
CLUSTERING MODES IN KNIGHTS LANDING PROCESSORS:
DEVELOPER’S GUIDE

Andrey Vladimirov and Ryo Asai

Colfax International

May 11, 2016

Abstract

This publication is part of a developer guide focus-
ing on the new features in 2nd generation Intel R© Xeon
Phi

TM
processors code-named Knights Landing (KNL).

In this document, we discuss the clustering modes of
the on-die mesh interconnect.

We start a discussion on what types of applications
benefit from the clustering modes and why clustering
modes help these applications. After that we cover
the specifics of the available cluster modes: all-to-all,
quadrant, hemisphere, SNC-4 and SNC-2. Finally, we
discuss how to make the application NUMA-aware for
use in SNC modes. In this context, we give recipes for
nested OpenMP and hybrid MPI+OpenMP approaches
combined with first-touch allocation policy, numactl
tool and memkind library.

This publication and other white papers on KNL
processors can be found on the Colfax Research Web-
site: colfaxresearch.com/knl-guide

Table of Contents

1 Cache Organization in KNL 2

2 Clustering Modes 3
2.1 All-to-All 3
2.2 Quadrant/Hemisphere 3
2.3 SNC-4/SNC-2 4
2.4 Setting the Clustering Mode 4

3 Programming with Sub-NUMA Clusters . 5
3.1 Querying NUMA Information 5
3.2 Pinning Threads to Sub-NUMA Clusters 7

3.2.1 Nested OpenMP 7
3.2.2 Hybrid MPI+OpenMP 8

3.3 Binding Memory to NUMA Nodes . . 9
3.3.1 On-Platform Memory 9
3.3.2 Entire Application in HBM . . 10
3.3.3 Selective Allocation in HBM . 10

3.4 Did it Work? 11

4 Summary 12

Colfax International is a leading provider of high-performance computing solutions and expert-level educational
programs for parallel computing. Ready-to-go Colfax systems include workstations, servers, clusters, storage
and personal supercomputing solutions. Educational programs provided by Colfax enable software developers
to achieve top performance on cutting-edge computing platforms, closing the loop between hardware innovation
and progress in computational disciplines. The comprehensive set of services provided by Colfax delivers to its
clients significant price/performance advantages, and increased IT agility, that accelerates their business outcomes
and paves the path to discovery. Colfax International’s extensive customer base includes Fortune 1000 companies,
educational institutions, and government agencies. Founded in 1987, Colfax International is based in Sunnyvale,
California and is privately held.

Colfax International, 2016 — http://colfaxresearch.com/ 1

http://colfaxresearch.com/knl-guide/
http://www.colfax-intl.com/
http://colfaxresearch.com/

1 CACHE ORGANIZATION IN KNL

1. CACHE ORGANIZATION IN KNL

2nd generation Intel R© Xeon PhiTM processors code-named Knights Landing (KNL) are specialized
computing platforms capable of delivering better performance than general-purpose CPUs such as Intel R©

Xeon R© products for some applications. Applications run best on KNL if they have high degree of paral-
lelism and well-behaved communication with memory. Specifically,

• If memory traffic is negligible compared to the processing of arithmetic, the application is compute-
bound and may run well on KNL due to its high arithmetic peak performance [1].

• If memory access has predictable, sequential pattern, the application is bandwidth-bound and may
run well on KNL due to its high-bandwidth memory (HBM) [2].

• Finally, if an application is neither compute-bound, nor bandwidth-bound because it has significant
irregular memory access pattern, it belongs to the class of latency-bound applications.

In 1st generation Intel R© Xeon PhiTM processors code-named Knights Corner (KNC), latency-bound
applications performed poorly compared to Intel Xeon processors of comparable power. However, in
KNL, significant improvements in cache organization reduce the impact of latency-bound operations.

CORE

L2

GBOX
(memory

controller)

GBOX
(memory

controller)

SBOX
PCIe v2.0
controller,

DMA engines
ADDRESS

DATA

COHERENCE

Core Ring
Interconnect (CRI)

GDDR5

GDDR5

GDDR5

GDDR5

TD TD TD TD

TD

TD

TD TD TD TD

TD

TD

GDDR5

GDDR5

GDDR5

GDDR5

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

COREL2

COREL2CORE L2

CORE L2 Distributed tag
directory (DTD)

CORE

L2

CORE CORE

L2

CORE CORE

L2

CORE CORE

L2

CORE CORE

L2

CORE

D
D

R
4

C
O

N
T

R
O

L
L

E
R

D
D

R
4

C
O

N
T

R
O

L
L

E
R

CORE

L2

CORE

CORE

L2

CORE

CORE

L2

CORE

CORE

L2

CORE

CORE

L2

CORE

CORE

L2

CORE

CORE

L2

CORE CORE

L2

CORECORE

L2

CORE CORE

L2

CORE

CORE

L2

CORE

CORE

L2

CORE

CORE

L2

CORE CORE

L2

CORE

MCDRAM PCIe

≤
38

4
G

iB
 s

ys
te

m
 D

D
R

4,
 ~

90
 G

B
/s

CORE

L2

CORE

≤ 16 GiB on-package MCDRAM, ~ 400 GB/s

MCDRAM

MCDRAM MCDRAM

CORE

L2

CORE CORE

L2

CORE

CORE

L2

CORECORE

L2

CORE

...
36 TILES

72 CORES

Figure 1: Distributed Tag Directory on Intel Xeon Phi Processors. Left: Knights Corner (1st generation), right: Knights
Landing (2nd generation)

In KNL (see Figure 1, right), each of its ≤ 72 cores has an L1 cache, pairs of cores are organized
into tiles with a slice of the L2 cache symmetrically shared between the two cores, and the L2 caches are
connected to each other with a mesh. All caches are kept coherent by the mesh with the MESIF protocol
(this is an acronym for Modified/Exclusive/Shared/Invalid/Forward states of cache lines). In the mesh,
each vertical and horizontal link is a bidirectional ring. In contrast, KNC (Figure 1, left) had only one
bidirectional ring connecting up to 61 cores.

To maintain cache coherency, KNL has a distributed tag directory (DTD), organized as a set of per-tile
tag directories (TDs), which identify the state and the location on the chip of any cache line. For any
memory address, the hardware can identify with a hash function the TD responsible for that address.

These improvements in cache organization in KNL come with increased complexity of the chip hard-
ware. To manage this complexity and set the optimal mode of operation for any given computational
application, the programmer has access to cache clustering modes. Their purpose and utilization is dis-
cussed in this paper.

Colfax International, 2016 — http://colfaxresearch.com/ 2

http://colfaxresearch.com/

2 CLUSTERING MODES

2. CLUSTERING MODES

When an application requests data from memory address, the processing tile (let’s call it tile A) will
first query the local cache to see if the requested memory address is present there. If it is, the calculation
will proceed with minimal latency for data access. Otherwise, tile A will query the DTD for the cache line
(i.e., a 64-byte block of memory) containing that data. This means that a message will be sent from tile A
to a TD on another tile (call it tile B). If according to the TD, this cache line is present in some other tile’s
L2 cache (call it tile C), another message will be sent from tile B to tile C, and finally, tile C will send
the data to tile A. If the requested memory address is not cached, tile B will forward the request to the
memory controller responsible for this address (call it controller D). This may be on-package MCDRAM-
based memory controller or on-platform DDR4-based memory controller.

Naturally, it is in the developer’s interests to maintain locality of these messages to achieve the lowest
latency and greatest bandwidth of communication with caches. KNL supports all-to-all, quadrant/hemi-
sphere and sub-NUMA cluster SNC-4/SNC-2 modes of cache operation, and their properties and utiliza-
tion are discussed below.

2.1. ALL-TO-ALL

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

N
U

M
A

 n
od

e
0

M
C

D
R

A
M

M
C

D
R

A
M

M
C

D
R

A
M

M
C

D
R

A
M

A

B

D

Figure 2: Cache miss in the all-to-all mode.

With the all-to-all clustering mode, memory addresses are
uniformly distributed across all TDs on the chip. This mode can
have “unfortunate cases” where the points A, B, C and D are
far apart, and the latency of cache hits and cache misses is long.
Figure 2 demonstrates this mode.

The all-to-all mode should not be used for day-to-day oper-
ation of KNL. It is supported for troubleshooting and for situa-
tions where other clustering modes cannot operate; for example,
a missing memory module or faulty MCDRAM would require
using the all-to-all mode.

2.2. QUADRANT/HEMISPHERE

tile
TD

M
C

D
R

A
M

M
C

D
R

A
M

M
C

D
R

A
M

M
C

D
R

A
M

tile
TD

tile
TD

tile
TD

N
U

M
A

 n
od

e
0

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

B

A

D

Figure 3: Cache miss in the quadrant clus-
tering mode.

In the quadrant clustering mode, the tiles are divided into
four parts called quadrants, which are spatially local to four
groups of memory controllers. Memory addresses served by a
memory controller in a quadrant are guaranteed to be mapped
only to TDs contained in that quadrant. Hemisphere mode func-
tions the same way, except that the die is divided into two
hemispheres instead of four quadrants. In the quadrant and
hemisphere modes, the latency of L2 cache misses is reduced
compared to the all-to-all mode because the worst-case path is
shorter.

Figure 3 shows an example of an L2 cache miss in the quad-
rant mode. Because the memory controller and the tag directory are in the same area, the memory request
will never need to go across quadrants.

Colfax International, 2016 — http://colfaxresearch.com/ 3

http://colfaxresearch.com/

2.3 SNC-4/SNC-2 2 CLUSTERING MODES

The division into quadrants is hidden from the operating system: there are no “breaks” in the ad-
dress space and the memory appears to be one contiguous block from the user’s perspective. This is the
recommended model to use for applications that treat KNL as a symmetric multi-processor (SMP).

2.3. SNC-4/SNC-2

tile
TD

M
C

D
R

A
M

M
C

D
R

A
M

M
C

D
R

A
M

M
C

D
R

A
M

tile
TD

tile
TD

tile
TD

N
U

M
A

 n
od

e
0

N
U

M
A

 n
od

e
1

N
U

M
A

 n
od

e
2

N
U

M
A

 n
od

e
3

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

tile
TD

A

B

D

Figure 4: Cache miss in the SNC-4 mode.

The sub-NUMA cluster modes SNC-4 and SNC-2 also par-
tition the chip into four quadrants or two hemispeheres, and,
in addition, expose these quadrants (hemispheres) as NUMA
nodes. In this mode, NUMA-aware software can pin software
threads to the same quadrant (hemisphere) that contains the TD
and accesses NUMA-local memory.

Figure 4 shows an example of an L2 cache miss in the SNC-
4 mode. Because tiles A, B and C and memory controller D are
physically close to each other, this mode has the lowest latency
provided that communication stays within a NUMA domain. At
the same time, if in SNC-4 or SNC-2 mode cache traffic crosses NUMA boundaries, this path is more
expensive than in the quadrant mode. KNL in SNC-4 (-2) mode is similar to a 4-way (2-way) Intel Xeon
processor.

Sub-NUMA clustering is the recommended mode of operation for NUMA-aware applications, i.e.,
applications that pin processing threads and their memory to the respective NUMA nodes. We discuss
programming considerations for this mode in Section 3.

2.4. SETTING THE CLUSTERING MODE

Clustering mode is a boot-time decision. The setting of the mode is done in the BIOS. There is no way
to modify the clustering mode on KNL without restarting the system. The location of this setting in the
BIOS interface depends on the vendor. For example, in one of our machines, it is located under Advanced
→ Chipset→ North Bridge→ QPI Configuration→ Cluster Mode.

To check what mode the system is loaded in, there is a modified version of the
hwloc-dump-hwdata for KNL processors that can output the mode. For example, the listing below
reports “Cluster mode: SNC-4”.

user@knl% sudo hwloc-dump-hwdata
Dumping KNL SMBIOS Memory-Side Cache information:
...

Getting MCDRAM KNL info. Count=8 struct size=12
MCDRAM controller 0
Size = 2048 MB
MCDRAM controller 1
Size = 2048 MB

...
Total MCDRAM 16384 MB
Cluster mode: SNC-4
Memory Mode: Flat
Flat Mode: No MCDRAM cache available, nothing to dump.

Colfax International, 2016 — http://colfaxresearch.com/ 4

http://colfaxresearch.com/

3 PROGRAMMING WITH SUB-NUMA CLUSTERS

3. PROGRAMMING WITH SUB-NUMA CLUSTERS

SNC-2 and SNC-4 clustering expose locally-communicating sub-domains of the chip as NUMA nodes.
However, to take advantage of this architecture, the developer must make the application NUMA-aware
by taking measures discussed in this section.

3.1. QUERYING NUMA INFORMATION

To see the NUMA configuration of KNL in sub-NUMA cluster modes, you can use the command
numactl with the argument -H (see Listing 1).

user@knl% numactl -H
available: 8 nodes (0-7)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... rest of node 0 cpus ...
node 0 size: 24452 MB
node 0 free: 22976 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 ... rest of node 1 cpus ...
node 1 size: 24576 MB
node 1 free: 23698 MB
node 2 cpus: 48 49 50 51 52 53 54 55 56 57 58 59 60 ... rest of node 2 cpus ...
node 2 size: 24576 MB
node 2 free: 23843 MB
node 3 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 ... rest of node 3 cpus ...
node 3 size: 24576 MB
node 3 free: 23693 MB
node 4 cpus:
node 4 size: 4096 MB
node 4 free: 3982 MB
node 5 cpus:
node 5 size: 4096 MB
node 5 free: 3982 MB
node 6 cpus:
node 6 size: 4096 MB
node 6 free: 3982 MB
node 7 cpus:
node 7 size: 4096 MB
node 7 free: 3982 MB
node distances:
node 0 1 2 3 4 5 6 7

0: 10 21 21 21 31 41 41 41
1: 21 10 21 21 41 31 41 41
2: 21 21 10 21 41 41 41 31
3: 21 21 21 10 41 41 31 41
4: 31 41 41 41 10 41 41 41
5: 41 31 41 41 41 10 41 41
6: 41 41 41 31 41 41 10 41
7: 41 41 31 41 41 41 41 10

Listing 1: Output from numactl -H. This particular system had 64 cores.

Colfax International, 2016 — http://colfaxresearch.com/ 5

http://colfaxresearch.com/

3.1 Querying NUMA Information 3 PROGRAMMING WITH SUB-NUMA CLUSTERS

In our example, we have the SNC-4 mode set up, so cores appear grouped into four nodes with exactly
a quarter of the on-platform memory in each node. In addition, our system uses the on-package high-
bandwidth memory (HBM) in the flat mode (see [2]), which adds four more NUMA nodes with a quarter
of the HBM in each node.

We can understand the relationship between these nodes by querying the distances between them
shown at the bottom of Listing 1. To the nodes containing codes (0, 1, 2 and 3), the nearest memory is
in the the same node (distance 10), after that is the memory in other on-platform nodes (distance 21) and
after that is the memory in nearby HBM nodes (distance 31); memory in other HBM nodes is the farthest
(distance 41). The distance to the HBM is greater than the distance to the on-platform memory, however,
the bandwidth of HBM is greater than the bandwidth of on-platform memory – this is by design. Figure 5
illustrates the NUMA structure in this example.

RAM
(on-platform DDR4)

HBM
(on-package
MCDRAM)

NODE 0NODE 4

CORES
31

10

RAM
(on-platform DDR4)

41

HBM
(on-package
MCDRAM)

NODE 3NODE 6

CORES
31

10

RAM
(on-platform DDR4)

NODE 1

CORES

10
21

21
RAM

(on-platform DDR4)

NODE 2

CORES

10

HBM
(on-package
MCDRAM)

NODE 5

41

HBM
(on-package
MCDRAM)

NODE 7

31

31

Figure 5: NUMA configuration in SNC-4 cache mode with HBM in flat mode. Labels on arrows indicate NUMA distances
reported by numactl.

These distances indicate that in the SNC-4 mode, applications running completely in the on-platform
memory (DDR4) need to allocate memory in the local NUMA nodes. If applications need to use the HBM,
then for locality, threads on node 0 should allocate on node 4, threads on node 1 – on node 5, threads on
node 2 – on node 7 and threads on node 3 – on node 6 (distance of 31).

For developers who wish to explicitly control NUMA allocation, the above information should provide
sufficient guidance. However, in many cases, it is possible to take advantage of NUMA locality with
generic methods that do not use explicit node numbers. These methods are discussed below.

Colfax International, 2016 — http://colfaxresearch.com/ 6

http://colfaxresearch.com/

3.2 Pinning Threads to Sub-NUMA Clusters 3 PROGRAMMING WITH SUB-NUMA CLUSTERS

3.2. PINNING THREADS TO SUB-NUMA CLUSTERS

3.2.1. NESTED OPENMP

OpenMP Threads

Node 0
KNL

Node 1

Node 2 Node 3

Figure 6: Using nested OpenMP for
Quadrant mode.

OpenMP is an open-standard framework for multi-threading sup-
ported by Intel C, C++ and Fortran compilers as well as by the GNU
Compiler Collection (GCC) and a number of other compilers. Nested
parallelism is supported since OpenMP 2.5, and it can be used to ef-
fectively take advantage of the sub-NUMA cluster mode.

To create nested parallel regions in OpenMP, code and environ-
ment variables shown in Listing 2 should be used. In this example we
create 4 teams with 64 threads each.

At the time of writing this paper, the best known method
for setting this is to use a combination of OMP PLACES and
OMP PROC BIND environment variables. Assuming that the user
needs 4 teams with 64 threads and compact placement of threads
within a team, the variables shown in Listing 3 can be used.

 #pragma omp parallel
 { /* 4 teams to be mapped across sub-NUMA clusters... */
 #pragma omp parallel
 { /* 64 threads to work within each sub-NUMA clusters ... */ }
 }

user@knl% export OMP_NESTED=1
user@knl% export OMP_NUM_THREADS=4,64

Listing 2: Example of nested OpenMP parallelism with 4 teams of 64 threads.

user@knl% export OMP_PLACES=0,1,2,3,4,5,6,7,8, ...other numa0cpus...,16,17,18,\
> 19,20,21,22,23,...other numa1cpus...,48,49,50,51,52,53,...other numa2cpus...,\
> 32,33,34,35,36,37,38,...other numa3cpus...,239
user@knl% export OMP_PROC_BIND=spread,close

Listing 3: Setting up thread affinity.

The environment variable OMP PLACES defines places, i.e., groups of OS procs that threads can be
bound to. As the value of this variable we listed 64 OS procs belonging to NUMA node 0 followed by 64
OS procs belonging to NUMA node 1, etc. With OMP PROC BIND=spread,close, the master threads
of each team are going to be distributed uniformly across these places due to the “spread” argument, i.e.,
master thread for team 0 will land on OS proc 0, for team 1 on 16, etc. Within each team, threads will be
placed close to each other, i.e., team 0 will populate NUMA node 0, team 1 – node 1, etc.

OMP PLACES can be automatically generated from the output of numactl:

root@knl% export OMP_PLACES=‘numactl -H | grep cpus | \
> awk ’(NF>3) {for (i = 4; i <= NF; i++) printf "%d,", $i}’ | sed ’s/.$//’‘

Colfax International, 2016 — http://colfaxresearch.com/ 7

http://colfaxresearch.com/

3.2 Pinning Threads to Sub-NUMA Clusters 3 PROGRAMMING WITH SUB-NUMA CLUSTERS

3.2.2. HYBRID MPI+OPENMP
NUMA node 0

MPI rank 0
OpenMP

NUMA node 1

MPI rank 1
OpenMP

NUMA node 2

MPI rank 2
OpenMP

NUMA node 3

MPI rank 3
OpenMP

Figure 7: MPI+OpenMP for the
SNC-4 mode on KNL.

Message Passing Interface (MPI), industry-standard framework
for communication in distributed-memory applications, and OpenMP
can be combined to take advantage of the SNC-4 and SNC-2 modes.
IN this setup, we will run four (for SNC-4) or two (for SNC-2) MPI
processes with as many threads in each as there are logical processors
in each sub-NUMA cluster (see Figure 7). Listing 4 illustrates the
usage of OpenMP inside of an MPI process.

 int main(int argc, char **argv) {
 MPI_Init(&argc, &argv);
 #pragma omp parallel
 {
 // ...
 }
 MPI_Finalize();
 }

Listing 4: Hybrid MPI+OpenMP programming.

NUMA-aware MPI implementations can pin processes to NUMA nodes of the KNL processor when
the user specifies the corresponding number of processes per node. For instance, with Intel MPI we can
confirm this behavior as shown Listing 5. There we set the environment variable I MPI DEBUG=5 to
produce the diagnostic output with pin CPU information.

user@knl% export I_MPI_DEBUG=5
user@knl% mpirun -host knl -np 4 ./my-hybrid-app
...
[0] MPI startup(): Rank Pid Node name Pin cpu
[0] MPI startup(): 0 12326 knl {0,1,2,3,4,5,6,7,8,9,10,11,12,13, ...
[0] MPI startup(): 1 12327 knl {16,17,18,19,20,21,22,23,24,25,26, ...
[0] MPI startup(): 2 12328 knl {48,49,50,51,52,53,54,55,56,57,58, ...
[0] MPI startup(): 3 12329 knl {32,33,34,35,36,37,38,39,40,41,42, ...
...

Listing 5: Output of mpirun with I MPI DEBUG=5 set.

Note that it is possible to use hybrid MPI+OpenMP approach in the quadrant mode as well. Similarly,
in the SNC mode, it is possible to run a single MPI process per KNL processor with enough threads
to scale across cores. In some applications, the balance between OpenMP and MPI (i.e., the number of
threads per MPI process) is a performance tuning parameter (see, e.g., [3]). Therefore, the approach shown
above (four MPI processes in SNC-4) should be treated not as a universal recipe, but as a starting point for
application performance tuning.

Colfax International, 2016 — http://colfaxresearch.com/ 8

http://colfaxresearch.com/

3.3 Binding Memory to NUMA Nodes 3 PROGRAMMING WITH SUB-NUMA CLUSTERS

3.3. BINDING MEMORY TO NUMA NODES

With software threads pinned to the respective sub-NUMA clusters, the next task is to bind the mem-
ory objects used by these threads to the local (or near) NUMA nodes. With the methods shown in Sec-
tions 3.2.1 and 3.2.2, it is possible to do it in a natural way using the first-touch allocation policy, which
is the default NUMA allocation policy in Linux. According to this policy, when a thread running on a
NUMA node first touches a newly allocated object (i.e., writes into an array after calling malloc), the
touched memory page is placed on the thread’s NUMA node.

3.3.1. ON-PLATFORM MEMORY

If our intent is to allocate data in on-platform memory (the DDR4-based RAM), we can simply call
malloc() followed by data initialization, and this will place the touched arrays into the NUMA on
which the allocating thread is running. Listing 6 illustrates this approach.

 #pragma omp parallel
 {
 // Master thread of every outer
 // OpenMP region will initialize
 // its own array
 float *A = new float[N];

 // First touch places the array
 // on the local on-platform node

 #pragma omp parallel for
 for (int i = 0; i < N; i++)
 A[i] = 0.0f;
 }

 int main(int argc, char **argv) {
 {
 MPI_Init(argc, argv);
 // Master thread of each MPI proc.
 // will initialize its own array
 float *A = new float[N];

 // First touch places the array
 // on the local on-platform node

 #pragma omp parallel for
 for (int i = 0; i < N; i++)
 A[i] = 0.0f;
 }

Listing 6: Allocation of NUMA-local memory using first touch policy.

In the case of nested OpenMP, the master thread of every outer parallel region runs in its own sub-
NUMA cluster (if the application is executed with environment variables shown in Section 3.2.1). First
touch from thread team number 0 places the array A for that thread on NUMA node 0 (see Figure 5), first
touch from team 1 places its A on node 1, etc.

 int main() {
 float *A = new float[N];
 #pragma omp parallel for
 for (int i=0; i<N; i++)
 A[i] = 0.0f;
 }

Figure 8: Parallel first touch for NUMA locality.

It is possible to achieve NUMA locality with just
one level of threading (i.e., without nested paral-
lelism) as shown in Figure 8.

In this case, memory pages for parts of A first
touched by threads in NUMA node 0 will be placed
on node 0, parts touched by threads in node 1 will be
placed on node 1, etc. To benefit from NUMA lo-
cality with one level of nesting, the parallel pattern
with which A is used must be the same as the pattern
with which it is allocated. Note that removing #pragma omp parallel for from initialization will
generally degrade performance because the entire array will be placed on one NUMA node.

Colfax International, 2016 — http://colfaxresearch.com/ 9

http://colfaxresearch.com/

3.3 Binding Memory to NUMA Nodes 3 PROGRAMMING WITH SUB-NUMA CLUSTERS

3.3.2. ENTIRE APPLICATION IN HBM

If the entire computational application fits within the amount of memory available in HBM (≤16 GiB
in KNL), and if the application can benefit from HBM (see [2]), it is possible to place the application in
HBM using the tool numactl. Examples of doing that in the SNC-4 mode is shown in Listing 7.

user@knl% # Memory of entire application
user@knl% # goes to NUMA nodes 4,5,6,7
user@knl% numactl -m 4,5,6,7 ./myApp

user@knl% #Same for an MPI applicatn.
user@knl% mpirun -np 4 -host knl \
> numactl -m 4,5,6,7 ./myApp

Listing 7: Binding the entire application to HBM NUMA nodes in SNC-4. Left: nested OpenMP, right: MPI+OpenMP.

Even though we specify all four HBM NUMA nodes as targets for memory allocation, each of the four
teams of OpenMP threads or each of the four MPI processes will allocate to its NUMA-local memory as
long as the threads themselves are bound to NUMA nodes as discussed in Sections 3.2.1 and 3.2.2. That
is, the team of threads (or MPI process) running on NUMA node 0 will allocate all of its data on NUMA
node 4, team running on node 1 will allocate data to NUMA node 5, etc. This is because of the first-touch
policy and because the local HBM nodes are closer than remote nodes to the respective core-containing
nodes (see node distances in Section 3.1).

3.3.3. SELECTIVE ALLOCATION IN HBM

As described in [2], if the application needs more than 16 GiB of memory, or if not all objects in
the application are bandwidth-critical, it is possible to store the bulk of the data in large DDR4-based
memory, but selectively place certain objects or buffers in MCDRAM-based HBM. The memkind library
can be used for that [4].

In the sub-NUMA cluster modes, allocating to NUMA-local HBM nodes with memkind works out-of-
box as long as the OpenMP teams or MPI processes that allocate and touch memory are themselves bound
to NUMA nodes as discussed in Sections 3.2.1 and 3.2.2. Listing 8 illustrates the recipe.

 #pragma omp parallel
 {
 // Thread 0 -> NUMA node 4
 // Thread 1 -> NUMA node 5
 // etc.
 float *A = (float *)
 hbw_malloc(sizeof(float)*N);

 // First touch places the array
 // on the local HBM node
 #pragma omp parallel for
 for (int i = 0; i < N; i++)
 A[i] = 0.0f;
 }

 int main(int argc, char **argv) {
 {
 // Rank 0 -> NUMA node 4
 // Rank 1 -> NUMA node 5
 // etc.
 float *A = (float *)
 hbw_malloc(sizeof(float)*N);

 // First touch places the array
 // on the local HBM node
 #pragma omp parallel for
 for (int i = 0; i < N; i++)
 A[i] = 0.0f;
 }

Listing 8: Allocation of NUMA-local memory with the memkind library.

Colfax International, 2016 — http://colfaxresearch.com/ 10

http://colfaxresearch.com/

3.4 Did it Work? 3 PROGRAMMING WITH SUB-NUMA CLUSTERS

3.4. DID IT WORK?

As of today, there is no function in memkind to check whether a given memory address is stored in the
local or a remote SNC node. However, for the purposes of prototyping and testing, you may want to know
where your data is going in memory. To do that, you can use the tool numastat as shown in Listing 9.

root@knl% numastat
node0 node1 node2 node3 node4 node5 node6 node7

numa_hit 2143516 110059 2443892 110059 38390 18918 19281 5059
numa_miss 0 0 0 0 0 0 0 0
...

Listing 9: Querying NUMA status to see where in memory data is allocated.

By making a note of numa hit (counter of successful allocations to local NUMA nodes) before the
start of your application comparing it to the same metric after the appication has run, you can identify
whether nodes 4 through 7 (HBM) were utilized. Any non-zero values for numa miss would indicate
cross-SNC traffic.

Additionally, by specifying a process ID, we can get per-node usage information for a specific process
as shown in Listing 10.

user@knl% numastat -p 10601

Per-node process memory usage (in MBs) for PID 10601 (mpi_test)
Node 0 Node 1 Node 2

--------------- --------------- ---------------
Huge 0.00 0.00 0.00
Heap 0.00 0.00 0.00
Stack 0.00 0.00 0.00
Private 2.21 0.51 0.46
---------------- --------------- --------------- ---------------
Total 2.21 0.51 0.46

...

Node 6 Node 7 Total
--------------- --------------- ---------------

Huge 0.00 0.00 0.00
Heap 0.13 0.00 0.13
Stack 12.47 0.00 12.47
Private 1517.91 0.00 1521.28
---------------- --------------- --------------- ---------------
Total 1530.52 0.00 1533.88

Listing 10: Querying per-node NUMA utilization for a specific process.

In this example, we can see that the process allocates memory to NUMA node 6, which is an HBM
node local to on-platform node 3.

Colfax International, 2016 — http://colfaxresearch.com/ 11

http://colfaxresearch.com/

REFERENCES

4. SUMMARY

Knights Landing processors are more forgiving to applications sensitive to cache traffic than their pre-
decessors (KNC) due to more complex cache structure. Additional performance improvements in such
applications may come from tuning their execution environment and parallel pattern for the clustering
modes supported by KNL. For applications that treat the KNL chip as an SMP, the quadrant and hemi-
sphere mode may be used. For NUMA-aware applications, sub-NUMA cluster modes (SNC-4 and SNC-2)
may be used.

Making an application NUMA-aware for use with SNC modes requires two components:

1. Pinning groups of executing threads to the respective core-containing NUMA domains. This may
be achieved with
• Nested OpenMP with special environment variable settings or
• Hybrid MPI with 4 (2) processes per KNL processor for SNC-4 (-2)

2. Taking advantage of the NUMA policy of local allocation on first touch, i.e., allocating and initial-
izing arrays by threads running on the respective sub-NUMA clusters. That means:
• To allocate the entire application in NUMA-local DDR4-based nodes, only the pinning of

threads needs to be done, and allocated arrays must be initialized from the outer parallel regions
or from the master thread of MPI processes.
• To allocate the entire application in NUMA-local MCDRAM-based nodes, in addition to the

above, numactl -m ... can be used.
• To selectively allocate in NUMA-local MCDRAM-based nodes, memkind library allocators

may be used in combination with the thread pinning and first-touch recipes.

See related paper [2] for more information on MCDRAM-based HBM in KNL.

REFERENCES

[1] Guide to Automatic Vectorization with Intel AVX-512 Instructions in Knights Landing Processors.
http://colfaxresearch.com/knl-avx-512/.

[2] MCDRAM as High-Bandwidth Memory (HBM) in Knights Landing Processors: Developer’s Guide.
http://colfaxresearch.com/knl-mcdram/.

[3] Andrey Vladimirov. Cluster-Level Tuning of a Shallow Water Equation Solver on the Intel MIC Architecture.
http://research.colfaxinternational.com/post/2014/05/12/Shallow-Water.aspx.

[4] Open source memkind library on github.
https://github.com/memkind/memkind.

Colfax International, 2016 — http://colfaxresearch.com/ 12

http://colfaxresearch.com/knl-avx-512/
http://colfaxresearch.com/knl-mcdram/
http://research.colfaxinternational.com/post/2014/05/12/Shallow-Water.aspx
https://github.com/memkind/memkind
http://colfaxresearch.com/

	Cache Organization in KNL
	Clustering Modes
	All-to-All
	Quadrant/Hemisphere
	SNC-4/SNC-2
	Setting the Clustering Mode

	Programming with Sub-NUMA Clusters
	Querying NUMA Information
	Pinning Threads to Sub-NUMA Clusters
	Nested OpenMP
	Hybrid MPI+OpenMP

	Binding Memory to NUMA Nodes
	On-Platform Memory
	Entire Application in HBM
	Selective Allocation in HBM

	Did it Work?

	Summary

