
Programming and Optimization
for Intel® Architecture

Hands-On Workshop (HOW) Series "Deep Dive"

Session 4

Colfax International — colfaxresearch.com

colfaxresearch.com/how-series Welcome © Colfax International, 2013–2017

https://colfaxresearch.com/

Disclaimer
2

While best efforts have been used in preparing this training, Colfax International makes no
representations or warranties of any kind and assumes no liabilities of any kind with respect to
the accuracy or completeness of the contents and specifically disclaims any implied warranties
of merchantability or fitness of use for a particular purpose. The publisher shall not be held
liable or responsible to any person or entity with respect to any loss or incidental or
consequential damages caused, or alleged to have been caused, directly or indirectly, by the
information or programs contained herein. No warranty may be created or extended by sales
representatives or written sales materials.

colfaxresearch.com/how-series Welcome © Colfax International, 2013–2017

Course Roadmap
3

▷ Module I. Programming Models
• 01. Intel Architecture and Modern Code
• 02. Xeon Phi, Coprocessors, Omni-Path

▷ Module II. Expressing Parallelism
• 03. Automatic vectorization
• 04. Multi-threading with OpenMP
• 05. Distributed Computing, MPI

▷ Module III. Performance Optimization
• 06. Optimization Overview: N-body
• 07. Scalar tuning, Vectorization
• 08. Common Multi-threading Problems
• 09. Multi-threading, Memory Aspect
• 10. Access to Caches and Memory

colfaxresearch.com/how-series Course Roadmap © Colfax International, 2013–2017

HOW Series Online
4

Course page:
colfaxresearch.com/how-series

▷ Slides

▷ Code

▷ Video

▷ Chat

More workshops:
colfaxresearch.com/training

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

https://colfaxresearch.com/how-series
https://colfaxresearch.com/training

Get Your Questions Answered: Chat
5

colfaxresearch.com/how-series

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

https://colfaxresearch.com/how-series/

Get Your Questions Answered: Forums
6

colfaxresearch.com/forum

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

https://colfaxresearch.com/forum/

Hands-On Exercises and Remote Access
7

▷ All registrants receive an invitation from
cluster@colfaxresearch.com

▷ Queue-based access to Intel Xeon E5, Intel
Xeon Phi (KNC and KNL)

▷ Can access the cluster the entire 2 weeks of
the workshop

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

§2. Expressing Task Parallelism

Computing Platforms
9

colfaxresearch.com/how-series Expressing Task Parallelism © Colfax International, 2013–2017

One Code for All Platforms
10

colfaxresearch.com/how-series Expressing Task Parallelism © Colfax International, 2013–2017

Handling Multiple Cores

Processor Hierarchy
12

colfaxresearch.com/how-series Handling Multiple Cores © Colfax International, 2013–2017

Co-Existence with Vectors
13

Utilize cores: run multiple threads/processes (MIMD)
Utilize vectors: each thread (process) issues vector instructions (SIMD)

colfaxresearch.com/how-series Handling Multiple Cores © Colfax International, 2013–2017

Threads versus Processes
14

Option 1: Partitioning data set between threads/processes

Examples: computational fluid dynamics (CFD), image processing.

colfaxresearch.com/how-series Handling Multiple Cores © Colfax International, 2013–2017

Threads versus Processes
15

Option 2: Sharing data set between threads/processes

Examples: particle transport simulation, machine learning (inference).

colfaxresearch.com/how-series Handling Multiple Cores © Colfax International, 2013–2017

Threading Frameworks
16

Framework Functionality
C++11 Threads Asynchronous functions; only C++
POSIX Threads Fork/join; C/C++/Fortran; Linux
Cilk Plus Async tasks, loops, reducers, load balance; C/C++
TBB Trees of tasks, complex patterns; only C++
OpenMP Tasks, loops, reduction, load balancing, affinity,

nesting, C/C++/Fortran (+SIMD, offload)

colfaxresearch.com/how-series Handling Multiple Cores © Colfax International, 2013–2017

http://www.openmp.org

OpenMP Basics

"Hello World" OpenMP Program
18

1 #include <omp.h>
2 #include <cstdio>
3

4 int main(){
5 // This code is executed by 1 thread
6 const int nt=omp_get_max_threads();
7 printf("OpenMP with %d threads\n", nt);
8

9 #pragma omp parallel
10 { // This code is executed in parallel
11 // by multiple threads
12 printf("Hello World from thread %d\n",
13 omp_get_thread_num());
14 }
15 }

▷ OpenMP = “Open
Multi-Processing” =
computing-oriented
framework for
shared-memory
programming

▷ Threads – streams of
instructions that share
memory address space

▷ Distribute threads across
CPU cores for parallel
speedup

colfaxresearch.com/how-series OpenMP Basics © Colfax International, 2013–2017

Compiling the "Hello World" OpenMP Program
19

vega@lyra% icpc -qopenmp hello_omp.cc
vega@lyra% export OMP_NUM_THREADS=5
vega@lyra% ./a.out
OpenMP with 5 threads
Hello World from thread 0
Hello World from thread 3
Hello World from thread 1
Hello World from thread 2
Hello World from thread 4

OMP_NUM_THREADS controls number of OpenMP threads (default: logical CPU count)

colfaxresearch.com/how-series OpenMP Basics © Colfax International, 2013–2017

Control of Variable Sharing
20

Method 1: using clauses in pragma omp parallel (C, C++, Fortran):

1 int A, B; // Variables declared at the beginning of a function
2 #pragma omp parallel private(A) shared(B)
3 {
4 // Each thread has its own copy of A, but B is shared
5 }

Method 2: using scoping (only C and C++):

1 int B; // Variable declared outside of parallel scope - shared by default
2 #pragma omp parallel
3 {
4 int A; // Variable declared inside the parallel scope - always private
5 // Each thread has its own copy of A, but B is shared
6 }

colfaxresearch.com/how-series OpenMP Basics © Colfax International, 2013–2017

Loop-Centric Parallelism: For-Loops in OpenMP
21

▷ Simultaneously launch
multiple threads

▷ Scheduler assigns loop
iterations to threads

▷ Each thread processes
one iteration at a time

Parallelizing a for-loop.

colfaxresearch.com/how-series OpenMP Basics © Colfax International, 2013–2017

Loop-Centric Parallelism: For-Loops in OpenMP
22

The OpenMP library will distribute the iterations of the loop following the
#pragma omp parallel for across threads.

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++) {
3 printf("Iteration %d is processed by thread %d\n",
4 i, omp_get_thread_num());
5 // ... iterations will be distributed across available threads...
6 }

colfaxresearch.com/how-series OpenMP Basics © Colfax International, 2013–2017

Loop-Centric Parallelism: For-Loops in OpenMP
23

1 #pragma omp parallel
2 {
3 // Code placed here will be executed by all threads.
4

5 // Alternative way to specify private variables:
6 // declare them in the scope of pragma omp parallel
7 int private_number=0;
8

9 #pragma omp for
10 for (int i = 0; i < n; i++) {
11 // ... iterations will be distributed across available threads...
12 }
13 // ... code placed here will be executed by all threads
14 }

colfaxresearch.com/how-series OpenMP Basics © Colfax International, 2013–2017

Loop Scheduling Modes in OpenMP
24

colfaxresearch.com/how-series OpenMP Basics © Colfax International, 2013–2017

Thread Synchronization

Race Conditions and Unpredictable Program Behavior
26

1 #include <omp.h>
2 #include <cstdio>
3 int main() {
4 const int n = 1000;
5 int total = 0;
6 #pragma omp parallel for
7 for (int i = 0; i < n; i++) {
8 total = total + i; // Race condition
9 }

10 printf("total=%d (must be %d)\n", total,
11 ((n-1)*n)/2);
12 }

vega@lyra% icpc -o app omp-race.cc -qopenmp
vega@lyra% ./app
total=208112 (must be 499500)

▷ Occurs when 2 or more
threads access the same
memory address, and at
least one of these accesses is
for writing

colfaxresearch.com/how-series Thread Synchronization © Colfax International, 2013–2017

Protecting Race Conditions with a Critical Section
27

1 #include <omp.h>
2 #include <cstdio>
3 int main() {
4 const int n = 1000;
5 int total = 0;
6 #pragma omp parallel for
7 for (int i = 0; i < n; i++) {
8 #pragma omp critical
9 { // Only one thread at a time can execute this section

10 total = total + i;
11 }
12 } }

vega@lyra% icpc -o omp-critical omp-critical.cc -qopenmp
vega@lyra% ./omp-critical
total=499500 (must be 499500)

colfaxresearch.com/how-series Thread Synchronization © Colfax International, 2013–2017

Avoiding Races with Atomic Operations
28

This parallel fragment of code has predictable behavior, because the race
condition was eliminated with an atomic operation:

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++)
3 { // Lightweight synchronization
4 #pragma omp atomic
5 total += i;
6 }

colfaxresearch.com/how-series Thread Synchronization © Colfax International, 2013–2017

Limitations of Atomic Operations
29

Read : operations in the form v = x
Write : operations in the form x = v

Update : operations in the form x++, x--, --x, ++x, x binop= expr
and x = x binop expr

Capture : operations in the form v = x++, v = x–, v = –x, v = ++x,

v = x binop expr

▷ Here x and v are scalar variables
▷ binop is one of +, *, -, - /, &, ˆ , |, «, ».
▷ No “trickery” is allowed for atomic operations:

• no operator overload,
• no non-scalar types,
• no complex expressions.

colfaxresearch.com/how-series Thread Synchronization © Colfax International, 2013–2017

Parallel Reduction

Reduction Clause in Parallel Region
31

1 #include <omp.h>
2 #include <cstdio>
3

4 int main() {
5 const int n = 1000;
6 int total = 0;
7 #pragma omp parallel for reduction(+: total)
8 for (int i = 0; i < n; i++) {
9 total = total + i;

10 }
11 printf("total=%d (must be %d)\n", total, ((n-1)*n)/2);
12 }

vega@lyra% icpc -o omp-reduction omp-reduction.cc -qopenmp
vega@lyra% ./omp-reduction
total=499500 (must be 499500)

colfaxresearch.com/how-series Parallel Reduction © Colfax International, 2013–2017

Avoiding Races with Thread-Private Storage
32

Correct and efficient code:

1 int total = 0;
2 #pragma omp parallel
3 {
4 int total_thr = 0;
5 #pragma omp for
6 for (int i=0; i<n; i++)
7 total_thr += i;
8

9 #pragma omp atomic
10 total += total_thr;
11

12 }

x0+= 0
x0+= 1
x0+= 2

...
x0+=199

x1+=200
x1+=201
x1+=202

...
x1+=399

x2+=400
x2+=401
x2+=402

...
x2+=599

x3+=600
x3+=601
x3+=602

...
x3+=799

x4+=800
x4+=800
x4+=800

...
x4+=999

total+=x0
total+=x1

total+=x2
total+=x3

total+=x4

total=499500

atomic
atomic

atomic
atomic

total=0Thread 0 Thread 1 Thread 3 Thread 4

Thread-private
partial
sums:

Reduction
protected

with mutexes:

colfaxresearch.com/how-series Parallel Reduction © Colfax International, 2013–2017

Co-existence with Vectors

Simultaneous Threading and Vectorization
34

This approach often works:
1 #pragma omp parallel for
2 for (int i = 0; i < n; i++) // Thread parallelism in outer loop
3 #pragma simd
4 for (int j = 0; j < m; j++) // Vectorization in inner loop
5 DoSomeWork(A[i][j]);

That works as well:
1 #pragma omp parallel for simd
2 for (int i = 0; i < n; i++) // If the problem is all data-parallel
3 DoSomeWork(A[i]);

colfaxresearch.com/how-series Co-existence with Vectors © Colfax International, 2013–2017

Simultaneous Threading and Vectorization
35

Sometimes the compiler may need a little help:

1 const int STRIP_SIZE = 128; // A multiple of vector length
2 const int nTrunc = n - n%STRIP_SIZE; // A multiple of vector length
3

4 #pragma omp parallel for
5 for (int ii = 0; ii < nTrunc; ii += STRIP_SIZE) // Thread parallelism in outer
6 #pragma simd
7 for (int i = ii; i < ii + STRIP_SIZE; i++) // Vectorization in inner loop
8 DoSomeWork(A[i]);
9

10 // Remainder loop:
11 for (int i = nTrunc; i < n; i++)
12 DoSomeWork(A[i]);

colfaxresearch.com/how-series Co-existence with Vectors © Colfax International, 2013–2017

More To Learn about OpenMP

OpenMP Concepts and Constructs
37

#pragma omp parallel – create threads

#pragma omp for – process loop with threads

#pragma omp task/taskyield – asynchronous tasks

#pragma omp critical/atomic – mutexes

#pragma omp barrier/taskwait – synchronization points

#pragma omp sections/single – blocks of code for individual threads

#pragma omp flush – enforce memory consistency

#pragma omp ordered – partial loop serialization

OMP_* – environment variables, omp_*() – functions

Click construct names for links to the OpenMP reference from the LLNL
colfaxresearch.com/how-series More To Learn about OpenMP © Colfax International, 2013–2017

https://computing.llnl.gov/tutorials/openMP/#ParallelRegion
https://computing.llnl.gov/tutorials/openMP/#DO
https://computing.llnl.gov/tutorials/openMP/#Task
https://computing.llnl.gov/tutorials/openMP/#CRITICAL
https://computing.llnl.gov/tutorials/openMP/#ATOMIC
https://computing.llnl.gov/tutorials/openMP/#BARRIER
https://computing.llnl.gov/tutorials/openMP/#TASKWAIT
https://computing.llnl.gov/tutorials/openMP/#SECTIONS
https://computing.llnl.gov/tutorials/openMP/#SINGLE
https://computing.llnl.gov/tutorials/openMP/#FLUSH
https://computing.llnl.gov/tutorials/openMP/#ORDERED
https://computing.llnl.gov/tutorials/openMP/#EnvironmentVariables
https://computing.llnl.gov/tutorials/openMP/#AppendixA
https://computing.llnl.gov/tutorials/openMP/

Additional Reading

Suggested Additional Reading
39

Colfax Research tutorial on multi-threading in a binning code

http://colfaxresearch.com/?p=6

colfaxresearch.com/how-series Additional Reading © Colfax International, 2013–2017

http://colfaxresearch.com/?p=6

Additional Materials on OpenMP
40

1. OpenMP Specifications

2. Intel’s OpenMP Video Course

3. LLNL tutorial: OpenMP

4. Book: “Parallel Programming and
Optimization with Intel Xeon Phi
Coprocessors” by Colfax.

P A R A L L E L P R O G R A M M I N G
A N D O P T I M I Z A T I O N W I T H

HANDBOOK ON THE

DEVELOPMENT AND

OPTIMIZATION OF

PARALLEL

APPLICATIONS FOR

INTEL XEON

PROCESSORS

AND INTEL

XEON PHI

COPROCESSORS

INTEL XEON PHI
COPROCESSORS

TMR

SE
CO

ND
 E

DI
TI

ON

C O L F A X I N T E R N A T I O N A L
A N D R E Y V L A D I M I R O V | R Y O A S A I | V A D I M K A R P U S E N K O

colfaxresearch.com/how-series Additional Reading © Colfax International, 2013–2017

http://openmp.org/wp/openmp-specifications/
http://www.intel.com/content/www/us/en/education/university/intel-many-core-curriculum-list/openmp-videos.html
https://computing.llnl.gov/tutorials/openMP/
https://colfaxresearch.com/book
https://colfaxresearch.com/book
https://colfaxresearch.com/book
https://colfaxresearch.com/book

Summary
41

Discussed today:

▷ Cores can run independent programs

▷ Use threads to scale across cores

▷ OpenMP – well-established parallel framework for HPC

▷ Data races lead to incorrect, unpredictable results

▷ Mutexes control data races at cost of performance

▷ Co-exist with have vectorization in each thread

Next session: distributed-memory computing with MPI.

colfaxresearch.com/how-series Review and What's Next © Colfax International, 2013–2017

Colfax Research
42

https://colfaxresearch.com/

colfaxresearch.com/how-series Review and What's Next © Colfax International, 2013–2017

https://colfaxresearch.com/
https://colfaxresearch.com/

	Welcome
	Course Roadmap
	Resources

	Expressing Task Parallelism
	Handling Multiple Cores
	OpenMP Basics
	Thread Synchronization
	Parallel Reduction
	Co-existence with Vectors
	More To Learn about OpenMP
	Additional Reading

	Review and What's Next

