processors. In this study we
performed an experiment to determine what it takes to
adapt an application based on a neural network algo-
rithm to run on an Intel Xeon Phi processor.

The starting point for this study is an open-source
project NeuralTalk21 developed by Andrej Karpathy
and Fei-Fei Li, Stanford University. This application
uses machine learning to analyze real-life photographs
of complex scenes and produce a verbal description of
the objects in the scene and relationships between them
(e.g., “a cat is sitting on a couch”, “woman is holding
a cell phone in her hand”, “a horse-drawn carriage is
moving through a field”, etc.) NeuralTalk2 is a recur-
rent neural network. It uses a VGG net for the convo-
lutional neural network, and a long short-term memory
(LSTM) network composed of standard input, forget,
and output gates. NeuralTalk2 is written in Lua, and is
using the machine learning framework Torch2.

Out-of-box performance of NeuralTalk2 on Intel ar-
chitecture is sub-optimal due to inefficient usage of In-
tel Architecture capabilities by the Torch library. Our
goal for this study was to demonstrate that it is possible
to accelerate machine learning applications that rely on
middleware, such as Torch, by optimizing the middle-
ware and largely leaving the original code (e.g., in the
Lua language) without modification. This means that
developers and researchers can continue using existing
machine learning applications and benefit from the Intel
architecture by simply updating their middleware.

We focused on the forward pass (i.e., inference) of
the network, as a trained model was distributed with
the network. The metric for performance we used was
the throughput for the network, measured as the average
time of captioning an image in a batch of images.

2. OPTIMIZATION WORK

Our contributions to the performance optimization
in Torch and NeuralTalk2 are summarized below.

• Rebuilt the Torch libraries with the Intel C Com-
piler, linking the BLAS and LAPACK functions
in Torch to the Intel MKL library.

• Performed code modernization in the Torch:
– Improved various layers of VGG net with

batch GEMMs, loop collapse, vectorization
and thread parallelism.

– Improved the LSTM network by vectoriz-
ing loops in the sigmoid and tanh functions
and using optimized GEMM in the fully-
connected layer.

• Incorporated algorithmic changes in the code
of NeuralTalk2 in an architecture-oblivious way
(e.g., replaced array sorting with top-k search al-
gorithm to locate the top 2 elements in an array).

• Improved the parallel strategy for increased
throughput by running several multi-threaded in-
stances of NeuralTalk2, pinning the processes to
the respective processor cores.

• Took advantage of the high-bandwidth memory
(HBM) based on the MCDRAM technology by
using it in the cache mode.

1github.com/karpathy/neuraltalk2
2torch.ch

c© Colfax International, 2016 — http://colfaxresearch.com/ 2

https://github.com/karpathy/neuraltalk2
http://torch.ch/
http://colfaxresearch.com/

4 CONCLUSION

3. PRELIMINARY RESULTS

Through our optimization work, we attained per-
formance improvement by a factor over 50x on 2nd
generation Intel Xeon Phi processors. Optimized code

also experiences performance gains in excess of 25x
on general-purpose Intel Xeon processors of the Broad-
well architecture. Performance results are summarized
in Figure 1.

 0

 5

 10

 15

 20

 25

 30

Original Intel Compiler
+MKL

Middleware
Changes

User Code
Changes

Parallel
Strategy

MCDRAM as
Cache

P
er
fo
rm

an
ce
 (
im

ag
es
/s
)

Optimization of NeuralTalk2

colfaxresearch.com
55x

28x

Intel® Xeon® processor E5-2650 v4 (2 sockets)

0.91 1.5

11

15

25
Intel® Xeon Phi™ processor 7210 (KNL)

5.7

10

21

28

Figure 1: Significant performance gains through code modernization.

4. CONCLUSION

Code modernization allowed us to achieve signif-
icant performance improvement in our case study of a
machine learning application based on neural networks.
This applies to the new Intel Xeon Phi processors as
well as to well-established general-purpose CPUs. Im-
portantly, the same exact code in Lua and in C is used
on both platforms (with the exception of compiler argu-
ments).

We believe that further performance optimization is
possible through the use of better GEMM algorithms
for the many-core architecture. This, according to our
private communications, is work in progress in the Intel
MKL team.

Additionally, structuring the application (in this
case, NeuralTalk2) with parallelism in mind may help
to take advantage of multiple CPU cores in a better way

than running multiple processes. This, however, is be-
yond the scope of our work.

In earlier work (to be published elsewhere), we have
demonstrated the possibility of using Torch in conjunc-
tion with the Message Passing Interface (MPI) frame-
work, thus scaling the applications across a cluster of
Intel Xeon Phi processors for improved throughput.
Given the embarrassingly parallel nature (i.e., low com-
munication rate) of the forward pass stage of neural
networks, it is natural to expect linear scalability of
the application throughput with the number of compute
nodes.

This publication accompanies a live demonstration
of the NeuralTalk2 application on a 2nd generation In-
tel Xeon Phi processor at the 2016 ISC High Perfor-
mance conference3. For a recording of this demo, and
for downloadable code of the improved Torch frame-
work, see colfaxresearch.com/isc16-neuraltalk

3www.isc-hpc.com

c© Colfax International, 2016 — http://colfaxresearch.com/ 3

http://colfaxresearch.com/isc16-neuraltalk2/
http://www.isc-hpc.com/
http://colfaxresearch.com/

	Case Study
	Optimization Work
	Preliminary Results
	Conclusion

