

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Andrey Vladimirov
Colfax International

Presentation at Institute for Nuclear and Particle Astrophysics,
Lawrence Berkeley National Laboratory

“Double Rewards”
of Porting Scientific Applications

to the Intel MIC Architecture

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Intel MIC Architecture

Intel Xeon Phi coprocessors (Many
Integrated Core, or MIC)

• C/C++/Fortran; OpenMP/MPI
• Special μOS Linux
• 6-16 GB of onboard GDDR5
• 57 to 61 cores at ~ 1 GHz
• 4-way hyper-threading
• 512-bit IMCI vectors

Intel Xeon processors
(multi-core CPUs)

• C/C++/Fortran; OpenMP/MPI
• Standard Linux OS
• Up to 768 GB of DDR3 RAM
• Up to 12 cores at ~ 3 GHz
• 2-way hyper-threading
• 256-bit AVX vectors

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Same Code, Better Performance

• For highly parallel applications

• Same code for CPU and MIC

• Similar optimization strategies

• Xeon Phi is 2x-3x faster than
Xeon CPU of comparable cost
and thermal design power

• Theoretical peak performance:
1 TFLOP/s in DP (75% usable);
350 GB/s on-board RAM
bandwidth (50% usable)

Case study: HEATCODE

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Knights Corner Core Diagram

Lightweight cores (fewer smart hardware elements, lower clock speeds) make MIC
more power-efficient than CPU at the cost of specialization for parallel applications.

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Coprocessor as Independent Compute Node

Xeon Phi runs a Linux μOS, which supports networking (⇒ TCP, SSH, LDAP, MPI)
and file storage in RAM disk (⇒ NFS). “Computer inside of a computer”.

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Programming Models for the MIC Architecture

Native Model
application runs directly

on coprocessor

Use Xeon Phi as an
independent compute node

Native Model
application runs directly

on coprocessor

Use Xeon Phi as an
independent compute node

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Programming Models for the MIC Architecture

Offload Models
application runs on host,

communicates w/coprocessor

Offload Models
application runs on host,

communicates w/coprocessor

Explicit offload
(pragma-based)
Explicit offload
(pragma-based)

Virtual-shared
Memory

Virtual-shared
Memory

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

One of possible realizations of 3D models
of the Milky Way Galaxy

(cosmic dust luminosity map calculated by
the FRaNKIE code)

40 kilop arsecs

Sun

Goal: build a 3D model of the Milky Way Galaxy using a
large volume of 2D data from sky surveys.

Goal: build a 3D model of the Milky Way Galaxy using a
large volume of 2D data from sky surveys.

Case Study: Building a 3D Model of the Milky Way
Galaxy using 2D Sky Surveys

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Case Study: Building a 3D Model of the Milky Way
Galaxy using 2D Sky Surveys

40 kilop arsecs

Sun

Goal: build a 3D model of the Milky Way Galaxy using a
large volume of 2D data from sky surveys.

Goal: build a 3D model of the Milky Way Galaxy using a
large volume of 2D data from sky surveys.

Challenge: modeling the process of stochastic
heating of cosmic dust by starlight, in each voxel
of a 3D grid, is very time consuming.
With unoptimized code, hundreds of CPU-years
for each run.

Challenge: modeling the process of stochastic
heating of cosmic dust by starlight, in each voxel
of a 3D grid, is very time consuming.
With unoptimized code, hundreds of CPU-years
for each run.

Method: Bayesian inference. Simulate the
Galaxy, assess the fit to data, refine 3D mod-
el parameters, rinse & repeat.

Method: Bayesian inference. Simulate the
Galaxy, assess the fit to data, refine 3D mod-
el parameters, rinse & repeat.

One of possible realizations of 3D models
of the Milky Way Galaxy

(cosmic dust luminosity map calculated by
the FRaNKIE code)

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Software Stack for Modeling Galactic 3D Structure

MultiNest
Bayesian analysis engine

Scales to O(10) nodes

FRaNKIE
radiation transport Monte Carlo

Scales to multiple cores in 1 node

HEATCODE
cosmic dust heating library

Multiple Xeon Phi coprocessors in 1 node

CPU

 Xeon
Phi

P>0.95

P>0.67

α

β

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Accelerating Radiation Transport Models
for the Milky Way

Solution: use a computing accelerator, optimize existing code. Solution: use a computing accelerator, optimize existing code.

Result: HEATCODE
(HEterogeneous Architec-
ture library for sTochastic
COsmic Dust Emissivity)

(open source, code soon to
be published)

Result: HEATCODE
(HEterogeneous Architec-
ture library for sTochastic
COsmic Dust Emissivity)

(open source, code soon to
be published)

http://arx
iv.org/abs/131

1.462
7

Hundreds of
CPU-years
Hundreds of
CPU-years

Hundreds
of CPU-

days

Hundreds
of CPU-

days

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Stochastic Dust Grain Heating

• Small grains (≤0.1 µm) are
important

• Absorption and re-emission
is stochastic (non-thermal)

• Grains undergo
“temperature” spikes,
characterized by temperature
distribution

• Evaluation is
computationally expensive

V
ib

ra
tio

na
l e

ne
rg

y
(“

gr
ai

n
te

m
pe

ra
tu

re
”) C

ooling transitions (IR
 em

ission)

H
ea

tin
g

tr
a n

si
tio

ns
 (

U
V

 a
b s

or
p t

io
n)

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Calculation of Stochastic Dust Emissivity

• Input: incident electromagnetic
radiation field

• Intermediate: “temperature”
distribution of grains of all sizes

• Output: spectrum of re-emitted
photons

• Method and absorption cross
sections: Draine et al. (2001),
ApJ, 551, 807

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Matrix Formalism for Stochastic Dust Emissivity

• Stage 1:
Interpolate (in log
space) and convolve the
incident RF with the
photon absorption cross
sections

• Stage 2:
form and solve a

quasi-triangular system of
linear algebraic equations

for the “temperature”
distribution

• Stage 3:
convolve the

“temperature”
distribution with the

grain size distribution
and emissivity function

 transcendental operations sparse memory access dense linear algebra

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Optimization Roadmap

• Scalar Optimization

• Vectorization

• Thread Scalability

• Memory Access

• Communication

CPU

Xeon
Phi

UNOPTIMIZED

MUST
OPTIMIZE

Dual-socket Intel Xeon E5-2670 CPU
(16 cores total)

versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Scalar Optimization: Strength Reduction,
Precomputation, Optimized Transcendentals

Combinatorial (non-vectorizable)
computation of the index

Eight transcendental
functions, one division

per evaluation

Natural base logarithms
and exponentials

UNOPTIMIZED
IMPLEMENTATION

Loop in “i” is not vectorizable

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Scalar Optimization: Strength Reduction,
Precomputation, Optimized Transcendentals

Precomputed index

Two transcendental
functions, one division

per evaluation

Base 2 logarithms
and exponentials

OPTIMIZED
IMPLEMENTATION

Loop in “c” is vectorizable

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Vector Optimization: Alignment and Hints

• In Xeon Phi, memory
access works best on
64-byte aligned addresses

• By default, compiler does
not assume alignment

• Hint to compiler that data
is aligned improves
performance

• Additional automatic
vectorization hints

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Vector Optimization: Loop PatternVector Optimization: Loop Pattern

• 512 bits vector holds 16 single precision FP numbers
• HEATCODE: padded loop bounds to a multiple of 16 iterations

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Vector Optimization: Loop PatternVector Optimization: Loop Pattern

• 512 bits vector holds 16 single precision FP numbers
• HEATCODE: padded loop bounds to a multiple of 16 iterations

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Threading Optimization: Exposing Parallelism

• Using an OpenMP parallel region inside of #pragma offload

• Distribute independent incident spectra across threads

• Modified the library interface to accept an array of spectra
instead of a single spectrum

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Threading Optimization: Reducing Per-Thread
Memory Footprint

Threading Optimization: Reducing Per-Thread
Memory Footprint

• Problem: 240 threads do not fit
in onboard Xeon Phi memory

• Not an issue on the CPU host!
• Solution: reduce per-thread

memory footprint
• How: inter-procedural fusion

to eliminate unnecessary scratch
data passed between functions

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Memory Traffic Optimization: Loop Tiling

/* Nested loops without tiling.
Array B[] does not fit into cache */
for (int i = 0; i < iMax; ++i)
 for (int j = 0; j < jMax; ++j)
 PerformWork(A[i], B[j]);

/* Nested loops without tiling.
Array B[] does not fit into cache */
for (int i = 0; i < iMax; ++i)
 for (int j = 0; j < jMax; ++j)
 PerformWork(A[i], B[j]);

/* Tiled nested loops */
for (int jj = 0; jj < jMax; jj += T)
 for (int i = 0; i < iMax; ++i)
 for (int j = jj; j < jj+T; ++j)
 PerformWork(A[i], B[j]);

/* Tiled nested loops */
for (int jj = 0; jj < jMax; jj += T)
 for (int i = 0; i < iMax; ++i)
 for (int j = jj; j < jj+T; ++j)
 PerformWork(A[i], B[j]);

 Cache Misses

array A array B
0
1
2
3
4
5
6

... ...

array A array B
0
1
2
3
4
5
6

... ...7 7

 Cache Hits

Example:
tile size T=2
cache size=3

Without Tiling

With Tiling

Cache Hit Rate = 6/16 Cache Hit Rate = 10/16

FASTERSLOWER

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Memory Traffic Optimization: Loop Tiling

↑ “Before”

“After” →

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Communication Optimization: Data Persistence

↑ Unoptimized:
For every offload,
● Send/receive input & output
● Send model data
● Allocate/deallocate memory

↑ Optimized:
For every offload,
● Send/receive input & output
● Re-use previously sent model data
● Retain memory for use in next offload

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Optimization: Heterogeneous Computing with the
Offload Model

● Use all available compute devices: CPU + two Xeon Phi
● Same offloaded code in C language for both platforms
● For load balancing, split work into chunks (~10� spectra in
each), use “boss-worker” model to dynamically distribute chunks

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Intel Vtune Parallel Amplifier XEIntel Vtune Parallel Amplifier XE

Guided Optimization: VTune

● Intel Vtune Amplifier XE – per-
formance analysis for thread-parallel
applications on Intel CPUs and
Xeon Phi coprocessors

● Finds bottlenecks down to a single
line of code

● Diagnoses performance issues:
cache misses, bandwidth utilization,
vectorization intensity

● Uses hardware event-based data
collection: does not slow down ap-
plication

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

“Double Rewards” of Optimization for MIC

• After optimization,
performance on Xeon Phi
620x better

• But the same code is also
125x faster on the Xeon
CPU

• Acceleration factor 1.9x

• One code for both
platforms, same
methods of optimization

CPU

Xeon
Phi

UNOPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU
(16 cores total)

versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Xeon
Phi

OPTIMIZED

CPU
 125x

 620x

 1.9x

same C++ code

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Compute Density and Efficiency

• Multiple coprocessors
and heterogeneous
computing with only one
optimized code

• Improvement of
compute density and
power efficiency

CPU

Xeon
Phi

UNOPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU
(16 cores total)

versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Xeon
Phi

OPTIMIZED

CPU CPU
+
2x

Xeon
Phi

CPU
+
2x

Xeon
Phi

4.4x

HETEROG.

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Incremental Porting and Optimization

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Future-Proofing Applications for Knights Landing

• Future MIC product: codename Knights Landing

• 14nm Tri-Gate technology. In the past, smaller transistors led to
more cores in CPUs.

• Available as stand-alone chip and as PCIe-endpoint coprocessor

• Instruction set AVX-512 published

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Summary

• Intel MIC – accelerator architecture for highly parallel
application with support for C/C++/Fortran, OpenMP/MPI

• Same code and same optimization strategies for MIC and
for multi-core CPU architectures – “double rewards”

• Optimization areas include: scalar math, vectorization,
thread scalability, memory traffic and communication

• Porting for Xeon Phi prepares application for future product
Knights Landing (KNL) – MIC platform, 14 nm
technology, possibility of usage as a stand-alone processor

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Colfax Developer Training

http://colfax-intl.com/xeonphi/

● Colfax runs one-day on-site train-
ings for parallel programming and op-
timization with Xeon Phi

● Based on original book by Colfax

● In 2014, training is free for organiza-
tions like LBNL (Intel picks up the tab)

● Multiple practical optimization ex-
amples, free access to electronic book
with source code

phi@colfax-intl.com

http://colfax-intl.com/xeonphi/

	Title
	Intel MIC Architecture
	Same Code, Better Performance
	Knights Corner Core Diagram
	Coprocessor as Independent Compute Node
	Programming Models for the MIC Architecture: Offload
	Case Study: Goal
	Case Study: Challenge
	Accelerating Radiation Transport Models for the Milky Way
	Stochastic Dust Grain Heating
	Calculation of Stochastic Dust Emissivity
	Matrix Formalism for Stochastic Dust Emissivity
	Optimization Roadmap
	Scalar Optimization: Strength Reduction, Precomputation, Optimized Transcendentals (Before)
	Scalar Optimization: Strength Reduction, Precomputation, Optimized Transcendentals (After)
	Vector Optimization: Alignment and Hints
	Vector Optimization: Loop Pattern
	Vector Optimization: Loop Pattern (code)
	Threading Optimization: Exposing Parallelism
	Threading Optimization: Reducing Per-Thread Memory Footprint
	Memory Traffic Optimization: Loop Tiling (Explanation)
	Memory Traffic Optimization: Loop Tiling (Code)
	Communication Optimization: Data Persistence
	Optimization: Heterogeneous Computing with the Offload Model
	Guided Optimization: VTune
	"Double Rewards" of Optimization for MIC
	Compute Density and Efficiency
	Incremental Porting and Optimization
	Future-Proofing Applications for Knights Landing
	Summary
	Colfax Development Training

