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Intel MIC Architecture

Intel Xeon Phi coprocessors (Many 
Integrated Core, or MIC)

• C/C++/Fortran; OpenMP/MPI
• Special μOS Linux
• 6-16 GB of onboard GDDR5
• 57 to 61 cores at ~ 1 GHz
• 4-way hyper-threading
• 512-bit IMCI vectors

Intel Xeon processors 
(multi-core CPUs)

• C/C++/Fortran; OpenMP/MPI
• Standard Linux OS
• Up to 768 GB of DDR3 RAM
• Up to 12 cores at ~ 3 GHz
• 2-way hyper-threading
• 256-bit AVX vectors
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Same Code, Better Performance

• For highly parallel applications

• Same code for CPU and MIC

• Similar optimization strategies

• Xeon Phi is 2x-3x faster than 
Xeon CPU of comparable cost 
and thermal design power

• Theoretical peak performance: 
1 TFLOP/s in DP (75% usable); 
350 GB/s on-board RAM 
bandwidth (50% usable)

Case study: HEATCODE
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Knights Corner Core Diagram

Lightweight cores (fewer smart hardware elements, lower clock speeds) make MIC 
more power-efficient than CPU at the cost of specialization for parallel applications.
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Coprocessor as Independent Compute Node

Xeon Phi runs a Linux μOS, which supports networking (⇒ TCP, SSH, LDAP, MPI) 
and file storage in RAM disk (⇒ NFS). “Computer inside of a computer”.
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Programming Models for the MIC Architecture

Native Model
application runs directly

on coprocessor

Use Xeon Phi as an 
independent compute node

Native Model
application runs directly

on coprocessor

Use Xeon Phi as an 
independent compute node
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Programming Models for the MIC Architecture

Offload Models
application runs on host,

communicates w/coprocessor

Offload Models
application runs on host,

communicates w/coprocessor

Explicit offload
(pragma-based)
Explicit offload
(pragma-based)

Virtual-shared
Memory

Virtual-shared
Memory
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One of possible realizations of 3D models 
of the Milky Way Galaxy 

(cosmic dust luminosity map calculated by 
the FRaNKIE code)

40 kilop arsecs

Sun

Goal: build a 3D model of the Milky Way Galaxy using a 
large volume of 2D data from sky surveys.

Goal: build a 3D model of the Milky Way Galaxy using a 
large volume of 2D data from sky surveys.

Case Study: Building a 3D Model of the Milky Way 
Galaxy using 2D Sky Surveys
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Case Study: Building a 3D Model of the Milky Way 
Galaxy using 2D Sky Surveys

40 kilop arsecs

Sun

Goal: build a 3D model of the Milky Way Galaxy using a 
large volume of 2D data from sky surveys.

Goal: build a 3D model of the Milky Way Galaxy using a 
large volume of 2D data from sky surveys.

Challenge: modeling the process of stochastic 
heating of cosmic dust by starlight, in each voxel 
of a 3D grid, is very time consuming. 
With unoptimized code, hundreds of CPU-years 
for each run.

Challenge: modeling the process of stochastic 
heating of cosmic dust by starlight, in each voxel 
of a 3D grid, is very time consuming. 
With unoptimized code, hundreds of CPU-years 
for each run.

Method: Bayesian inference. Simulate the 
Galaxy, assess the fit to data, refine 3D mod-
el parameters, rinse & repeat.

Method: Bayesian inference. Simulate the 
Galaxy, assess the fit to data, refine 3D mod-
el parameters, rinse & repeat.

One of possible realizations of 3D models 
of the Milky Way Galaxy 

(cosmic dust luminosity map calculated by 
the FRaNKIE code)
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Software Stack for Modeling Galactic 3D Structure

MultiNest 
Bayesian analysis engine

Scales to O(10) nodes

FRaNKIE
radiation transport Monte Carlo

Scales to multiple cores in 1 node

HEATCODE
cosmic dust heating library

Multiple Xeon Phi coprocessors in 1 node

CPU

 Xeon
Phi

P>0.95

P>0.67

α

β
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Accelerating Radiation Transport Models 
for the Milky Way

Solution: use a computing accelerator, optimize existing code. Solution: use a computing accelerator, optimize existing code. 

Result: HEATCODE 
(HEterogeneous Architec-
ture library for sTochastic 
COsmic Dust Emissivity)

(open source, code soon to 
be published)

Result: HEATCODE 
(HEterogeneous Architec-
ture library for sTochastic 
COsmic Dust Emissivity)

(open source, code soon to 
be published)

http://arx
iv.org/abs/131

1.462
7

Hundreds of 
CPU-years 
Hundreds of 
CPU-years 

Hundreds 
of CPU-

days

Hundreds 
of CPU-

days
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Stochastic Dust Grain Heating

• Small grains (≤0.1 µm) are 
important

• Absorption and re-emission 
is stochastic (non-thermal)

• Grains undergo 
“temperature” spikes, 
characterized by temperature 
distribution

• Evaluation is 
computationally expensive
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Calculation of Stochastic Dust Emissivity

• Input: incident electromagnetic 
radiation field

• Intermediate: “temperature” 
distribution of grains of all sizes

• Output: spectrum of re-emitted 
photons

• Method and absorption cross 
sections: Draine et al. (2001), 
ApJ, 551, 807
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Matrix Formalism for Stochastic Dust Emissivity

• Stage 1:
Interpolate (in log 
space) and convolve the 
incident RF with the 
photon absorption cross 
sections

• Stage 2: 
form and solve a 

quasi-triangular system of 
linear algebraic equations 

for the “temperature” 
distribution

• Stage 3:
convolve the 

“temperature” 
distribution with the 

grain size distribution 
and emissivity function

 transcendental operations sparse memory access      dense linear algebra
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Optimization Roadmap

• Scalar Optimization

• Vectorization

• Thread Scalability

• Memory Access

• Communication

CPU

Xeon
Phi

UNOPTIMIZED

MUST
OPTIMIZE

Dual-socket Intel Xeon E5-2670 CPU 
(16 cores total)

versus
Intel Xeon Phi 5110P coprocessor (60 cores)
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Scalar Optimization: Strength Reduction, 
Precomputation, Optimized Transcendentals

Combinatorial (non-vectorizable) 
computation of the index

Eight transcendental 
functions, one division 

per evaluation

Natural base logarithms 
and exponentials

UNOPTIMIZED
IMPLEMENTATION

Loop in “i” is not vectorizable
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Scalar Optimization: Strength Reduction, 
Precomputation, Optimized Transcendentals

Precomputed index

Two transcendental 
functions, one division 

per evaluation

Base 2 logarithms 
and exponentials

OPTIMIZED
IMPLEMENTATION

Loop in “c” is vectorizable
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Vector Optimization: Alignment and Hints

• In Xeon Phi, memory 
access works best on 
64-byte aligned addresses

• By default, compiler does 
not assume alignment

• Hint to compiler that data 
is aligned improves 
performance

• Additional automatic 
vectorization hints 
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Vector Optimization: Loop PatternVector Optimization: Loop Pattern

• 512 bits vector holds 16 single precision FP numbers
• HEATCODE: padded loop bounds to a multiple of 16 iterations
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Vector Optimization: Loop PatternVector Optimization: Loop Pattern

• 512 bits vector holds 16 single precision FP numbers
• HEATCODE: padded loop bounds to a multiple of 16 iterations
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Threading Optimization: Exposing Parallelism

• Using an OpenMP parallel region inside of #pragma offload

• Distribute independent incident spectra across threads

• Modified the library interface to accept an array of spectra 
instead of a single spectrum
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Threading Optimization: Reducing Per-Thread 
Memory Footprint

Threading Optimization: Reducing Per-Thread 
Memory Footprint

• Problem: 240 threads do not fit 
in onboard Xeon Phi memory

• Not an issue on the CPU host!
• Solution: reduce per-thread 

memory footprint
• How: inter-procedural fusion 

to eliminate unnecessary scratch 
data passed between functions



  

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Memory Traffic Optimization: Loop Tiling

/* Nested loops without tiling.
Array B[] does not fit into cache */
for (int i = 0; i < iMax; ++i)
 for (int j = 0; j < jMax; ++j)
  PerformWork(A[i], B[j]);

/* Nested loops without tiling.
Array B[] does not fit into cache */
for (int i = 0; i < iMax; ++i)
 for (int j = 0; j < jMax; ++j)
  PerformWork(A[i], B[j]);

/* Tiled nested loops */
for (int jj = 0; jj < jMax; jj += T)
 for (int i = 0; i < iMax; ++i)
  for (int j = jj; j < jj+T; ++j)
    PerformWork(A[i], B[j]);

/* Tiled nested loops */
for (int jj = 0; jj < jMax; jj += T)
 for (int i = 0; i < iMax; ++i)
  for (int j = jj; j < jj+T; ++j)
    PerformWork(A[i], B[j]);

 Cache Misses

array A array B
0
1
2
3
4
5
6

... ...

array A array B
0
1
2
3
4
5
6

... ...7 7

 Cache Hits

Example: 
tile size T=2 
cache size=3

Without Tiling

With Tiling

Cache Hit Rate = 6/16 Cache Hit Rate = 10/16

FASTERSLOWER
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Memory Traffic Optimization: Loop Tiling

↑  “Before”

“After” →
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Communication Optimization: Data Persistence

↑ Unoptimized:
For every offload,
● Send/receive input & output
● Send model data
● Allocate/deallocate memory

↑ Optimized:
For every offload,
● Send/receive input & output
● Re-use previously sent model data
● Retain memory for use in next offload
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Optimization: Heterogeneous Computing with the 
Offload Model

● Use all available compute devices: CPU + two Xeon Phi
● Same offloaded code in C language for both platforms
● For load balancing, split work into chunks (~10� spectra in 
each), use “boss-worker” model to dynamically distribute chunks



  

Andrey Vladimirov, Colfax International — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — March 28, 2014

Intel Vtune Parallel Amplifier XEIntel Vtune Parallel Amplifier XE

Guided Optimization: VTune

● Intel Vtune Amplifier XE – per-
formance analysis for thread-parallel 
applications on Intel CPUs and 
Xeon Phi coprocessors

● Finds bottlenecks down to a single 
line of code

● Diagnoses performance issues: 
cache misses, bandwidth utilization, 
vectorization intensity

● Uses hardware event-based data 
collection: does not slow down ap-
plication
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“Double Rewards” of Optimization for MIC

• After optimization, 
performance on Xeon Phi 
620x better

• But the same code is also 
125x faster on the Xeon 
CPU

• Acceleration factor 1.9x

• One code for both 
platforms, same 
methods of optimization

CPU

Xeon
Phi

UNOPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU 
(16 cores total)

versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Xeon
Phi

OPTIMIZED

CPU
          125x

          620x

          1.9x

same C++ code
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Compute Density and Efficiency

• Multiple coprocessors 
and heterogeneous 
computing with only one 
optimized code

• Improvement of 
compute density and 
power efficiency

CPU

Xeon
Phi

UNOPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU 
(16 cores total)

versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Xeon
Phi

OPTIMIZED

CPU CPU
+
2x

Xeon
Phi

CPU
+
2x

Xeon
Phi

4.4x         

HETEROG.
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Incremental Porting and Optimization
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Future-Proofing Applications for Knights Landing

• Future MIC product: codename Knights Landing

• 14nm Tri-Gate technology. In the past, smaller transistors led to 
more cores in CPUs.

• Available as stand-alone chip and as PCIe-endpoint coprocessor

• Instruction set AVX-512 published
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Summary

• Intel MIC – accelerator architecture for highly parallel 
application with support for C/C++/Fortran, OpenMP/MPI

• Same code and same optimization strategies for MIC and 
for multi-core CPU architectures – “double rewards”

• Optimization areas include: scalar math, vectorization, 
thread scalability, memory traffic and communication

• Porting for Xeon Phi prepares application for future product 
Knights Landing (KNL) – MIC platform, 14 nm 
technology, possibility of usage as a stand-alone processor
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Colfax Developer Training

http://colfax-intl.com/xeonphi/

● Colfax runs one-day on-site train-
ings for parallel programming and op-
timization with Xeon Phi

● Based on original book by Colfax

● In 2014, training is free for organiza-
tions like LBNL (Intel picks up the tab)

● Multiple practical optimization ex-
amples, free access to electronic book 
with source code

phi@colfax-intl.com

http://colfax-intl.com/xeonphi/
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