“Double Rewards”

of Porting Scientific Applications
to the Intel MIC Architecture

Andrey Vladimirov
Colfax International

Presentation at Institute for Nuclear and Particle Astrophysics,
Lawrence Berkeley National Laboratory

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Intel MIC Architecture

T
Xeon Phi™ Coprocessor

5 =
‘ e
Intel Xeon processors Intel Xeon Phi coprocessors (Many
(multi-core CPUs) Integrated Core, or MIC)

* (C/C++/Fortran; OpenMP/MPI * (C/C++/Fortran; OpenMP/MPI

* Standard Linux OS * Special pOS Linux

* Upto 768 GB of DDR3 RAM * 6-16 GB of onboard GDDR5
* Upto 12 cores at ~ 3 GHz * 57to 61 cores at ~ 1 GHz

* 2-way hyper-threading * 4-way hyper-threading

* 256-bit AVX vectors * 512-bit IMCI vectors

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Same Code, Better Performance

For highly parallel applications
Same code for CPU and MIC
Similar optimization strategies

Xeon Phi is 2x-3x faster than
Xeon CPU of comparable cost
and thermal design power

Relative Performance

Theoretical peak performance:
1 TFLOP/s in DP (75% usable);
350 GB/s on-board RAM
bandwidth (50% usable)

Lh

4.0x |
3.0x
2.0x
1.0x

0.0x C

0x -

| ! | | !
Baseline: optimized code w/ICPC on host: 4 4%
0.62 ms per transient spectrum
2.8% g
1.9x -
1.0x E
0.3x
Host, Baseline: Coprocessor, Host + Host +
GCC Host,ICPC ICPC coprocessor 2 coprocessors
ICPC ICPC

Case study: HEATCODE

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Knights Corner Core Diagram

x
c
>
=
Q0
1)
(&
wv

L1 Ca.che

[Data and
Instruction]

Instruction
Decode
Interprocessor
Network

Vector Unit

4 Threads per Core Fully Coherent
64-bit 512-wide L2 Hardware Prefetching Ring
interconnect

In Order VPU: integer, SP, DP; 32 KB 512 KB Slice
3-operand, per core per Core -

Specialized 16-instruction Fast Access to
Instructions Local Copy

(new encoding)
HW transcendentals

Lightweight cores (fewer smart hardware elements, lower clock speeds) make MIC
more power-efficient than CPU at the cost of specialization for parallel applications.

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Coprocessor as Independent Compute Node

user@hosty, 1lspci | grep -i "co-processor"

06:00.0 Co-processor: Intel Corporation Device 2250 (rev 11)
82:00.0 Co-processor: Intel Corporation Device 2250 (rev 11)
user@host, sudo service mpss status

mpss 1s running

user@hosty, cat /etc/hosts | grep mic

172.31.1.1 host-micO micO

172.31.2.1 host-micl micl

user@host’, ssh micO

user@mic0% cat /proc/cpuinfo | grep proc | tail -n 3

processor : 237

processor : 233

processor : 239

user@mic0% 1ls /

amplxe dev home 1ib64 oldroot proc sbin Sys usr
bin etc 1ib linuxrc opt root sep3.10 tmp var

Xeon Phi runs a Linux pOS, which supports networking (= TCP, SSH, LDAP, MPI)
and file storage in RAM disk (= NFS). “Computer inside of a computer”.

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Programming Models for the MIC Architecture

#include <stdio.h>
\\\ #include <unistd.h>
Native Model e ,, |
application runs directly printf("Hello world! I have %ld logical cores.\n",
0N COProCessor sysconf (_SC_NPROCESSORS_ONLN)) ;

+
Use Xeon Phi as an user@host’, icc hello.c -mmic
independent compute node userChost% scp a.out mic0:~/
\\¥ 4// user@host’ ssh micO

user@mic0% ./a.out
Hello world! I have 240 logical cores.
user@mic0%

[/ Host CPUs N - Xeon Phi coprocessor \ /~ Xeon Phi coprocessor \\
MP| N OpenMP NG OpenMP \

SETHE T

MPI MPI

Compute Node 1)
Compute Node 2 /

=
=
=

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Programming Models for the MIC Architecture

#include <stdio.h>

) int main(int argc, char * argv[]) {
Off]oad Models printf ("Hello World from host!\n");
. . # load t t(ms
application runs on host, i mfgma’ offload target(mic)
COD]DDUIHCHIES\N/COpFOCESSOF printf("Hello World from coprocessor!\n"); fflush(0);
J }
printf ("Bye\n"); .
}
. user@host’ icpc hello_offload.cpp -o hello_offload
Explicit offload Virtual-shared | userehost? ./hello_offload
(pragma-based) Memory Hello World from host!
Bye

Hello World from coprocessor!

/Xeon Phi coprocessor——_"\ /" Xeon Phi coprocessor \\

//Host CPUs
MP| OpenMP \
MPI& OpenMP "
NI —\ .y Al
Compute Node 1 /
\t;gonunne Node 2 A//%

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Case Study: Building a 3D Model of the Milky Way
Galaxy using 2D Sky Surveys

Goal: build a 3D model of the Milky Way Galaxy using a
large volume of 2D data from sky surveys.

sdastedoy Of

One of possible realizations of 3D models
of the Milky Way Galaxy
(cosmic dust luminosity map calculated by
the FRaNKIE code)

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Case Study: Building a 3D Model of the Milky Way
Galaxy using 2D Sky Surveys

Goal: build a 3D model of the Milky Way Galaxy using a
large volume of 2D data from sky surveys.

Method: Bayesian inference. Simulate the |
Galaxy, assess the fit to data, refine 3D mod-
el parameters, rinse & repeat.

Challenge: modeling the process of stochastic
heating of cosmic dust by starlight, in each voxel
of a 3D grid, is very time consuming.

With unoptimized code, hundreds of CPU-years [l 2o R i

for each run of the Milky Way Galaxy
. ' (cosmic dust luminosity map calculated by

the FRaNKIE code)

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

sdastedoy Of

Software Stack for Modeling Galactic 3D Structure

MultiNest
Bayesian analysis engine
Scales to O(10) nodes

FRaNKIE
radiation transport Monte Carlo
Scales to multiple cores in 1 node

HEATCODE
cosmic dust heating library
! Multiple Xeon Phi coprocessors in 1 node

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Accelerating Radiation Transport Models

for the Milky Way

Solution: use a computing accelerator, optimize existing code.

R o e U B O

Hundreds of
CPU-years

Calculation of Stochastic Heating and Emissivity of Cosmic Dust Grains
with Optimization for the Intel Many-Core Architecture

Result: HEATCODE Troy A. Porter!, Andrey E. Viadimirov'?

Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA

(HEterOgeneous ArChj_tec- Colfax International, 750 Palomar Ave, Sunnyvale, CA 94085, USA 1
ture library for sTochastic ll A_GZ
|

COsmic Dust Emissivity) S‘l?’
v.ord

(Open source, code soon to \
b e pUthh e d) “ttpl;d ! *I‘helr absorption of starlight produces emission spectra from t§

properties of the dust grains, and spectrum of the heating radiation field. Hundre ds
missions by very small grains. Modeling the absorption of starlight by these j
T HEWEVEr, eomputationaly expensive™dnd a significant bottleneck for self-consistent radiation transport codes treating Of CPU_

of dust by star= Tn this pap~r we summarize the formalisrn for computine the stochastic emissivity of cosmic dust, d

1

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Stochastic Dust Grain Heating

)

* Small grains (£0.1 pm) are
important

"

(Uoissiwe ¥) suonsuel; Buljood

* Absorption and re-emission
is stochastic (non-thermal)

* Grains undergo
“temperature” spikes,
characterized by temperature
distribution

Heating transitions (UV absorption)

Vibrational energy (“grain temperature’)

* Evaluation is
computationally expensive

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Calculation of Stochastic Dust Emissivity

ICIE!‘P-I]['}ﬂ 1('}1 Incid izulilli'2 field v
3 cident radiation fie
- . (e nommalized) PAH grains -+
* Input: incident electromagnetic il Crephitc grains - |
radiation field Tt
1072 e .
3 5o *-.}-::!
. 7 107 Y
* Intermediate: “temperature” Y r .
G : . 3[Rkl lok
distribution of grains of all sizes > |= b
< 10t} L e =
z Ve ~
: 2 102 *,:-""I “t*""':}"\
* Output: spectrum of re-emitted 3" f PRNRY
photons g 10° — :
g 10°F - . S
Qmpesie peci H
1 T ST
: 107"} o
* Method and absorption cross NG |
. . '2, - T Bl - S— -
sections: Draine et al. (2001), 0 T XS
3 ...’ i A
AplJ, 551, 807 10”5 - -

Wavelength A, um

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Matrix Formalism for Stochastic Dust Emissivity

° Stage 1:
Interpolate (in log
space) and convolve the
incident RF with the
photon absorption cross

* Stage 2:
form and solve a
quasi-triangular system of
linear algebraic equations
for the “temperature”

° Stage 3:

convolve the
“temperature”
distribution with the
grain size distribution

sections distribution and emissivity function
M
ZTiij—ZTjiPi:O
BAE, = = vE,(v) = o(v) Z Pi(a)A(v, Ey)
T = I(Do() for wu> 1. J A =
hc? Tij =0, if i< J— 1 l__
M O, 4lf Ei < hV,
_ Bri=> T (f>)) AW, E;) =4 2hv P;
I()a(2) = Q) /i ; Y (> e —
. [Q)]_ log (4/2;-1) - { Q) Lo i
i (CTCTEY) RPN R [TPTRY Xp=o——) BrX; vEQ) = f vEa(v)Qa)da
(F-1f “2 o

transcendental operations

Spdrse memaory daCcess

dense linear algebra

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Optimization Roadmap

HEATCODE Benchmarks

4|
. * Scalar Optimization
5 10°) | ¢ Vectorization
S MUST
% 10°| OPIIMIZE * Thread Scalability
=
£ CPU
Q10" f * Memory Access
Xeon
. Phi
UNOPTIMIZED

* Communication

Dual-socket Intel Xeon E5-2670 CPU
(16 cores total)
versus

Intel Xeon Phi 5110P coprocessor (60 cores)

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Scalar Optimization: Strength Reduction,

Precomputation, Optimized Transcendentals

UNOPTIMIZED Combinatorial (non-vectorizable)
IMPLEMENTATION y)utation of the index

for (int =0; 1< f; i++) { /* Orjginal, unoptimized implementation */
const double = grainWavele h[gl*tempBins*tempBins + f*tempBins + 1];
if (wl >= wavelength[0] && <= wavelength[wlBins-1]) {
/* The usage of std: wer bound precludes automatic vectorization */
const float* = std::lower bound(&wavelength[0], &wavelength[wlBins-1], wl);
const int = wlval — &wavelength[O0];
const double = radiationField[j]*absorptionCrossSection[gI*wlBins + J];
const double = radiationField[j]*absorptionCrossSection[gl*wlBins + J-1];
if ((upper > 0) && (lower > 0)) { /* Power-law interpolation */
weightedRadiationField[gI*tempBins*tempBins + f*tempBins + i] =

exp(log(lower) + (log(upper) — log(lower))*
(log(wl) — log(wavelength[j-1]))/(log(wavelength[]]) — log(wavelength[]-1])));

} oy}

Natural base logarithms / Eight transcendental

and exponentials functions, one division
| per evaluation

Loop in “i” is not vectorizable

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Scalar Optimization: Strength Reduction,

Precomputation, Optimized Transcendentals

OPTIMIZED Precomputed index
IMPLEMENTATION

/* Optimized implementation */
const float = radiationFieldj}q]*absorptionCrossSection[gI*wlBins + j];
const float = radiationFiedd[j]*absorptionCrossSection[gI*wlBins + J-1];
if (upper > 0.0f) && (lower 0.0f) { /* Single precision constants */

const double = log2f (upper/lower); /* Single precision functions */

for (int = 0; c £ A4Count; c++) { /* This loop will be partially vectorized */
const int nterpolationPatternIndex[qgCtr + c]; /* Precomputed indices */
weightedRadiationField[idx] = lower*exp2f (dLogUppemrLower*interpolationOffs[qgCtr+c]);
} [} } /* Base 2 exponential and logar%ﬁﬂﬁ optimized for Xeon and Xeon Phi */

Base 2 logarithms

and exponentials Two transcendental

functions, one division
per evaluation

Loop in “c” is vectorizable

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Vector Optimization: Alignment and Hints

In Xeon Phi, memory
access works best on
64-byte aligned addresses

By default, compiler does
not assume alignment

Hint to compiler that data
is aligned improves
performance

Additional automatic
vectorization hints

/* Aligning data on 64-byte boundary */
float>* =(float*) mm malloc

tempBins*tempBins*sizeof(float), 64);
assert (tempBins%16==0);

/* Guarantee alignment to compiler;

Estimate loop count for optimal

vectorization strategy */

#pragma vector aligned

#pragma loop count min(16)

for (int = 0; 1 < iMax; ++i) {
rSum[i] += bMatrix[f*tempBins + 1i];
bMatrix[f*tempBins + i] = rSum[i];

}

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Vector Optimization: Loop Pattern

* 512 bits vector holds 16 single precision FP numbers
* HEATCODE: padded loop bounds to a multiple of 16 iterations

Unoptimized Loop Pattern

Optimized Loop Pattern

0 - 0 .
b | Heating terms Heating terms
:- Calculation Pattern —— < Calculation Pattern ——
e Main Diagonal ----- > Main Diagonal -----
ﬁ- - .
r——— -
I ————-
—- i, -
i -
16 i 16 E
" - >
5] 5] -
> >
2 2 =
E E 2
k= . i= >
B~ A = =
32 NG 32 -
48 ity 48 3
0 32 32 48

Initial level i

Initial level i

Figure B.22: Pattern of nested loops in £ and i in the first example in Figure B.21 before and after optimization. The optimized loop pattern always has a multiple
of 16 iterations in the inner vectorized loop, which is beneficial for performance.

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Vector Optimization: Loop Pattern

* 512 bits vector holds 16 single precision FP numbers
* HEATCODE: padded loop bounds to a multiple of 16 iterations

/* Unoptimized: traversing matrix
below the main diagonal */
for (int = fMax; f >= 1; --f) {

/* Compiler will implement checks
for value of f, and peel the i-loop
if £ is not a multiple of 16 */
for (int = 0; 1< f; ++1i) {
rSum[i] += bMatrix[f*tempBins + 1i];
bMatrix[f*tempBins + 1] = rSum[i];
}
}

/* Optimized: inner loop always has
a multiple of 16 iterations */
for (int = fMax; f >= 1; --f) {
const int = (f-1)+(16-(f-1)%16)-1;
const int =

(uB<=tempBins ? uB tempBins—1);

for (int 1 = 0; 1 <=iMax; ++i) {
rSum[i] += bMatrix[f*tempBins + 1i];
bMatrix[f*tempBins + i] = rSum[i];
}

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Threading Optimization: Exposing Parallelism

* Using an OpenMP parallel region inside of #pragma offload
* Distribute independent incident spectra across threads

* Modified the library interface to accept an array of spectra
instead of a single spectrum

#pragma offload target(mic)..
{
#pragma omp parallel for schedule(dynamic)
for (int = 0; 1 < nSpectra; i++) {
InterpolateWeightedRF (wlBins, iRF, ...);
CalculateTemperatureDistribution(...);
ComputeEmissivity (...);

}

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Threading Optimization: Reducing Per-Thread

Memory Footprint

* Problem: 240 threads do not fit Memory

in onboard Xeon Phi memory S C]=] T WSEAMLON FIOSE s
* Not an issue on the CPU host! 24 GBT
* Solution: reduce per-thread 16 GB1+RAM on Unot-\m\zed
memory footprint g GRLGORIOCESSOl b

* How: inter-procedural fusion T
to eliminate unnecessary scratch host / 60

120 180 240 \

. # of thr Mi
data passed between functions of threads ¢
InterpolateWeightedRadiationField() ({ RadiationFieldToTemperatureDistribution() ({
for (int i = 0; i < gIMax; i++) for (int i = 0; i < gIMax; i++)
{ /% . */ 1)) t . N
/* .. InterpolateWeightedRadiationField .. */

gIMax {/
weightedRadiationField ‘ {[weightedRadiationField]
/*

.. CalculateMatrices .. */

CalculateMatrices () {
for (int i = 0; i < gIMax; i++)
{ /* . */ }} l [transientMatrix m

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Memory Traffic Optimization: Loop Tiling

/* Nested loops without tiling.
Array B[] does not fit into cache */
for (int 1 = 0; 1 < iMax; ++1)
for (int 7 = 0; j < jMax; ++3)
PerformWork(A[i], B[J1):;

/* Tiled nested loops */
for (int JJ = 0; Jjj < jMax; Jjj += T)
for (int = 0; i < iMax; ++1i)
for (int J = JJ; J < JJ*T; ++3J)
PerformWork(A[i], B[J1):;

array A array B

~N~No ah~wN ko

e=ifiE
atilE

Cache Hit Rate = 6/16
SLOWER

Example:
tile size T=2
cache size=3

. Cache Misses
. Cache Hits

—

array A array B

~N~o uubhwNnkFkro@®

et
ai=E:fE

Cache Hit Rate = 10/16
FASTER

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Memory Traffic Optimization: Loop Tiling

/* Convolution of temperature distr.
with emissivity function in the
HEATCODE library (UNOPTIMIZED) */

for (int i = 0; i < wlBins; ++i) {
float sum = 0.0f;
for (int 7 = 0; j < gIMax; ++3J) {

const float scaling = ...[1,]];
float result =
for (int k = 0;
result +=
planck[i*tempBins + k]*
distribution[j*tempBins + k];

0.0f;
k < tempBins; ++k)

sum += result#*scaling;

}

trans[i] =

}

sum*wavelength[i]*units;

T “Before”

“After” —

/* OPTIMIZED w/double loop tiling */
for (int 77=0; jj<gIMax; jj+=jTile) {
for (int 11=0; 1ii<wlBins; ii+=iTile){
float result[iTile*jTile];
for (int ¢ = 0; c<iTile*jTile; c++)
result[c] = 0.0f;

#pragma simd
for (int k =0

; kK < tempBins; ++k)
for (int ¢ = 0;

c < iTile; c++) {

result[(0)*iTile + c] +=
distribution[(jj+0)*tempBins+k]*
planck[(ii+c)*tempBins+k];
result[(1l)*iTile + c] +=
distribution[(jj+1)*tempBins+k]*
planck[(ii+c)*tempBins+k];
result[(2)*1iTile + c] +=
distribution[(jj+2)*tempBins+k]*
planck[(ii+c)*tempBins+k];
result[(3)*iTile + c] +=
distribution[(jj+3)*tempBins+k]*
planck[(ii+c)*tempBins+k];

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Communication Optimization: Data Persistence

/* Offload pragma in HEATCODE,
data marshaling directives */
tpragma offload target(mic)

in(rfArray : \
length(n*rfBins)) \

out (emissivityArray : \
length(n*rfBins)) \

in(absorptionCrossSection : \
length(gIMax*wlBins))

{ ...}

/* Offload pragma in HEATCODE, optimized
using data and memory persistence */
fpragma offload target(mic:iDevice)

in(rfArray : \

length(n*rfBins) alloc_if(0) free if(0)) \
out (emissivityArray : \
length(n*rfBins) alloc_if(0) free if(0)) \

in(absorptionCrossSection : \
length(0) alloc_if(0) free if(0))
{ ...}

T Unoptimized:

For every offload,
e Send/receive input & output
e Send model data
e Allocate/deallocate memory

T Optimized:

For every offload,

e Send/receive input & output

e Re-use previously sent model data

e Retain memory for use in next offload

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Optimization: Heterogeneous Computing with the

Offload Model

e Use all available compute devices: CPU + two Xeon Phi

e Same offloaded code in C language for both platforms

 For load balancing, split work into chunks (~104 spectra in
each), use “boss-worker” model to dynamically distribute chunks

#pragma omp parallel for n threads(3) schedule(dynamic,1)
for (int = 0; i < nChunks; i++) {

int = omp_get thread num();

#pragma offload target(mic: iDevice) if (iDevice > 0)

{ ...}

Xeon Phi™ Coprocessor

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Guided Optimization: VTune

* Intel Vtune Amplifier XE — per- | |nte| tune Parallel Amplifier XE
formance analysis for thread-parallel|[cocaemorston ks comer pratom

applications On Intel CPUS and Identify where microarchitectural issues affect the perfformance of your application.

Press F1 for more details.
Xeon Phi COprocessors Analyze general cache usage

Analyze vectorization usage

Analyze TLB misses

 Finds bottlenecks down to a single
line of code

Analyze additional L2 cache events

Function / Call Stack CPU Timew o
; 5 * thXeonPhi::RadiationFieldToTemperatureDistr) 6590115 —
» Diagnoses performance issues: e

' kmp wait sleep 79.249s)

cache misses, bandwidth utilization, i s v o
vectorization intensity

239 #ifdef HAVE ICC

240 #pragma simd reduction{+: sum)
241 #pragma vector aligned

242 #endif

e Uses hardware event-based data 223 e 1= bimtrixitcempatns » 11oa[i1; | 70,505 SN

collection: does not slow down ap- Mo U1 Arwieetriserisgor conte

: > 248 x[f] = sum*rTransientMatrixdverDiagonal [4.325s)
plication

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Performance, voxels/second

“Double Rewards” of Optimization for MIC

HEATCODE Benchmarks

10°! same C++ code

A

L

Xy

1.9

h,

~ UNOPTIMIZED OPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU
(16 cores total)
versus
Intel Xeon Phi 5110P coprocessor (60 cores)

After optimization,
performance on Xeon Phi
620x better

But the same code is also
125x faster on the Xeon

CPU

Acceleration factor 1.9x

One code for both
platforms, same
methods of optimization

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Compute Density and Efficiency

HEATCODE Benchmarks

CPU

Performance, voxels/second

Xeon
Phi

~ UNOPTIMIZED OPTIMIZED HETEROG.

Dual-socket Intel Xeon E5-2670 CPU
(16 cores total)
versus

Intel Xeon Phi 5110P coprocessor (60 cores)

Multiple coprocessors
and heterogeneous
computing with only one
optimized code

Improvement of
compute density and
power efficiency

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Incremental Porting and Optimization

| Unoptimized ' Thread Parallelism: Scalar Optimizations: Vectorization: ' Heterogeneous:
with Fit All Threads Precomputation, Alignment, Using Host +
10° | Offload in Memory Precision Control Padding, Hints + Two Coprocessors|
gi“‘
C ﬂeoﬁ?“. — 1 'I'ul""""ﬁ‘l
2 4., XC? T "
10 + 0@{@@6 _‘.'l - . et LTI | -
- . mmm! 1

vt "
v ':-‘-, 1 llll‘.llllll"."....'.....‘
‘- _ A-- 6pmnlzed GCC

ost R o
=\ ZE d' XC?C H imi- ."\‘\:‘-"‘.:"‘l! ‘l“
O?U_fﬂl ’..1-11-!-""' " .

+*
«*
Q“\ “lllll|.j."““‘ . L.
‘y‘ “." o* Baseline: unoptimized,
ol + compiled with GCC

Performance Relative to Baseline
e
Gp—-
|

o running on host
o (59 ms per spectrum)
p o®
Algorithm Improved Memory Access: Offload Traffic:
10! L Optimization: Interpolation Method: Packed Data, Data Persistence |
i Pruning, Recurrence Packed Operations Loop Tiling on Coprocessor]
| 1 I | l I | | l
0 1 2 3 4 5 6 7 8

Optimization Step

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Future-Proofing Applications for Knights Landing

Tomorrow

22nm process PCle coprocessor 14nm Standalone CPU

* Future MIC product: codename Knights Landing

* 14nm Tri-Gate technology. In the past, smaller transistors led to
more cores in CPUs.

* Available as stand-alone chip and as PCle-endpoint coprocessor

* Instruction set AVX-512 published

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Summary

Intel MIC — accelerator architecture for highly parallel
application with support for C/C++/Fortran, OpenMP/MPI

Same code and same optimization strategies for MIC and
for multi-core CPU architectures — “double rewards”

Optimization areas include: scalar math, vectorization,
thread scalability, memory traffic and communication

Porting for Xeon Phi prepares application for future product
Knights Landing (KNL) — MIC platform, 14 nm
technology, possibility of usage as a stand-alone processor

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Colfax Developer Training

* Colfax runs one-day on-site train- PARALLEL PROGRAMMING
ings for parallel programming and op- AND OPTIMIZATION WITH

timization with Xeon Phi INTEL XEON PHI’
COPROCESSORS

HANDBOOK ON THE
DEVELOPMENT AND
OPTIMIZATION OF

e In 2014, training is free for organiza- e
tions like LBNL (II]tEl PiCkS up the tab) (& = APPLICATIONS FOR

* Based on original book by Colfax

INTEL" XEON'
PROCESSORS

AND INTEL

e Multiple practical optimization ex- .
amples, free access to electronic book
with source code

COPROCESSORS

COLFAX INTERNATIONAL
FOREWORD BY JAMES REINDERS, INTEL CORPORATION

http://colfax-intl.com/xeonphi/
phi@colfax-intl.com

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

http://colfax-intl.com/xeonphi/

	Title
	Intel MIC Architecture
	Same Code, Better Performance
	Knights Corner Core Diagram
	Coprocessor as Independent Compute Node
	Programming Models for the MIC Architecture: Offload
	Case Study: Goal
	Case Study: Challenge
	Accelerating Radiation Transport Models for the Milky Way
	Stochastic Dust Grain Heating
	Calculation of Stochastic Dust Emissivity
	Matrix Formalism for Stochastic Dust Emissivity
	Optimization Roadmap
	Scalar Optimization: Strength Reduction, Precomputation, Optimized Transcendentals (Before)
	Scalar Optimization: Strength Reduction, Precomputation, Optimized Transcendentals (After)
	Vector Optimization: Alignment and Hints
	Vector Optimization: Loop Pattern
	Vector Optimization: Loop Pattern (code)
	Threading Optimization: Exposing Parallelism
	Threading Optimization: Reducing Per-Thread Memory Footprint
	Memory Traffic Optimization: Loop Tiling (Explanation)
	Memory Traffic Optimization: Loop Tiling (Code)
	Communication Optimization: Data Persistence
	Optimization: Heterogeneous Computing with the Offload Model
	Guided Optimization: VTune
	"Double Rewards" of Optimization for MIC
	Compute Density and Efficiency
	Incremental Porting and Optimization
	Future-Proofing Applications for Knights Landing
	Summary
	Colfax Development Training

