
Programming and Optimization
for Intel® Architecture

Hands-On Workshop (HOW) Series "Deep Dive"

Session 9

Colfax International — colfaxresearch.com

colfaxresearch.com/how-series Welcome © Colfax International, 2013–2017

https://colfaxresearch.com/

Disclaimer
2

While best efforts have been used in preparing this training, Colfax International makes no
representations or warranties of any kind and assumes no liabilities of any kind with respect to
the accuracy or completeness of the contents and specifically disclaims any implied warranties
of merchantability or fitness of use for a particular purpose. The publisher shall not be held
liable or responsible to any person or entity with respect to any loss or incidental or
consequential damages caused, or alleged to have been caused, directly or indirectly, by the
information or programs contained herein. No warranty may be created or extended by sales
representatives or written sales materials.

colfaxresearch.com/how-series Welcome © Colfax International, 2013–2017

Course Roadmap
3

▷ Module I. Programming Models
• 01. Intel Architecture and Modern Code
• 02. Xeon Phi, Coprocessors, Omni-Path

▷ Module II. Expressing Parallelism
• 03. Automatic vectorization
• 04. Multi-threading with OpenMP
• 05. Distributed Computing, MPI

▷ Module III. Performance Optimization
• 06. Optimization Overview: N-body
• 07. Scalar tuning, Vectorization
• 08. Common Multi-threading Problems
• 09. Multi-threading, Memory Aspect
• 10. Access to Caches and Memory

colfaxresearch.com/how-series Course Roadmap © Colfax International, 2013–2017

HOW Series Online
4

Course page:
colfaxresearch.com/how-series

▷ Slides

▷ Code

▷ Video

▷ Chat

More workshops:
colfaxresearch.com/training

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

https://colfaxresearch.com/how-series
https://colfaxresearch.com/training

Get Your Questions Answered: Chat
5

colfaxresearch.com/how-series

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

https://colfaxresearch.com/how-series/

Get Your Questions Answered: Forums
6

colfaxresearch.com/forum

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

https://colfaxresearch.com/forum/

Hands-On Exercises and Remote Access
7

▷ All registrants receive an invitation from
cluster@colfaxresearch.com

▷ Queue-based access to Intel Xeon E5, Intel
Xeon Phi (KNC and KNL)

▷ Can access the cluster the entire 2 weeks of
the workshop

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

§2. Refresh

Performance Optimization

Computing Platforms
10

colfaxresearch.com/how-series Performance Optimization © Colfax International, 2013–2017

Optimization Areas
11

colfaxresearch.com/how-series Performance Optimization © Colfax International, 2013–2017

Cores, Threads and OpenMP

Processor Hierarchy
13

colfaxresearch.com/how-series Cores, Threads and OpenMP © Colfax International, 2013–2017

Scalability Expectations: MIC versus CPU
14

 1

 2

 4

 8
 12

 24

 60

 120

 240

 1 2 4 8 12 24 60 120 240

S
p
ee
du
p

Threads

Performance on the MIC architecture

Speedup = 2 x #cores = 2x61 = 122
Li
ne
ar

Bandwidth-bound (STREAM Triad)
Compute-bound (Direct N-body)

 1

 2

 4

 6
 8

 14

 28

 56

 1 2 4 6 8 14 28 56

S
p
ee
du
p

Threads

Performance on the CPU architecture

Speedup = # cores = 28
Li
ne
ar

Bandwidth-bound (STREAM Triad)
Compute-bound (Direct N-body)

colfaxresearch.com/how-series Cores, Threads and OpenMP © Colfax International, 2013–2017

§3. Multi-Threading II: Memory Aspect

Thread Affinity

What is Thread Affinity
17

▷ OpenMP threads may migrate between cores
▷ Forbid migration — improve locality — increase performance
▷ Affinity patterns “scatter” and “compact” may improve cache

sharing, relieve thread contention

colfaxresearch.com/how-series Thread Affinity © Colfax International, 2013–2017

The KMP_HW_SUBSET Environment Variable 18

Control the # of cores and # of threads per core:
KMP_HW_SUBSET=[<cores>c,]<threads-per-core>t

vega@lyra-mic0% export KMP_HW_SUBSET=3t # 3 threads per core
vega@lyra-mic0% ./my-native-app

or
vega@lyra% export MIC_ENV_PREFIX=XEONPHI
vega@lyra% export KMP_HW_SUBSET=1t # 1 thread per core on host
vega@lyra% export XEONPHI_KMP_HW_SUBSET=2t # 2 threads per core on Xeon Phi
vega@lyra% ./my-offload-app

colfaxresearch.com/how-series Thread Affinity © Colfax International, 2013–2017

The KMP_AFFINITY Environment Variable 19

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

modifier:

▷ verbose/nonverbose
▷ respect/norespect
▷ warnings/nowarnings
▷ granularity=core or thread

▷ type=compact, scatter or
balanced

▷ type=explicit,
proclist=[<proc_list>]

▷ type=disabled or none.

The most important argument is type:

▷ compact: place threads as close to each other as possible

▷ scatter: place threads as far from each other as possible

colfaxresearch.com/how-series Thread Affinity © Colfax International, 2013–2017

OMP_PROC_BIND and OMP_PLACES Variables 20

Control the binding pattern, including nested parallelism:

OMP_PROC_BIND=type[,type[,...]]

Here type=true, false, spread, close or master.
Comma separates settings for different levels of nesting (OMP_NESTED
must be enabled).

Control the granularity of binding:

OMP_PLACES=<threads|cores|sockets|(explicit)>

colfaxresearch.com/how-series Thread Affinity © Colfax International, 2013–2017

Thread Affinity: Scatter Pattern
21

Generally beneficial for bandwidth-bound applications.
OMP_NUM_THREADS={1 thread/core} or KMP_HW_SUBSET=1t
KMP_AFFINITY=scatter,granularity=fine

colfaxresearch.com/how-series Thread Affinity © Colfax International, 2013–2017

Thread Affinity: Compact Pattern
22

Generally beneficial for compute-bound applications.
OMP_NUM_THREADS={2(4) threads/core on Xeon (Xeon Phi)}
KMP_AFFINITY=compact,granularity=fine

colfaxresearch.com/how-series Thread Affinity © Colfax International, 2013–2017

Parallelism and Affinity Interfaces
23

Intel-specific (in order of priority):

▷ Functions (e.g., kmp_set_affinity())

▷ Compiler arguments (e.g., -par-affinity)

▷ Environment variables (e.g., KMP_AFFINITY)

Defined by the OpenMP standard (in order of priority):

▷ Clauses in pragmas (e.g., proc_bind)

▷ Functions (e.g., omp_set_num_threads())

▷ Environment variables (e.g., OMP_PROC_BIND)

colfaxresearch.com/how-series Thread Affinity © Colfax International, 2013–2017

https://software.intel.com/en-us/node/684320#LOW_LEVEL_AFFINITY_API
https://software.intel.com/en-us/node/682575
https://software.intel.com/en-us/node/684320#KMP_AFFINITY_ENVIRONMENT_VARIABLE
http://openmp.org/

Impact of Affinity on Bandwidth
24

0

50

100

150

200

250

 40 50 60 70 80 90

N
um

be
r o

f T
ria

ls
 (o

ut
 o

f 1
00

0)

Memory Bandwidth, GB/s

STREAM benchmark: SCALE, 40 threads

Standard
Optimized ▷ Without affinity: "fortunate"

and "unfortunate" runs

▷ With affinity "scatter":
consistently good
performance

Plot from this paper

colfaxresearch.com/how-series Thread Affinity © Colfax International, 2013–2017

https://colfaxresearch.com/?p=38

NUMA Locality

NUMA Architectures
26

NUMA = Non-Uniform Memory Access. Cores have fast access to local
memory, slow access to remote memory.

CPU 0CPU 0

CPU 1CPU 1

Memory banks
local to CPU 0

Memory banks
local to CPU 1

Non-Uniform
Memory Architecture

(NUMA)

Examples:
▷ Multi-socket Intel Xeon processors
▷ Second generation Intel Xeon Phi in sub-NUMA clustering mode

colfaxresearch.com/how-series NUMA Locality © Colfax International, 2013–2017

https://colfaxresearch.com/knl-numa/

Allocation on First Touch
27

▷ Memory allocation occurs not during _mm_malloc(), but upon the
first write to the buffer (“first touch”)

▷ Default NUMA allocation policy is “on first touch”

▷ For better performance in NUMA systems, initialize data with the
same parallel pattern as during data usage

1 float* A = (float*)_mm_malloc(n*m*sizeof(float), 64);
2

3 // Initializing from parallel region for better performance
4 #pragma omp parallel for
5 for (int i = 0; i < n; i++)
6 for (int j = 0; j < m; j++)
7 A[i*m + j] = 0.0f;

colfaxresearch.com/how-series NUMA Locality © Colfax International, 2013–2017

First-Touch Allocation Policy
28

Memory of CPU 0

CPU 0 CPU 1

QPI
Memory of CPU 1

array A[i]
VM page 0 VM page 1 VM page 2 VM page 3

for (i=0; i<n; i++)
 A[i] = 0.0;

Serial execution

Memory of CPU 0

CPU 0 CPU 1

QPI
Memory of CPU 1

array A[i]
VM page 0 VM page 1 VM page 2 VM page 3

for (i=0; i<n/4; i++)
 A[i] = 0.0;

Thread 0

for (i=n/2;i<3*n/4;i++)
 A[i] = 0.0;

Thread 2

for (i=n/4; i<n/2; i++)
 A[i] = 0.0;

Thread 1

Thread 3
for (i=3*n/4; i<n; i++)
 A[i] = 0.0;

Poor First-Touch Allocation Good First-Touch Allocation

NUMA Node 0 NUMA Node 1 NUMA Node 0 NUMA Node 1

colfaxresearch.com/how-series NUMA Locality © Colfax International, 2013–2017

Impact of First-Touch Allocation
29

 Vectorized Parallel Code
(Private Variables)

 Parallel Initialization
(First-Touch Allocation)

0

5

10

15

20

25

30

 P
er

fo
rm

an
ce

, b
ill

io
n

va
lu

es
/s

 (h
ig

he
r i

s b
et

te
r)

11.2

22.1

13.9 13.6

20 20

 Intel Xeon processor E5-2697 V2
 Intel Xeon Phi coprocessor 7120P (KNC)
 Intel Xeon Phi processor 7210 (KNL)

colfaxresearch.com/how-series NUMA Locality © Colfax International, 2013–2017

Binding to NUMA Nodes with numactl 30

▷ libnuma – a Linux library for fine-grained control over NUMA policy
▷ numactl – a tool for global NUMA policy control

vega@lyra% numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 12 13 14 15 16 17
node 0 size: 65457 MB
node 0 free: 24426 MB
node 1 cpus: 6 7 8 9 10 11 18 19 20 21 22 23
node 1 size: 65536 MB
node 1 free: 53725 MB
node distances:
node 0 1

0: 10 21
1: 21 10

vega@lyra% numactl --membind=<nodes> --cpunodebind=<nodes> ./myApplication

colfaxresearch.com/how-series NUMA Locality © Colfax International, 2013–2017

Nested Parallelism

Nested Parallelism with OpenMP
32

OpenMP Threads

Quadrants

KNL

1 #pragma omp parallel
2 {
3 #pragma omp parallel
4 {
5 // ...
6 }
7 }

▷ Tune granularity of
parallelism

▷ Improve resource
sharing in NUMA
systems

colfaxresearch.com/how-series Nested Parallelism © Colfax International, 2013–2017

Motivation for Nested Parallelism
33

colfaxresearch.com/how-series Nested Parallelism © Colfax International, 2013–2017

OpenMP Hot Teams
34

Xeon Xeon Phi

▷ OMP_NUM_THREADS=2,14
▷ OMP_NESTED=1

OMP_PROC_BIND=spread,close
OMP_PLACES=cores

▷ KMP_HOT_TEAMS_MODE=1
KMP_HOT_TEAMS_MAX_LEVEL=2
OMP_MAX_ACTIVE_LEVELS=2

▷ OMP_NUM_THREADS=60,4
▷ OMP_NESTED=1

OMP_PROC_BIND=spread,close
OMP_PLACES=threads

▷ KMP_HOT_TEAMS_MODE=1
KMP_HOT_TEAMS_MAX_LEVEL=2
OMP_MAX_ACTIVE_LEVELS=2

colfaxresearch.com/how-series Nested Parallelism © Colfax International, 2013–2017

Small Matrix LU Decomposition with Nested Parallelism
35

Decomposing 103 small square matrices of size 1024×1024.

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 12 16 24 32 48 60 120 240D
o
ub

le
 P
re
ci
si
on

 P
er
fo
rm

an
ce
, G

F
L
O
P
/s

Threads per Team

Small-Matrix LU Decomposition with Nested Parallelism

CPU
MIC

See HOW Series “Tools” (MKL webinar).
colfaxresearch.com/how-series Nested Parallelism © Colfax International, 2013–2017

https://colfaxresearch.com/how-series-tools/#2

§4. Review and What's Next

Summary
37

This session:

1. Setting affinity prevents thread migration

2. Affinity pattern “scatter” for bandwidth-bound

3. Affinity pattern “compact” for compute-bound

4. NUMA locality: use parallel first touch

5. Nested parallelism: reduce memory overhead/expose more
work-items

Next session: optimization of memory traffic.

colfaxresearch.com/how-series Review and What's Next © Colfax International, 2013–2017

Colfax Research
38

https://colfaxresearch.com/

colfaxresearch.com/how-series Review and What's Next © Colfax International, 2013–2017

https://colfaxresearch.com/
https://colfaxresearch.com/

	Welcome
	Course Roadmap
	Resources

	Refresh
	Performance Optimization
	Cores, Threads and OpenMP

	Multi-Threading II: Memory Aspect
	Thread Affinity
	NUMA Locality
	Nested Parallelism

	Review and What's Next

