
MCDRAM AS HIGH-BANDWIDTH MEMORY (HBM)
IN KNIGHTS LANDING PROCESSORS:

DEVELOPER’S GUIDE

Ryo Asai

Colfax International

May 11, 2016

Abstract
This publication is part of a developer guide

focusing on the new features in 2nd genera-
tion Intel R© Xeon PhiTM processors code-named
Knights Landing (KNL). In this document we
discuss the on-package high-bandwidth memory
(HBM) based on the multi-channel dynamic ran-
dom access memory (MCDRAM) technology:

• Three configuration modes of HBM: Flat
mode, Cache mode and Hybrid mode,

• Utilization of the HBM as addressable mem-
ory using two methods: by setting affinity
policy with the numactl tool and through the
usage of special allocators in the memkind li-
brary,

• Guidelines for determining the optimal usage
model for applications running on bootable
Knights Landing.

This publication and other white papers on
KNL processors can be found on the Colfax Re-
search Website: colfaxresearch.com/knl-guide

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . 2

2 HBM Modes . . . . . . . . . . . . . . . . . 3
2.1 Cache Mode . . . . . . . . . . . . . . 4
2.2 Flat Mode . . . . . . . . . . . . . . . . 5
2.3 Hybrid Mode . . . . . . . . . . . . . . 5

3 Using HBM as Addressable Memory . . . 6
3.1 numactl . . . . . . . . . . . . . . . . . 6
3.2 Memkind Library . . . . . . . . . . . . 7
3.3 Fortran . . . . . . . . . . . . . . . . . 8

4 Choosing Memory and Programming Model 9
4.1 Programming with HBM... . . . . . . . 9
4.2 ...and Programming without HBM . . . 10

Appendix A Application Memory Footprint . 11

Appendix B Bandwidth-critical data . . . . . 11

Colfax International is a leading provider of high-performance computing solutions and expert-level educational
programs for parallel computing. Ready-to-go Colfax systems include workstations, servers, clusters, storage
and personal supercomputing solutions. Educational programs provided by Colfax enable software developers
to achieve top performance on cutting-edge computing platforms, closing the loop between hardware innovation
and progress in computational disciplines. The comprehensive set of services provided by Colfax delivers to its
clients significant price/performance advantages, and increased IT agility, that accelerates their business outcomes
and paves the path to discovery. Colfax International’s extensive customer base includes Fortune 1000 companies,
educational institutions, and government agencies. Founded in 1987, Colfax International is based in Sunnyvale,
California and is privately held.

Colfax International, 2016 — http://colfaxresearch.com/ 1

http://colfaxresearch.com/knl-guide/
http://www.colfax-intl.com/
http://colfaxresearch.com/


1 INTRODUCTION

1. INTRODUCTION

Memory bandwidth in computing systems is one of the common bottlenecks for performance in com-
putational application. Bandwidth-limited applications are characterized by algorithms that have few float-
ing point operations per memory access (low arithmetic intensity). Algorithms in this category include
BLAS Level 1 and Level 2 routines (such as vector dot-product and matrix-vector multiplications), fast
Fourier transforms and stencil operations. With low arithmetic intensity in an application, the floating-
point capabilities of a processor are generally unimportant, but memory bandwidth determines the appli-
cation’s performance limit (see, e.g., [1]).

To address this demand for memory bandwidth from such applications, the 2nd generation
Intel R© Xeon PhiTM processors based on the Knights Landing architecture (KNL) have on-package high-
bandwidth memory (HBM) based on the multi-channel dynamic random access memory (MCDRAM).
This memory is capable of delivering up to ≈5x performance (≥400 GB/s) compared to DDR4 memory
on the same platform (≥90 GB/s). Taking maximum advantage of HBM is be key to achieving great
performance for bandwidth-sensitive applications.

The available usage models for HBM are different between the two available Knights Landing proces-
sor form-factors: self-bootable processor version and the PCIe add-in coprocessor card version. In this
publication we will discuss the HBM usage for self-bootable processor version. Its memory organization
is shown in Figure 1.

CORE

CORE

R
E

G
IS

T
E

R
S

R
E

G
IS

T
E

R
S

L1
cache

L1
cache

L2
cache

MCDRAM
(on package

RAM)
DDR4
RAM

(system memory)

Up to 16 GiB
over 400 GB/s

Up to 384 GiB
~ 90 GB/s (STREAM)

...
more cores

Intel Xeon Phi
Processor

Flat,
Cache 

or
Hybrid

Figure 1: Physical memory organization in bootable 2nd generation Intel Xeon Phi processors (Knights Landing).

The on-package HBM (labeled “MCDRAM” in the figure) resides on the CPU chip, next to the pro-
cessing cores. Unlike traditional memory modules, MCDRAM cannot be removed or replaced. Depending
on the model, Knights Landing processors may have up to 16 GiB of HBM. The on-package memory is
distinct from on-platform memory, which is installed as traditional DDR4 memory modules. Depending
on the size of the memory modules, on-platform RAM may reach 384 GiB in size.

Colfax International, 2016 — http://colfaxresearch.com/ 2

http://colfaxresearch.com/


2 HBM MODES

2. HBM MODES

HBM on a Knights Landing processor can be used either as a last-level cache, or as addressable
memory. This configuration is determined at boot time, by choosing in BIOS settings between three
MCDRAM modes: Flat mode, Cache mode or Hybrid mode. Figure 2 shows a schematic of the three
modes.

CPU

DDR4

MCDRAM
as cache

(a) Cache mode

CPU

DDR4

Addressable
MCDRAM

NUMA
Node 0

NUMA
Node 1

(b) Flat mode

Addressable
MCDRAM

NUMA
Node 0

NUMA
Node 1

DDR4

MCDRAM
as cache

CPU

(c) Hybrid mode

Figure 2: Usage modes of HBM in bootable Kights Landing processors.

The Flat mode uses the entirety of HBM as addressable memory, whereas Cache mode uses the entirety
of HBM as cache. With Hybrid mode, a portion of the HBM is used as addressable memory and the rest
is used as cache. Addressable memory may be utilized by the user for explicit allocation of objects, while
HBM as cache is not visible in the operating system (OS) and operates “behind the scenes” as a last-level
cache between the L2 cache and the on-platform DDR4 memory.

Advantages and disadvantages of the three modes are:

• Cache mode – No work required to use, but may have lower performance than flat mode in case of
frequent misses in HBM as cache.

• Flat mode – May offer better performance than cache mode, but requires modifications of the code
and/or execution environment.

• Hybrid mode – Benefit of both Flat mode and Cache mode, but smaller sizes for each.

The best mode to use will depend on the application. Guidelines for choosing between the modes for
a particular application are discussed in more detail in Section 4. In the remainder of this section, we will
delve into the technical details of the three MCDRAM modes.

Colfax International, 2016 — http://colfaxresearch.com/ 3

http://colfaxresearch.com/


2.1 Cache Mode 2 HBM MODES

2.1. CACHE MODE

When the Knights Landing processor is booted in Cache mode or Hybrid mode, all or a part of the
HBM is used as cache. HBM cache is treated as a Last Level Cache (LLC), which is located between L2
cache and addressable memory in the memory hierarchy of Knights Landing processors. HBM caches the
entire physical address space, and is itself cached by L2 cache.

The advantage of using the HBM as cache is that it is managed by the platform and is transparent to
software. So no action is required for the developer to use the HBM in an application, which makes HBM
as cache effective for developers unfamiliar with memory performance tuning, or for applications that are
difficult to tune.

The drawback of HBM as cache is that it potentially increases the latency of access to the on-platform
memory (DDR4). Figure 3 illustrates the case where a core requests data from a memory address not
cached in the L1 or L2 cache, and the HBM cache does not have the requested address, either.

CPU

Addressable
Memory

HBM
as cache

Tile
L2 cache

LLC miss

L2 miss

Cache Mode Case

CPU

Addressable
Memory

HBM

Tile
L2 Cache

L2 miss

Flat Mode Case

Figure 3: Cache miss latency for Flat mode and Cache mode.

In the Cache mode, the core will have to query the HBM as cache, and only after that will it forward
the request to the on-platform memory controllers. In contrast, if HBM is used in the Flat mode, as a part
of the addressable memory, the core with an L2 cache miss will go directly to the on-platform memory.
HBM as cache adds an extra step, and hence latency, when both L2 and HBM cache have a miss.

Colfax International, 2016 — http://colfaxresearch.com/ 4

http://colfaxresearch.com/


2.2 Flat Mode 2 HBM MODES

2.2. FLAT MODE

When the Knights Landing processor is booted in Flat mode, the entirety of the HBM is used as
addressable memory. HBM as addressable memory shares the physical address space with DDR4, and is
also cached by L2 cache. With respect to Non Uniform Memory Access (NUMA) architecture, the HBM
portion of the addressable memory is exposed as a separate NUMA node without cores, with another
NUMA node containing all the cores and DDR4.

A valuable command-line tool when using the HBM as flat mode is the numactl tool (part of the Linux
distribution). To find out which NUMA node is associated with HBM, run the command numactl with
the --hardware or -H option and look for the node with no cores.

user@knl% numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... rest of the cores ...
node 0 size: 98207 MB
node 0 free: 94141 MB
node 1 cpus:
node 1 size: 16384 MB
node 1 free: 15923 MB

Listing 1: Using numactl -H to find the size and NUMA node of HBM.

For the system in Listing 1 (a pre-production 2nd generation Intel Xeon Phi coprocessor with 16 GiB
of MCDRAM), NUMA node 0 is the on-platform DDR4 memory with all the cores, and NUMA node 1
is the on-package MCDRAM with no cores associated with it (i.e., the HBM).

The advantage of HBM as addressable memory is that the developer has more detailed control over
HBM when compared to the HBM as cache. With appropriate tuning, an application with memory usage
over 16 GiB may perform better with HBM as addressable memory than with HBM as cache. The reason
for this is that in Flat mode, unlike Cache mode, accesses to objects in on-platform memory do not have
to query the on-package HBM first.

However, using HBM as addressable memory often requires more application development compared
to HBM as cache, because the usage of HBM is completely left to the developer. Application memory is
allocated to DDR4 by default, so the developer needs to specify allocation in HBM with either command-
line tools or special allocators (discussed in Section 3). Performance tuning is often more difficult for
HBM as addressable memory, especially for larger or more complex applications.

2.3. HYBRID MODE

When the Knights Landing processor is booted in Hybrid mode, a portion of the HBM is used as
addressable memory and the rest used as cache. The ratio between the two is chosen at boot-time. The
addressable memory portion acts just as it does in Flat mode, and the cache portion acts just as it does
in Cache mode. This mode is useful for large multi-user clusters, where not all applications have been
adapted to use HBM as addressable memory.

Colfax International, 2016 — http://colfaxresearch.com/ 5

http://colfaxresearch.com/


3 USING HBM AS ADDRESSABLE MEMORY

3. USING HBM AS ADDRESSABLE MEMORY

When using Flat mode (or Hybrid mode), the developer has to manually direct the application to use
HBM as addressable memory. There are two methods for this: the numactl tool and the memkind library.
The recommended method depends on the size of HBM as addressable memory and the memory footprint
of the application. The tool numactl can be used to find the size of HBM as addressable memory (see
Listing 1) and a procedure for checking the memory footprint is discussed in Appendix A. If the memory
footprint of the application is less than the size of HBM as addressable memory, then it is recommended
to use numactl. If it does not, then use the memkind library.

Note: For the remainder of Section 3, HBM will refer to HBM as addressable memory.

3.1. NUMACTL

If the memory requirement of an application is smaller than the size of the available HBM, then the
recommended way to take advantage of HBM is to have all allocations happen in HBM by default. This
can be achieved by using the command numactl with the --membind or -m option in order to bind
an application to a particular NUMA node. When an application is bound to a NUMA node, all allo-
cations within the application will happen on the specified NUMA node’s memory by default. Because
numactl is a command that is used at run-time, this method requires neither any code modification, nor
recompilation.

As we have determined (see Listing 1) that NUMA node 1 is the HBM, we can to bind memory
allocation in executable run-app to HBM like this:

user@knl% numactl --membind 1 ./run-app

It is important to note that the NUMA node associated with the HBM is different depending on a
separate boot-time configuration option for clustering mode (see [2] for more information on clustering
modes). Thus, it is good practice to always check the NUMA configuration of the Knights Landing
processor with numactl -H before using numactl -m to bind the application to the NUMA node
with HBM.

To use HBM NUMA nodes in the SNC-4/SNC-2 modes (the above cluster modes), use a comma
separated list for numactl --membind

user@knl% numactl -m 1,3,5,7 ./run-app

Note that this methodology works for any executable with memory footprint smaller than 16 GiB,
regardless of the programming language used (provided that the code does not change the NUMA policy
and does not specifically allocate to the on-platform memory).

Colfax International, 2016 — http://colfaxresearch.com/ 6

http://colfaxresearch.com/


3.2 Memkind Library 3 USING HBM AS ADDRESSABLE MEMORY

3.2. MEMKIND LIBRARY

Memkind library is a user-extensible heap manager built on top of jemalloc, a C library for general-
purpose memory allocation functions. The library is generalizable to any NUMA architecture, but for
Knights Landing processors it is used primarily for manual allocation to HBM using special allocators for
C/C++. The library also has limited support for Fortran, which is discussed in Section 3.3.

An open source version of the memkind library can be downloaded from [3]. The memkind library
has two interfaces: hbwmalloc and memkind. Both interfaces use the same back-end. In fact, hbwmalloc,
which stands for high-bandwidth memory allocator, calls the memkind interface functions internally. Thus
memkind interface has all the functionality of hbwmalloc interface, as well as some experimental features
not available to hbwmalloc interface. However, at the time of writing this paper, the hbwmalloc interface is
stable but memkind interface is only partially stable. Thus in this publication we will focus on hbwmalloc
interface. For users interested in the memkind library, you can find the Linux manual page for memkind
interface with:

user@knl% man memkind
// ... Memkind manual ... //

Listing 2 shows basic memory allocation/deallocation using hbwmalloc interface, and Listing 3 shows
the procedure for compilation.

 #include <hbwmalloc.h> // hbwmalloc interface
 // ... //


 const int n = 1<<10;
 double* A = (double*) hbw_malloc(sizeof(double)*n); // Allocation to HBM
 // ... //


 hbw_free(A); // Deallocate with hbw_free

Listing 2: Basic allocation/deallocation with hbwmalloc

user@knl% icpc foo.cc -lmemkind -o run-app-intel
user@knl% g++ foo.cc -lmemkind -o run-app-gcc

Listing 3: Linking for memkind and hbwmalloc.

hbw malloc() works just like the standard malloc(): it allocates a block in the HBM and returns
the pointer to the start of the block. Two variants of heap allocators in jemalloc library, calloc()
and realloc(), have HBM counterparts, hbw calloc() and hbw realloc().

It is important to note that the memory allocation functions will only attempt to allocate in the HBM.
If there is insufficient space in available HBM, it will fall back to DDR4 memory without warning. This
behavior can be modified with hbw set policy(). For the description of the available policies, visit
the Linux manual page for hbwmalloc with:

Colfax International, 2016 — http://colfaxresearch.com/ 7

http://colfaxresearch.com/


3.3 Fortran 3 USING HBM AS ADDRESSABLE MEMORY

user@knl% man hbwmalloc
// ... hbwmalloc manual ... //

Listing 4: hbwmalloc manual.

It is also possible to determine whether HBM is available by using the hbw check available()
function. Note that this does not return how much is left: only whether or not there is any available.

hbwmalloc also has more advanced allocators that provide the control required for certain optimiza-
tion. For example, sometimes you may want to specify memory alignment for your allocations (see [4]).
To allocate an aligned memory block with hbwmalloc, use hbw posix memalign(). Figure 5 demon-
strates aligned allocation in HBM.

 double* A;
 int ret = hbw_posix_memalign((void*) A, 64, sizeof(double)*n);
 // ..... //
 hbw_free(A);

Listing 5: Aligned allocation for HBM.

It is also possible to specify the memory page size using hbw posix memalign psize(). For
more information on the available page size options, check the Linux manual page for hbwmalloc (see 4).

3.3. FORTRAN

Memkind library does have support for Fortran, but it is limited in scope. With Fortran, only allocatable
arrays may be explicitly placed in HBM. Attribute FASTMEM directs the runtime system to place an
allocatable array to in the HBM.

 REAL, ALLOCATABLE :: A(:), B(:)


 ! FASTMEM attribute
 !DEC$ ATTRIBUTES FASTMEM :: A


 ! A is allocated in HBM
 ALLOCATE (A(1:1024))


 ! B is allocated in DDR4
 ALLOCATE (B(1:1024))

Listing 6: Manual memory allocation in HBM with Fortran

At the same time, as mentioned above, Fortran applications may be run completely from HBM using
the numactl tool, as long as these applications fit completely within the installed HBM (up to 16 GiB).

Colfax International, 2016 — http://colfaxresearch.com/ 8

http://colfaxresearch.com/


4 CHOOSING MEMORY AND PROGRAMMING MODEL

4. CHOOSING MEMORY AND PROGRAMMING MODEL

4.1. PROGRAMMING WITH HBM...

So far in the publication, we have discussed three MCDRAM modes for different HBM usage (see
Section 2) as well as two methods for employing the HBM as addressable memory (see Section 3). This
leaves open the question of choosing the optimal method of HBM utilization. As a starting point for this
decision, we recommend using the flow chart shown in Figure 4 to decide on the usage model of HBM.

Does your Application 
fit in 16 GB?

Can you partition ≤16 GB 
of BW-critical memory?

No

Yes Yes

No

Start

Case 1 Case 2 Case 3
Figure 4: Flowchart for HBM usage.

• Case 1: The entire application fits in HBM.
This is the best case scenario. If your application fits in the HBM, then set the configuration mode
to Flat mode and follow the numactl instructions in Section 3.1. This usage mode does not
require any code modification, and works with any application (written in any language) provided
that it does not have special allocators that specifically allocate elsewhere. Note that, although this
procedure requires no source code changes, applications could still benefit from general memory
optimization. For more on memory traffic optimization, refer to the various online references on
optimization such as [5].

If numactl cannot be used, then using Cache mode could be an alternative. Because the problem
fits in the HBM cache, there will only be a few HBM cache misses. HBM cache misses are the
primary factor in the performance difference between addressable memory HBM and cache HBM,
so using the Cache mode could get close to or even match the performance with Flat mode. However,
there is still some inherent overhead associated with using HBM as cache, so if numactl is an
option, we recommend to use that method.

• Case 2: Bandwidth critical part of the application can be partitioned and fits in HBM.
If portions of the data set that are bandwidth-critical can fit in HBM, then we recommend using
the Flat mode and the memkind library (see Section 3.2). This usage mode will require some code
modification, as well as knowing which components of the data set are bandwidth-critical. For
strategies for determining this, refer to Appendix B.

Colfax International, 2016 — http://colfaxresearch.com/ 9

http://colfaxresearch.com/


4.2 ...and Programming without HBM REFERENCES

If memkind library is inaccessible for some reason, (e.g. your application is in a language that does
not support it) then you could still take advantage of this model with external library calls. For
example, the Intel R© Math Kernel Library (MKL) can be called from multiple languages, such as
Python and R. Of course, you could also create your own C/C++ modules that use the memkind
library.

• Case 3: Application is too large and difficult to partition.
Unfortunately, this is the worst case scenario. At this point, our recommendation is to default to the
Cache mode. This will allow your application to at least take some advantage of the HBM.

It is recommended to also try the Flat mode with numactl to allocate to the DDR4. This is because
the extra cache miss latency of HBM as cache (see Section 2.1) may outweigh the benefit of HBM
in some applications.

In either case, we recommend you to try the techniques listed in Appendix B to try to find and
partition bandwidth-critical portions of the data. This will allow you to use the method in case 2.

4.2. ...AND PROGRAMMING WITHOUT HBM

At this point, recall that HBM is useful only for applications sensitive to memory bandwidth. If your
application has high arithmetic intensity (i.e., high data re-use in caches) or very little memory traffic (i.e.,
fits in the L2 cache), you may as well forget about the on-package memory and keep using the regular
on-platform memory on Knights Landing like you would on a general-purpose CPU.

Examples of applications that are not sensitive to memory bandwidth are BLAS Level 3 routines (such
as general matrix-matrix multiplication optimized for cache utilization) and some Monte Carlo calcula-
tions with small memory footprint. In compute-intensive applications, arithmetic performance is more
important than memory bandwidth, and development effort should be focused on arithmetic capabilities
of KNL [6].

REFERENCES

[1] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an Insightful Visual Performance Model for Multi-
core Architectures. Communications of the ACM, 52(4):65–76, April 2009.
http://dx.doi.org/doi:10.1145/1498765.1498785.

[2] Clustering Modes in Knights Landing Processors: Developer’s Guide.
http://colfaxresearch.com/knl-numa/.

[3] Open source memkind library on github.
https://github.com/memkind/memkind.

[4] Andrey Vladimirov. Fine-Tuning Vectorization and Memory Traffic on Intel Xeon Phi Coprocessors: LU Decomposition
of Small Matrices.
http://research.colfaxinternational.com/post/2015/01/27/LU.aspx.

[5] Colfax Hands On Workshop (HOW) series.
http://colfaxresearch.com/how-series.

[6] Guide to Automatic Vectorization with Intel AVX-512 Instructions in Knights Landing Processors.
http://colfaxresearch.com/knl-avx-512/.

Colfax International, 2016 — http://colfaxresearch.com/ 10

http://dx.doi.org/doi:10.1145/1498765.1498785
http://colfaxresearch.com/knl-numa/
https://github.com/memkind/memkind
http://research.colfaxinternational.com/post/2015/01/27/LU.aspx
http://colfaxresearch.com/how-series
http://colfaxresearch.com/knl-avx-512/
http://colfaxresearch.com/


B BANDWIDTH-CRITICAL DATA

Appendix A. Application Memory Footprint

In order to determine the usage model of HBM, you may need to know the memory footprint of an
application . There are several methods for checking the memory usage of an application, one of which
is the ps command. To get the memory usage of an executable run-app, run the application and on a
separate terminal type:

user@knl% ps -C run-app u
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
user 6577 26330 0.0 17943576 78360 pts/2 Rl+ 15:04 267:41 ./run-app

The memory being used is the value under RSS (in KB). Note that ps reports the usage at the time it
is called: if the application has a lot of allocations and deallocations, you may want to combine ps with
watch and monitor the usage.

Appendix B. Bandwidth-critical data

In order to use memkind library effectively, it is often beneficial to know what portion of the application
data is bandwidth-critical. Bandwidth-critical memory is a region of the application data that will bring
the most benefit to the overall application if it was allocated in HBM. Here are some characteristics to look
for when finding bandwidth-critical data.

• The total size of the data is ≥30 MB

If it is any smaller, the data will likely be cached by L2 cache. Although you may get some benefit
from putting smaller data sets in the HBM, prioritize larger data because they may benefit more.

• The data is read multiple times.

If some data is read once and never again, this may not be the best candidate for HBM. For allocation
in HBM, prioritize data structures that are read or written multiple times.

• The data access pattern is contiguous.

HBM performs best when the data access pattern is contiguous, and performs worst when the access
pattern is random. Although HBM may outperform DDR4 even with some random access, the
performance difference is small. You would want to prioritize data structures that are accessed
contiguously for allocation in HBM.

• The data is used in a bandwidth-bound section.

Even if the data itself has all the characteristics of bandwidth-critical memory, it may not gain much
from HBM if the bottleneck for the workload is not memory (e.g. compute-bound, I/O-bound).
Prioritize data that is used in locations where there are few arithmetic operations per data point, or
few I/O operations per data point.

Colfax International, 2016 — http://colfaxresearch.com/ 11

http://colfaxresearch.com/

	Introduction
	HBM Modes
	Cache Mode
	Flat Mode
	Hybrid Mode

	Using HBM as Addressable Memory
	numactl
	Memkind Library
	Fortran

	Choosing Memory and Programming Model
	Programming with HBM...
	...and Programming without HBM

	Appendix Application Memory Footprint
	Appendix Bandwidth-critical data

