B COLFAX
HER Customized Solutions

PROGRAMMING AND OPTIMIZATION
FOR INTEL® ARCHITECTURE

Hands-On Workshop (HOW) Series "Deep Dive"
Session 4

Colfax International — colfaxresearch.com

colfaxresearch.com/how-series WELCUME

https://colfaxresearch.com/

| DISCLAIMER

While best efforts have been used in preparing this training, Colfax International makes no
representations or warranties of any kind and assumes no liabilities of any kind with respect to
the accuracy or completeness of the contents and specifically disclaims any implied warranties
of merchantability or fitness of use for a particular purpose. The publisher shall not be held
liable or responsible to any person or entity with respect to any loss or incidental or
consequential damages caused, or alleged to have been caused, directly or indirectly, by the
information or programs contained herein. No warranty may be created or extended by sales
representatives or written sales materials.

WELCUME C fax International, 2013-2017

| COURSE ROADMAP

> Module I. Programming Models
® 01. Intel Architecture and Modern Code
® 02. Xeon Phi, Coprocessors, Omni-Path
> Module II. Expressing Parallelism
¢ 03. Automatic vectorization
® 04. Multi-threading with OpenMP
® 05. Distributed Computing, MPI
> Module III. Performance Optimization
® 06. Optimization Overview: N-body
07. Scalar tuning, Vectorization
08. Common Multi-threading Problems
09. Multi-threading, Memory Aspect
® 10. Access to Caches and Memory

colfaxresearch.com/how-series CUUHSE RUADMAP © Colfax International, 2013-2017

| HOW SERIES ONLINE

Course page:
colfaxresearch.com/how-series
> Slides
> Code
> Video
> Chat

More workshops:
colfaxresearch.com/training

m/how-series HESOURCES © Colfax International

https://colfaxresearch.com/how-series
https://colfaxresearch.com/training

I GET YOUR QUESTIONS ANSWERED: CHAT

B

m leofernandesmo Hello from Recife/Brazil

= £
gaesansi Hi, Naples, ltaly
info2harish Harish f rom INDIA

hpcfan Hello, from Texas.

radekg1000 Hi, Poznan/Poland

Ezanton hello, Tokyo, JP (v

colfaxresearch.com/how-series

h.com/how-series RESOURCES © Colfax International, 2013-2017

https://colfaxresearch.com/how-series/

I GET YOUR QUESTIONS ANSWERED: FORUMS

READ WATCH LEARN | FORUMS CONNECT

Forum

Colfax Cluster

Discussion of Colfax Cluster usage policies, troubleshooting.

Developer Training, HOW Series

Questions about any of the Colfax trainings? Usage of training servers,
experience with specific exercises, inquiries on what's inside, suggestions for
future trainings - post them here.

Performance Optimization and Parallelism

Discuss with Colfax Research and colleagues any topics related to
computational science, parallel programming, performance optimization and
code modernization.

colfaxresearch.com/forum

RESOURCES

https://colfaxresearch.com/forum/

I HANDS-ON EXERCISES AND REMOTE ACCESS

> All registrants receive an invitation from
cluster@colfaxresearch.com

> Queue-based access to Intel Xeon E5, Intel
Xeon Phi (KNC and KNL)

> Can access the cluster the entire 2 weeks of
the workshop

RESOURCES

§2. EXPRESSING TASK PARALLELISM

I COMPUTING PLATFORMS

Intel Xeon Intel Xeon Phi Intel Xeon Phi
Processor Coprocessor, Ist generation Processor, 2nd generation™®

Xeon Phi™ Coprocessor

Xeon Phi™ Processor

* socket and coprocessor versions
Current: Broadwell

Upcoming: Skylake

Knights Landing (KNL)

Multl Core Architecture Intel Many Integrated Core (MIC) Architecture

colfaxresearch.com/how-series EXPHESSING TASK PARALLELISM © Colfax International, 2

I ONE CODE FOR ALL PLATFORMS

multi-core X X) e.g., OpenMP:
vectorization cognisant of compilant with | NS
il A RCHITECTURE Y V:NNIDYNIDRJ * Vectorization

HPC Fabrics + offload

MODERN CODE

OPTIMIZED PORTABLE FUTURE-PROOF

EXPRESSING TASK PARALLELISM © Colfax International, 2013-2017

HANDLING MULTIPLE CORES

| PROCESSOR HIERARCHY

-

Intel Xeon Processor E5-26xx
'd N\ 'd N\
Package 0 Package 1
'd N\ 'd ~\
Core 0 Core 0
Logical| |Logical
Proc 0 Proc 1 Proc 0 Proc 1
\ 2-way hyper-threading) L)
'd N\ 'd ~\
Core 1 Core 1
Logical |Logical Logical| |Logical
Proc 0 Proc 1 Proc 0 Proc 1
. J/ N J/
more Cores ... more Cores ...
N J/ N J/
L 2-way architecture (NUMA)
m/how-series HANDLING MULTIPI.E CUHES

colfaxre:

Hierarchy:
Packages ->
Cores ->
Logical processors

OS Proc = numerical ID
of logical processor

Jargon:

"socket" = package

"logical core" =

"hyper-thread" =

"hardware thread" =
logical processor

© Colfax Ir

ernational, 2013-2017

I CO-EXISTENCE WITH VECTORS

Shared Memory
Threads =—
Core] | Core | Core | Core] |
Vectorization HT HT HT HT HT HT HT HT
I N ([N ([N ([1
ARRRRAAN | ANRRNREN | ANRENEIN piNDRDRENR
Vector Unit Vector Unit Vector Unit Vector Unit
Processor

Utilize cores: run multiple threads/processes (MIMD)
Utilize vectors: each thread (process) issues vector instructions (SIMD)

HANDLING MULTIPI.E CURES © Colfax International, 2013-2017

| THREADS VERSUS PROCESSES

Option 1: Partitioning data set between threads/processes

Memory Memory Memory
Process 1 Process 2 Thread 1 Thread 2

A Message Passing ¥

.com/how-series HANDLINB MULTIPLE CURES

© Colfax International, 2013-2017

| THREADS VERSUS PROCESSES

Option 2: Sharing data set between threads/processes

Memory Memory Memory

>

S

[

3]

2
Thread 1./~ Thread2— /7
e d i b en. e A % A W

Examples: particle transport simulation, machine learning (inference).

HANDLING MULTIPI.E CUHES © Colfax International, 2013-2017

colfaxresearch.com/how-series

I THREADING FRAMEWORKS

Framework Functionality
C++11 Threads Asynchronous functions; only C++
POSIX Threads Fork/join; C/C++/Fortran; Linux

Cilk Plus Async tasks, loops, reducers, load balance; C/C++
TBB Trees of tasks, complex patterns; only C++
OpenMP Tasks, loops, reduction, load balancing, affinity,

nesting, C/C++/Fortran (+SIMD, offload)

colfaxresearch.com/how-series HANDLING MULTIPI.E CUHES © Colfax International, 2013-2017

http://www.openmp.org

OPENMP BASICS

"HELLO WORLD" OPENMP PROGRAM

1 | #include <omp.h> > OpenMP = “Open
2 | #include <cstdio> Multi-Processing” =
: computing-oriented

4 |int main(){

5 // This code is ezecuted by 1 thread framework for

shared-memory

6 const int nt=omp_get_max_threads() ;
7 printf ("OpenMP with %d threads\n", nt); programming
e > Threads — streams of

9 | #pragma omp parallel

10 { // This code ts ezecuted in parallel instructions that share

11 // by multiple threads memory address space

12 printf ("Hello World from thread %d\n", > Distribute threads across
N omp_get_thread_nun()); CPU cores for parallel

14 }

15 |+ speedup

OPENMP BASICS mational, 2013-2017

I COMPILING THE "HELLO WORLD" OPENMP PROGRAM

vega@lyraj, icpc —qopenmp hello_omp.cc
vega@lyraj export OMP_NUM_THREADS=5
vega@lyraj, ./a.out

OpenMP with 5 threads

Hello World from thread O

Hello World from thread 3

Hello World from thread 1

Hello World from thread 2

Hello World from thread 4

OMP_NUM_THREADS controls number of OpenMP threads (default: logical CPU count)

colfaxresearch.com/how-series UPENMP BASICS © Colfax International, 2013-2017

I CONTROL OF VARIABLE SHARING

Method 1: using clauses in pragma omp parallel (C, C++, Fortran):

1 |int A, B; // Vartables declared at the beginning of a function
2 | #pragma omp parallel private(4) shared(B)

s {
4 // Each thread has its own copy of A, but B is shared
5|}

Method 2: using scoping (only C and C++):

1 |int B; // Variable declared outside of parallel scope - shared by default
2 | #pragma omp parallel

s {

4 int A; // Variable declared inside the parallel scope - always private
5 // Each thread has its own copy of A, but B is shared

6|

OPENMP BASICS

I LOOP-CENTRIC PARALLELISM: FOR-LOOPS IN OPENMP

> Simultaneously launch
multiple threads

e

Parallelizing a for-loop.

> Scheduler assigns loop
iterations to threads

I<—ft_!<—

> Each thread processes
one iteration at a time

colfaxresearch.com/how-series UPENMP BASIBS © Colfax International, 2013-2017

I LOOP-CENTRIC PARALLELISM: FOR-LOOPS IN OPENMP

The OpenMP library will distribute the iterations of the loop following the
#pragma omp parallel for across threads.

1 | #pragma omp parallel for

2 |for (int i = 0; i < n; i++) {

3 printf("Iteration %d is processed by thread %d\n",

4 i, omp_get_thread_num());

5 // ... diterations will be distributed across available threads...
6|

colfaxresearch.com/how-series UPENMP BASICS © Colfax International, 2013-2017

I LOOP-CENTRIC PARALLELISM: FOR-LOOPS IN OPENMP

1 | #pragma omp parallel
2 | {
3 // Code placed here will be exzecuted by all threads.

5 // Alternative way to specify private variables:
6 // declare them in the scope of pragma omp parallel
7 int private_number=0;

9 | #pragma omp for

10 for (int i = 0; i < n; i++) {

11 // ... iterations will be distributed across available threads...
12 }

13 // ... code placed here will be ezecuted by all threads

14 }

OPENMP BASICS

LOOP SCHEDULING MODES IN OPENMP

Scheduling Threads Iterations Scheduling Threads Iterations
0 [0 1T 23 4567] 0 [0 4 8 1216 20 24 28]

1 [8 9 10 11 12 13 14 15 | static, | 1 [1 5 9 1317212529 |
2 [16 17 18 19 20 21 22 23 1] 2 [2 6 10 14182226 30]
3 [24 25 26 27 28 29 30 31] 3 [3 7 11 1519 23 27 31]

0 0
- 1 : 1
2 (Gmemic2) , MR
3 3 [67 1[2021]...

0 0 1 2 3[16 17][24 _[29] 0 0 1 2 3|[16 17][2425
1 4 5 6 7 J[2021][25 1 4 5 6 7 |[20211[2627
2 2 8 910 11][1819][2829
3 27103 3

Time Time

DPENMP BASICS Colfax International,

THREAD SYNCHRONIZATION

I RACE CONDITIONS AND UNPREDICTABLE PROGRAM BEHAVIOR

#include <omp.h>
#include <cstdio>
int main() {
const int n = 1000;
int total = 0;
#pragma omp parallel for
for (int i = 0; i < n; i++) {
total = total + i; // Race condition
}
printf ("total=}d (must be %d)\n", total,
((n-1)*n)/2);

vega@lyraj, icpc -o app omp-race.cc —gopenmp
vega@lyraj, ./app
total=208112 (must be 499500)

colfaxresearch.com/how-series THREAD SYNCHRUNIZATIHN

Thread 1

Race Condition!

> Occurs when 2 or more
threads access the same
memory address, and at
least one of these accesses is
for writing

© Colfax International, 2013-2017

© ® N g A W N =

PROTECTING RACE CONDITIONS WITH A CRITICAL SECTION

#include <omp.h> Thread 1

#include <cstdio>
int main() {
const int n = 1000;
int total = 0;
#pragma omp parallel for
for (int i = 0; i < n; i++) {
#pragma omp critical
{ // Only one thread at a time can execute this section
total = total + ij;
X
+}

Shared
Variable

Thread 2

vega@lyraj, icpc -o omp-critical omp-critical.cc -qopenmp
vega@lyraj, ./omp-critical
total=499500 (must be 499500)

colfaxresearch.com/how-series THREAD SYNCHRONIZATIUN © Colfax International, 2013-2017

I AVOIDING RACES WITH ATOMIC OPERATIONS

This parallel fragment of code has predictable behavior, because the race
condition was eliminated with an atomic operation:

#pragma omp parallel for
for (int i = 0; i < n; i++)
{ // Lightweight synchronization
#pragma omp atomic
total += i;

}

[B N N

colfaxresearch.com/how-series THREAD SYNCHRUNIZATIUN

© Colfax International, 2013-2017

I LIMITATIONS OF ATOMIC OPERATIONS

Read : operations in the formv = x
Write : operations in the formx = v
Update : operations in the form x++, x--, --x, ++x, x binop= expr
and x = x binop expr
Capture : operations inthe formv = x++,v = x-,v = -x, v = ++%,

v = x binop expr

> Here x and v are scalar variables
> binopisoneof+, x, -, -/, &, =, |, <, ».
> No “trickery” is allowed for atomic operations:

® no operator overload,

® no non-scalar types,

® no complex expressions.

THREAD SYNCHRUNIZATIUN © Colfax International, 2013-2017

colfaxresearch.com/how-series

PARALLEL REDUCTION

REDUCTION CLAUSE IN PARALLEL REGION

#include <omp.h>
#include <cstdio>

int main() {

const int n = 1000;

int total = 0;
#pragma omp parallel for reduction(+: total)

for (int i = 0; i < n; i++) {

total = total + ij;

}

printf ("total=Y%d (must be %d)\n", total, ((n-1)#*n)/2);
}

vega@lyraj, icpc -o omp-reduction omp-reduction.cc -qopenmp
vega@lyraj, ./omp-reduction
total=499500 (must be 499500)

PARALLEL REDUCTION

nal, 2013-2017

I AVOIDING RACES WITH THREAD-PRIVATE STORAGE

Correct and efficient code:

1 |int total = O;
2 | #pragma omp parallel Thread 0 Thread 1 Thread 3 Thread 4
3 { [I 1 I 1
. 0+= 0 x1+=200) X2+=400) X3+=600) x4+=800)
i =)2 Thread-private | *
4| int total thr = 0; rea };;g:l X0+= 1 x14=201 X2+=401 X3+=601 x4+=800
5 | #pragma omp for ums: [X0F= 2 x1+=202 x2+=402 x3+=602 x4+=800|
6 for (int i=0; i<n; i++)
total thr + A x0+=199 x1+=399 x2+=599 x3+=799 x4+=999
7 ota r = a3 ,_I_l
- total+=x0
8 Reduction atomic[total+=x1]
. atomic{ total+=x2
s | #pragma omp atomic _hpmte“eq Ialomic| fofali=x3]
_ . with mutexes: atoimic [Total T=xdl
10 total += total_thr;
1 total=499500
12 }

PARALLEL REDUCTION

CO-EXISTENGE WITH VECTORS

[T N

—

SIMULTANEOUS THREADING AND VECTORIZATION

This approach often works:

#pragma omp parallel for
for (int 1 = 0; i < n; i++) // Thread parallelism in outer loop
#pragma simd
for (int j = 0; j < m; j++) // Vectorization in inner loop
DoSomeWork (A[i] [j1);

That works as well:

#pragma omp parallel for simd

DoSomeWork (A[i]) ;

for (int i = 0; i < n; i++) // If the problem is all data-parallel

colfaxresearch.com/how-series CU'EXISTENCE WITH VECT“RS

© Colfax International, 2013-2017

I SIMULTANEOUS THREADING AND VECTORIZATION

Sometimes the compiler may need a little help:

1 |const int STRIP_SIZE = 128; // A multiple of wvector length
2 [const int nTrunc = n - n}STRIP_SIZE; // A multiple of vector length

4 | #pragma omp parallel for

5 |[for (int ii = 0; ii < nTrunc; ii += STRIP_SIZE) // Thread parallelism in outer
6 | #pragma simd

7 for (int i = ii; i < ii + STRIP_SIZE; i++) // Vectorization in inner loop

8 DoSomeWork (A[i]);

0 | // Remainder loop:
1n |[for (int i = nTrunc; i < n; i++)
12 DoSomeWork (A[i]) ;

colfaxresearch.com/how-series CU'EXISTENCE WITH VECT“RS © Colfax International, 2013-2017

MORE TO LEARN ABOUT OPENMP

I OPENMP CONCEPTS AND CONSTRUCTS

#pragma omp parallel —create threads
#pragma omp for —processloop with threads
#pragma omp task/taskyield —asynchronous tasks
#pragma omp critical/atomic —mutexes
#pragma omp barrier/taskwait —synchronization points
#pragma omp sections/single — blocks of code for individual threads
#pragma omp flush —enforce memory consistency
#pragma omp ordered — partial loop serialization
OMP_* —environment variables, omp_*() — functions

Click construct names for links to the OpenMP reference from the LLNL
colfaxresearch.com/how-series MURE T0 LEARN ABUUT UPENMP © Colfax International, 2013-2017

https://computing.llnl.gov/tutorials/openMP/#ParallelRegion
https://computing.llnl.gov/tutorials/openMP/#DO
https://computing.llnl.gov/tutorials/openMP/#Task
https://computing.llnl.gov/tutorials/openMP/#CRITICAL
https://computing.llnl.gov/tutorials/openMP/#ATOMIC
https://computing.llnl.gov/tutorials/openMP/#BARRIER
https://computing.llnl.gov/tutorials/openMP/#TASKWAIT
https://computing.llnl.gov/tutorials/openMP/#SECTIONS
https://computing.llnl.gov/tutorials/openMP/#SINGLE
https://computing.llnl.gov/tutorials/openMP/#FLUSH
https://computing.llnl.gov/tutorials/openMP/#ORDERED
https://computing.llnl.gov/tutorials/openMP/#EnvironmentVariables
https://computing.llnl.gov/tutorials/openMP/#AppendixA
https://computing.llnl.gov/tutorials/openMP/

ADDITIONAL READING

SUGGESTED ADDITIONAL READING

Colfax Research tutorial on multi-threading in a binning code

iY=
nBinsY-1

Thread-private
Y partial
* sums:
o X
=l
E Reduction
- protected
7 with mutexes:
=
iX=0 iX=1 iX=2 iX=

nBinsX-1

http://colfaxresearch.com/?p=6

ADDITIONAL READING

x=0

Thread 1 Thread 2 Thread 4 Thread 5
[I I I 1
x1+=101] x2+=201 x3+=301" x4+=401" x5+=501
x1+=102| x2-+=202| x3+=302| x4+=402)| x5+=502|
x1+=103 x2+=203) x3+=303] x4+=403 X5+=503|
x1+=200) x2+=300| x3+=400)| x4+=500)| x5+=600|

x+=x1
afomic [x+=x2
atomic[x+=x3

aformic[x+=x4
atomic | x+=x5

x=175250

2013-2017

http://colfaxresearch.com/?p=6

I ADDITIONAL MATERIALS ON OPENMP

1. OpenMP Specifications

2. Intel’s OpenMP Video Course

3. LLNL tutorial: OpenMP im0 | S

4. Book: “Parallel Programming and) EE%:Z::H E
Optimization with Intel Xeon Phi & o
Coprocessors” by Colfax. \ o

COPROCESSORS

ANDREY VLADIMIROV | RYD ASAI VADIM KARPUSENKD

ADDITIONAL READING

http://openmp.org/wp/openmp-specifications/
http://www.intel.com/content/www/us/en/education/university/intel-many-core-curriculum-list/openmp-videos.html
https://computing.llnl.gov/tutorials/openMP/
https://colfaxresearch.com/book
https://colfaxresearch.com/book
https://colfaxresearch.com/book
https://colfaxresearch.com/book

| SUMMARY

Discussed today:
> Cores can run independent programs
> Use threads to scale across cores
> OpenMP — well-established parallel framework for HPC
> Data races lead to incorrect, unpredictable results
> Mutexes control data races at cost of performance

> Co-exist with have vectorization in each thread

Next session: distributed-memory computing with MPI.

colfaxresearch.com/how-series REVIEW AND WHAT'S NEXT © Colfax International, 2013-2017

COLFAX RESEARCH

COLFAX RESEARCH o s st s | S

GONTRIBUTIN T0NNOUATIONS I GOUPLTIG.

the HGST Ultrastar Archive Hato SMR

| eoputar B Y ® @share

The Hands-on Workshop (HOW) Series

Configuration and Benchmarks of
Peer-to-Peer Communication over
Gigabit Ethernet and InfiniBand in a

Cluster with Intel Xeon Phi

Coprocessors
Fanllelﬂuml:uunxmlheseaxch[ux yo—

New Physics at

K

Colfaoffers consuting ser
Introduction to ntel DAAL, Part 1 el you o
Polymonial Regression with Baich Mode el

Introduction to Intel DAAL, Part 1: Polynomial Regression with Batch [N
Mode Computation

= Optimizeyour existng applicatio totake ac
paraleam, rom vectors tocore tocusters and | 77727
| raraier o = ot proot your applcato fr upcoming oy

Interview with James Reinders: future
of Intel MIC architecture, parallel
programming, education

L

. sty your ost. pover

urations thr

[——— R

- mputing pro
T i W e UMzELon
Dact3of 3 Floe Sharing and {echnGues, oerciss.
© 201, Cax
nernational.
508 pages.
g podioniotie o ‘ |||||]| the Intel MIC Architeeture. | reaturea video

Ultrastar Axchive Hato SR art 2 f 3: Strip- Mining for

Episode 2. Purpose o the MIC archiecture s softwa

roduction o el DARL,
B o
il Balch Mode Computation [enence ma

[

part 10f 3: Multi-Threading “‘A'“‘ \(m\H

AN

https://colfaxresearch.com/

.com/how-series REVIEW AND WHAT'S NEXT © Colfax International, 2013-2017

https://colfaxresearch.com/
https://colfaxresearch.com/

	Welcome
	Course Roadmap
	Resources

	Expressing Task Parallelism
	Handling Multiple Cores
	OpenMP Basics
	Thread Synchronization
	Parallel Reduction
	Co-existence with Vectors
	More To Learn about OpenMP
	Additional Reading

	Review and What's Next

