
Programming and Optimization
for Intel® Architecture

Hands-On Workshop (HOW) Series "Deep Dive"

Session 2

Colfax International — colfaxresearch.com

colfaxresearch.com/how-series Welcome © Colfax International, 2013–2017

https://colfaxresearch.com/

Disclaimer
2

While best efforts have been used in preparing this training, Colfax International makes no
representations or warranties of any kind and assumes no liabilities of any kind with respect to
the accuracy or completeness of the contents and specifically disclaims any implied warranties
of merchantability or fitness of use for a particular purpose. The publisher shall not be held
liable or responsible to any person or entity with respect to any loss or incidental or
consequential damages caused, or alleged to have been caused, directly or indirectly, by the
information or programs contained herein. No warranty may be created or extended by sales
representatives or written sales materials.

colfaxresearch.com/how-series Welcome © Colfax International, 2013–2017

Course Roadmap
3

▷ Module I. Programming Models
• 01. Intel Architecture and Modern Code
• 02. Xeon Phi, Coprocessors, Omni-Path

▷ Module II. Expressing Parallelism
• 03. Automatic vectorization
• 04. Multi-threading with OpenMP
• 05. Distributed Computing, MPI

▷ Module III. Performance Optimization
• 06. Optimization Overview: N-body
• 07. Scalar tuning, Vectorization
• 08. Common Multi-threading Problems
• 09. Multi-threading, Memory Aspect
• 10. Access to Caches and Memory

colfaxresearch.com/how-series Course Roadmap © Colfax International, 2013–2017

HOW Series Online
4

Course page:
colfaxresearch.com/how-series

▷ Slides

▷ Code

▷ Video

▷ Chat

More workshops:
colfaxresearch.com/training

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

https://colfaxresearch.com/how-series
https://colfaxresearch.com/training

Get Your Questions Answered: Chat
5

colfaxresearch.com/how-series

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

https://colfaxresearch.com/how-series/

Get Your Questions Answered: Forums
6

colfaxresearch.com/forum

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

https://colfaxresearch.com/forum/

Hands-On Exercises and Remote Access
7

▷ All registrants receive an invitation from
cluster@colfaxresearch.com

▷ Queue-based access to Intel Xeon E5, Intel
Xeon Phi (KNC and KNL)

▷ Can access the cluster the entire 2 weeks of
the workshop

colfaxresearch.com/how-series Resources © Colfax International, 2013–2017

§2. Roadmap of Intel Architecture

Computing Platforms
9

colfaxresearch.com/how-series Roadmap of Intel Architecture © Colfax International, 2013–2017

Intel Xeon Phi Processors
10

Knights Corner Knights Landing Knights
Mill

Knights
Hill

Lith 22 nm 14 nm 14 nm 10 nm
Models 71xx P/A 72xx, 72xx F ? ?
Form-
factors

coprocessor processor

coprocessor

processor with fabric

? ?

colfaxresearch.com/how-series Roadmap of Intel Architecture © Colfax International, 2013–2017

§3. Programming Coprocessors

Offload and Native Models

Offload and Native Models
13

▷ Offload model (explicit/virtual-shared memory/OpenMP 4.0):

▷ Native model (standalone application/MPI process):

colfaxresearch.com/how-series Offload and Native Models © Colfax International, 2013–2017

Offload or Native: How to Decide
14

Native Offload
≤ 16 GiB > 16 GiB
All parallel Parallel + serial phases
Complex data structures Bitwise-copyable data
Any arithmetic intensity (FLOPs/transfer) ≫ 1000

Native = same code on CPU and MIC
Offload = must insert directives in code

colfaxresearch.com/how-series Offload and Native Models © Colfax International, 2013–2017

Offload over Fabric
15

Heterogeneous computing is possible even with bootable KNL

+ +

Tutorial: Offload over Fabric to Intel Xeon Phi Processor

colfaxresearch.com/how-series Offload and Native Models © Colfax International, 2013–2017

https://software.intel.com/en-us/articles/offload-over-fabric-to-intel-xeon-phi-processor-tutorial

Native Programming (KNC)

Intel Compilers + Intel Xeon Processor
17

“Hello World” application:
1 #include <cstdio>
2 #include <unistd.h>
3 int main(){
4 printf("Hello world! I have %ld logical processors.\n",
5 sysconf(_SC_NPROCESSORS_ONLN));
6 }

Compile and run on host CPU:
vega@lyra% icpc hello.cc -xhost
vega@lyra% ./a.out
Hello world! I have 48 logical processors.
vega@lyra%

colfaxresearch.com/how-series Native Programming (KNC) © Colfax International, 2013–2017

Native Execution on an Intel Xeon Phi Coprocessor (KNC)
18

Compile and run the same code on the coprocessor in the native mode:

vega@lyra% icpc hello.cc -mmic # Cross-compile
vega@lyra% scp a.out mic0:~/ # Put executable on coprocessor
a.out 100% 10KB 10.4KB/s 00:00
vega@lyra% ssh mic0 # Log in to coprocessor
vega@mic0% pwd
/home/lyra
vega@mic0% ls
a.out
vega@mic0% ./a.out # Launch application
Hello world! I have 244 logical processors.
vega@mic0%

▷ Use -mmic to produce executable for MIC architecture

▷ Must transfer executable to coprocessor (or NFS-share) and run from shell

▷ Native MPI applications work the same way (need Intel MPI library)

colfaxresearch.com/how-series Native Programming (KNC) © Colfax International, 2013–2017

Native Applications with Autotools
19

▷ Use the Intel compiler with flag -mmic
▷ Knights Landing: -xMIC-AVX512
▷ Eliminate assembly and unncecessary dependencies

▷ Use --host=x86_64 to avoid “program does not run” errors

Example, the GNU Multiple Precision Arithmetic Library (GMP):

vega@lyra% wget https://ftp.gnu.org/gnu/gmp/gmp-5.1.3.tar.bz2
vega@lyra% tar -xf gmp-5.1.3.tar.bz2
vega@lyra% cd gmp-5.1.3
vega@lyra% ./configure CC=icc CFLAGS="-mmic" --host=x86_64 --disable-assembly
...
vega@lyra% make
...

colfaxresearch.com/how-series Native Programming (KNC) © Colfax International, 2013–2017

Explicit Offload (LEO)

Explicit Offload: Pragma-based approach
21

“Hello World” in the explicit offload model:

1 #include <cstdio>
2 int main() {
3 printf("Hello World from host!\n");
4 #pragma offload target(mic)
5 {
6 printf("Hello World from coprocessor!\n"); fflush(stdout);
7 }
8 printf("Bye\n");
9 }

Application runs on the host, but some parts of code and date are moved (“offloaded”)
the coprocessor.
Detailed syntax in the Intel C++ Compiler Reference.

colfaxresearch.com/how-series Explicit Offload (LEO) © Colfax International, 2013–2017

https://software.intel.com/en-us/node/522484

Compiling and Running an Offload Application
22

vega@lyra% icpc hello_offload.cc -o hello_offload
vega@lyra% ./hello_offload
Hello World from host!
Bye
Hello World from coprocessor!

▷ No additional arguments (for Intel compiler)

▷ Launch on host as a regular application

▷ Code inside of #pragma offload is offloaded automatically

▷ Console output on coprocessor buffered, mirrored to the host

▷ If no coprocessor available, default behavior is error; may be
overridden to fall back to host

colfaxresearch.com/how-series Explicit Offload (LEO) © Colfax International, 2013–2017

Offloading Functions and Data

Offloading Multiple Functions
24

1 #pragma offload_attribute(push, target(mic))
2 void MyFunctionOne() {
3 // ... implement function as usual
4 }
5

6 void MyFunctionTwo() {
7 // ... implement function as usual
8 }
9 #pragma offload_attribute(pop)

▷ To mark a long block of code with the offload attribute, use #pragma
offload_attribute(push/pop)

colfaxresearch.com/how-series Offloading Functions and Data © Colfax International, 2013–2017

Offloading Data: Local Scalars and Arrays
25

1 void MyFunction() {
2 const int N = 1000;
3 int data[N];
4 #pragma offload target(mic)
5 {
6 for (int i = 0; i < N; i++)
7 data[i] = 0;
8 }

▷ Scope-local scalars and known-size arrays offloaded automatically

▷ Data is copied from host to coprocessor at the start of offload

▷ Data is copied back from coprocessor to host at the end of offload

▷ Bitwise-copyable data only (arrays of basic types and scalars)
C++ classes, etc. should use virtual-shared memory model

colfaxresearch.com/how-series Offloading Functions and Data © Colfax International, 2013–2017

Data Marshalling for Dynamically Allocated Data
26

1 double *p1=(double*)malloc(sizeof(double)*N);
2 double *p2=(double*)malloc(sizeof(double)*N);
3

4 #pragma offload target(mic) in(p1 : length(N)) out(p2 : length(N))
5 {
6 // ... perform operations on p1[] and p2[]
7 }

▷ #pragma offload recognizes clauses in, out, inout and nocopy
▷ Data size (length), alignment, redirection, and other properties

may be specified

▷ Marshalling is required for pointer-based data

colfaxresearch.com/how-series Offloading Functions and Data © Colfax International, 2013–2017

Optional Offload, Fall-Back to Host
27

1 #pragma offload target(mic) optional
2 {
3 printf("Hello World! I have %d logical processors.\n",
4 sysconf(_SC_NPROCESSORS_ONLN)); fflush(stdout);
5 }

vega@lyra% icpc Offload-Fallback.cc -o Offload-Fallback
vega@lyra% ./Offload-Fallback
Hello World! I have 244 logical processors.
vega@lyra% sudo systemctl stop mpss # Disabling coprocessors
vega@lyra% ./Offload-Fallback
Hello World! I have 48 logical processors.

colfaxresearch.com/how-series Offloading Functions and Data © Colfax International, 2013–2017

Memory Allocation Control

Memory retention and data persistence on coprocessor
29

▷ By default, memory on coprocessor is allocated before, deallocated after offload
▷ Specifiers alloc_if and free_if allow to avoid allocation/deallocation
▷ Data transfer across the PCIe bus rate is ≈ 7 GB/s
▷ To allocate memory on the coprocessor – 0.5-2.0 GB/s

1 #pragma offload target(mic:0) in(p : length(N) alloc_if(1) free_if(0))
2 { /* allocate memory for array p on coprocessor, do not deallocate */ }
3

4 #pragma offload target(mic:0) in(p : length(N) alloc_if(0) free_if(0))
5 { /* re-use previously allocated memory buffer on coprocessor */ }
6

7 #pragma offload target(mic:0) in(p : length(0) alloc_if(0) free_if(0))
8 { /* re-use previously transferred data on coprocessor */ }
9

10 #pragma offload target(mic:0) out(p : length(N) alloc_if(0) free_if(1))
11 { /* re-use memory and deallocate at the end of offload */ }

colfaxresearch.com/how-series Memory Allocation Control © Colfax International, 2013–2017

Offload Latency With and Without Memory/Data Retention
30

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
1
kB

2
kB

4
kB

8
kB

16
 k
B

32
 k
B

64
 k
B

12
8
kB

25
6
kB

51
2
kB

1
M
B

2
M
B

4
M
B

8
M
B

16
 M
B

32
 M
B

64
 M
B

12
8
M
B

25
6
M
B

51
2
M
B

1
G
B

2
G
B

4
G
B

4
G
B

B
an
dw
id
th
, G
B
/s

Array Size

Bandwidth of Data Offload to Coprocessors

With buffer retention,
 OUT With buffer retention,

 IN

Default offload,
 OUT

Default offload,
 IN

colfaxresearch.com/how-series Memory Allocation Control © Colfax International, 2013–2017

Additional Offload Controls

Target-Specific Code
32

▷ During MIC architecture compilation, preprocessor macro __MIC__ is defined.

▷ Allows to fine-tune application performance or output where necessary

1 __attribute__((target(mic))) void MyFunction() {
2 #ifdef __MIC__
3 printf("I am running on a coprocessor.\n");
4 const int tuningParameter = 16;
5 #else
6 printf("I am running on the host.\n");
7 const int tuningParameter = 8;
8 #endif
9 // ... Proceed, using the variable tuningParameter

10 }

colfaxresearch.com/how-series Additional Offload Controls © Colfax International, 2013–2017

Offload diagnostics
33

vega@lyra% export OFFLOAD_REPORT=2
vega@lyra% ./offload-application
Transferring some data to and from coprocessor...
Done. Bye!
[Offload] [MIC 0] [File] offload-application.cc
[Offload] [MIC 0] [Line] 6
[Offload] [MIC 0] [CPU Time] 0.505982 (seconds)
[Offload] [MIC 0] [CPU->MIC Data] 1024 (bytes)
[Offload] [MIC 0] [MIC Time] 0.000409 (seconds)
[Offload] [MIC 0] [MIC->CPU Data] 1024 (bytes)
vega@lyra%

▷ Set environment variable OFFLOAD_REPORT to 1 or 2 for automatic
collection and output of offload information.

▷ Unset or set OFFLOAD_REPORT=0 to disable offload diagnostics

colfaxresearch.com/how-series Additional Offload Controls © Colfax International, 2013–2017

Environment variable forwarding with offload
34

▷ By default, all host environment variables on the host will be copied
to the coprocessor when offload starts.

▷ In order to have different values for an environment variable on host
and coprocessor, set MIC_ENV_PREFIX

▷ The prefix is dropped when variables are copied to coprocessor

vega@lyra% # This sets the value of OMP_NUM_THREADS on the host:
vega@lyra% export OMP_NUM_THREADS=48
vega@lyra%
vega@lyra% # This enables special rules for variable copying:
vega@lyra% export MIC_ENV_PREFIX=XEONPHI
vega@lyra%
vega@lyra% # This sets the value of OMP_NUM_THREADS on the coprocessor:
vega@lyra% export XEONPHI_OMP_NUM_THREADS=240

colfaxresearch.com/how-series Additional Offload Controls © Colfax International, 2013–2017

Offload in OpenMP 4.0

OpenMP 4.0 Target Offload
36

▷ Another API for offload: #pragma omp target
▷ Part of the OpenMP 4.0 standard

▷ Designed as portable solution (coprocessors, GPGPUs)

▷ On Xeon Phi, uses the same back-end as #pragma offload

1 #pragma omp target
2 {
3 #pragma omp parallel for
4 for(int i=0; i<size; i++)
5 data[i] = 0;
6 }

Application runs on the host, but some parts of code and data are moved (“offloaded”)
the coprocessor. Scope-local scalars and stack arrays offloaded automatically.

colfaxresearch.com/how-series Offload in OpenMP 4.0 © Colfax International, 2013–2017

§4. High-Bandwidth Memory

KNL Memory Organization (bootable)
38

▷ On-package high-bandwidth memory (HBM) – MCDRAM

▷ Optimized for arithmetic performance and bandwidth (not latency)

colfaxresearch.com/how-series High-Bandwidth Memory © Colfax International, 2013–2017

High-Bandwidth Memory Modes
39

Flat Mode
▷ MCDRAM treated as a

NUMA node

▷ Users control what
goes to MCDRAM

CPU

DDR4

Addressable
MCDRAM

NUMA
Node 0

NUMA
Node 1

Cache Mode
▷ MCDRAM treated as a

Last Level Cache (LLC)

▷ MCDRAM is used
automatically

CPU

DDR4

MCDRAM
as cache

Hybrid Mode
▷ Combination of Flat

and Cache

▷ Ratio can be chosen in
the BIOS

Addressable
MCDRAM

NUMA
Node 0

NUMA
Node 1

DDR4

MCDRAM
as cache

CPU

colfaxresearch.com/how-series High-Bandwidth Memory © Colfax International, 2013–2017

Running Applications in HBM with numactl
40

▷ Finding information about the NUMA nodes in the system.

user@knl% # In Flat mode of MCDRAM
user@knl% numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255
node 0 size: 98207 MB
node 1 cpus:
node 1 size: 16384 MB

▷ Binding the application to HBM (Flat/Hybrid)

user@knl% icc myapp.c -o runme -xMIC_AVX512
user@knl% numactl --membind 1 ./runme
// ... Application running in HBM ... //

colfaxresearch.com/how-series High-Bandwidth Memory © Colfax International, 2013–2017

Allocation in HBM with Memkind Library
41

1 #include <hbwmalloc.h>
2 const int n = 1<<10;
3 // Allocation to MCDRAM
4 double* A = (double*) hbw_malloc(sizeof(double)*n);
5 // No replacement for _mm_malloc. Use posix_memalign
6 double* B;
7 int ret = hbw_posix_memalign((void**) &B, 64, sizeof(double)*n);
8
9 // Free with hbw_free

10 hbw_free(A); hbw_free(B);

colfaxresearch.com/how-series High-Bandwidth Memory © Colfax International, 2013–2017

Compilation with Memkind Library and hbwmalloc
42

To compile C/C++ applications:
user@knl% icpc -lmemkind foo.cc -o runme
user@knl% g++ -lmemkind foo.cc -o runme

Open source distribution of Memkind library can be found at:
memkind.github.io/memkind

Learn more:
colfaxresearch.com/knl-mcdram

colfaxresearch.com/how-series High-Bandwidth Memory © Colfax International, 2013–2017

http://memkind.github.io/memkind/
http://colfaxresearch.com/knl-mcdram/

Flow Chart for Bandwidth-Bound Applications
43

Does your Application
fit in 16 GB?

Can you partition ≤16 GB
of BW-critical memory?

No

Yes Yes

No

Start

numactl Memkind Cache mode
▷ Simply run the whole

program in MCDRAM

▷ No code modification
required

▷ Manually allocate
BW-critical memory to
MCDRAM

▷ Memkind calls need to
be added.

▷ Allow the chip to figure
out how to use
MCDRAM

▷ No code modification
required

colfaxresearch.com/how-series High-Bandwidth Memory © Colfax International, 2013–2017

§5. Intel Omni-Path Architecture

Intel's HPC Communication Fabric
45

Intel Omni-Path Architecture - low-latency, high-bandwidth, scalable
communication fabric for HPC applications.

Discrete Integrated

colfaxresearch.com/how-series Intel Omni-Path Architecture © Colfax International, 2013–2017

http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html

Intel Omni-Path Fabric 100 with Intel Xeon Processors
46

First generation: 100 Gbps bandwidth, ≈ 1 microsecond latency

▷ Rely on MPI for platform-independent communication
▷ Intel MPI: set I_MPI_FABRICS=tmi.

colfaxresearch.com/how-series Intel Omni-Path Architecture © Colfax International, 2013–2017

Heterogeneous Distributed Computing with Xeon Phi
47

Option 1: MPI+OpenMP with
Offload.

▷ MPI processes are
multi-threaded with
OpenMP.

▷ MPI runs only on CPUs.

▷ MPI processes offload to
coprocessor(s).

▷ OpenMP in offload regions.

colfaxresearch.com/how-series Intel Omni-Path Architecture © Colfax International, 2013–2017

Heterogeneous Distributed Computing with Xeon Phi
48

Option 2: Symmetric hybrid
MPI+OpenMP.

▷ MPI processes on hosts

▷ Native MPI processes on
the coprocessor.

▷ Multi-threading with
OpenMP.

colfaxresearch.com/how-series Intel Omni-Path Architecture © Colfax International, 2013–2017

Review and What's Next
49

▷ Coprocessor programming: native and offload models

▷ High-bandwidth memory: cache mode or flat mode

▷ Intel OPA: use MPI for transparent, portable programming

Next session: expressing data parallelism, vectorization.

colfaxresearch.com/how-series Review and What's Next © Colfax International, 2013–2017

Colfax Research
50

https://colfaxresearch.com/

colfaxresearch.com/how-series Review and What's Next © Colfax International, 2013–2017

https://colfaxresearch.com/
https://colfaxresearch.com/

	Welcome
	Course Roadmap
	Resources

	Roadmap of Intel Architecture
	Programming Coprocessors
	Offload and Native Models
	Native Programming (KNC)
	Explicit Offload (LEO)
	Offloading Functions and Data
	Memory Allocation Control
	Additional Offload Controls
	Offload in OpenMP 4.0

	High-Bandwidth Memory
	Intel Omni-Path Architecture
	Review and What's Next

