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1 INTRODUCTION

1. INTRODUCTION

This is the first part of a series of publications introducing the Intel Data Analytics Acceleration Library
(DAAL). Intel DAAL is a highly optimized data analytics library developed by Intel that is designed to be
a complete solution for data analytics with modern highly parallel systems, such as Intel Xeon processors
and Intel Xeon Phi coprocessors.

Intel DAAL covers a wide range of data analysis considerations, from data management tools to data
analysis algorithms. Figure 1 is a schematic showing the building blocks available with Intel DAAL.
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Figure 1: General overview of some of the building blocks offered by Intel DAAL.

In this series of three papers we are taking a look at three different situations. In each publication, we
discuss different branches of the choices shown in Figure 1 and implement a working sample Intel DAAL
application adapted to each situation.

e Part 1:
In this paper, we discuss a very simple situation where there is a single Comma Separated Value
(CSV) data file on a single compute node.

e Part 2:
In the second paper, we will deal with a distributed computation situation where there are multiple
data sets in multiple compute nodes.

e Part 3:
In the final paper, we will be streaming data from a relational database in chunks and analyzing them
as they arrive.

All three publications, and the working source code samples will be available on the Colfax Research
website [1].
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2 COMPUTATION WITH INTEL DAAL

2. COMPUTATION WITH INTEL DAAL

For computation with Intel DAAL, there are two major considerations to make at the start: algorithm,
and the computation mode (see Figure 1).
2.1. ALGORITHM

Generally, the first step in planning an Intel DAAL application is to choose the algorithm. DAAL
currently supports algorithms shown in Figure 2.

4 Analysis N\ ( Training & prediction\
- Low Order Moments - Singular Value Decomposition - Regression
- Quantile - QR Decomposition - Linear Regresion
- Correlation and Variance - Expectation-Maximization - Clasification
- Cosine Distance Matrix - Multivariate Outlier Detection - Naive Bayes Classifier
- Correlation Distance Matrix - Univariate Outlier Detection - Boosting
- K-Means Clustering - Assoiation Rules - Support Vector Machine
- Principal Compinent Analysis - Kernel Functions Classifier
- Cholesky Decomposition - Quality Metrics - Multi-Class Classifier

AN
Figure 2: Algorithms currently supported by Intel DAAL.

J

Discussion of each individual algorithm is beyond the scope of the paper. For a brief introduction to
these algorithms, see the post by James Reinders from Intel [2]. For detailed explanation of the algorithms,
refer to the Intel DAAL documentation [3].

In this series, we will be using the linear regression algorithm to demonstrate the different usage
models of DAAL. Linear regression is one of the basic forms of machine learning. For a brief introduction
to linear regression, refer to Appendix A.

2.2. COMPUTATION MODE

Next, the developer must decide on which computation mode to use for the Intel DAAL application.
The computation mode refers to how the computation is done, and the choice depends on the computing
system and the environment that the application will run in.

Most algorithms in Intel DAAL support three different computation modes: batch, online and dis-
tributed. Figure 3 illustrates the usage model of three modes.

e Batch mode:
Batch mode is the simplest mode which only uses a single data set. Therefore it is useful when all
data exists in a single location (e.g. single file) on a single compute node.

e Online mode:
Online mode supports multiple training sets. It is useful when data exists in multiple locations, or
when data is only available one block at a time. Online mode is used for a single compute node.
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3 DATA MANAGEMENT WITH INTEL DAAL
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Figure 3: The three modes for computation.

e Distributed mode:
Distributed mode allows computation of partial results, and supports multiple data sets. Thus this
model is the recommended model when the data and computation is distributed across multiple
compute nodes, for example, in an MPI or an Apache Spark environment.

Note that not all algorithms support each of these modes; consult the Intel DAAL documentation page of
the algorithm to see which modes are supported by a particular algorithm. In our case, linear regression
supports all three modes.

For the case studies in this series of publications, we will be applying all three modes. For the case in
part 1, batch mode is best suited as there is only a single data set. For the case in part 2, the distributed
data and computation calls for using the distributed mode. And finally, for the case in part 3, the online
mode is most useful because the data comes in chunks.

3. DATA MANAGEMENT WITH INTEL DAAL

In this section, we discuss some of the basics of data management. Intel DAAL supports some ad-
vanced features in data management, such as data serialization and compression. These advanced topics
will be covered in upcoming publications. At the basic level, there are two considerations to make for data
management: data structure and loading data (see Figure 1). We also discuss how to extract raw data from
structures used in Intel DAAL.

3.1. DATA STRUCTURE

To organize and represent data, Intel DAAL uses objects referred to as “numeric tables”. There are
multiple types of numeric tables for different structures of data.

e Heterogeneous Tables are used when there are multiple data types in a data set (e.g. double,
string, etc.) There are two different structures supported: Structures of Arrays (SoA) and Arrays
of Structures (AoS).

e Homogeneous Tables are used when the data set has only one type of data. There are two types of
homogeneous tables: dense and sparse.
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3.2 Loading Data 3 DATA MANAGEMENT WITH INTEL DAAL

e Matrices are used when the application requires matrix algebra type workloads. There are three
kinds of matrices supported: dense matrix, packed symmetric matrix, and packed triangular matri-
ces.

Certain algorithms may have limitations on which numeric table it can work with. Refer to the DAAL
documentation [3] for the specific algorithms to get information on which tables are supported.

The information about the contents, or the metadata, of numeric tables is stored in objects called data
dictionaries. Data dictionaries are typically used for heterogeneous tables to keep track of various data
types, but they can also be used for homogeneous tables to query information such as the number of rows
in a table. Data dictionaries are often automatically created by DAAL, but in some cases, most notably
AoS (Array of Structures) tables, they may have to be manually created.

Finally, the contents of the numeric table, the data, can be loaded from variety of locations. Intel
DAAL has special interface objects called data sources, designed for loading data from some common
data locations .

e ODBCDataSource - For data source with Open Database Connectivity (ODBC) API. Currently
only supports MySQL.

e FileDataSource - For acquiring data from a source file. Currently only supports Comma Sepa-
rated Values (CSV) file.

e StringDataSource - For interfacing with C-String format byte arrays.

3.2. LOADING DATA

In the remainder of the section, we will discuss data movement on homogeneous NumericTables
through code samples. We first discuss two methods for loading data: populating from simple arrays
and populating from a CSV file. Other modes will be discussed in part 2 and 3 of the series. Then we
discuss how to recover raw data from numeric tables. For convenience, we work in these namespaces in
the examples codes to follow:

using namespace std;
using namespace daal;
using namespace daal::data_management;

w N =

3.2.1. FROM SIMPLE ARRAYS

This is perhaps the most versatile approach for populating a table, as it is generally simple to generate
basic arrays from most sources of data (files, simulations, etc.) In this example we will show how to
create a homogeneous table from an array of double precision values. Our discussion will only cover
homogeneous tables; for heterogeneous data tables, see DAAL documentation [3].

The constructor for NumericTable allows for easy construction of a table from an array. The
following code sample demonstrates how to create a double precision, 100 x 100 numeric table from an
array.
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3.2 Loading Data 3 DATA MANAGEMENT WITH INTEL DAAL

1| // Array containing the data

2|const int nRows = 100;

3| const int nCols = 100;

| double* rawData (double*x) malloc (sizeof (double) xnRows*nCols) ;
D

6| // Creating the numeric table
7|NumericTable* dataTable = new HomogenNumericTable<double> (rawData, nCols, nRows);

ol // Creating a SharedPtr table
10| services: :SharedPtr<NumericTable> sharedNTable (dataTable);

Listing 1: Creating numeric table from basic arrays.

In the sample, we have gone a step further and created a SharedPtr table from the original
HomogenNumericTable (see line 10). This is because many algorithms, including the linear regres-
sion algorithm, requires that the input data structures are of type SharedPtr.

3.2.2. FrRoM CSV FILES

CSV file format is one of the most widely used file storage formats. In a CSV file, individual data fields
are separated by delimiters, which is conventionally a comma, and data points (entries) are separated

Intel DAAL allows us to directly import data from a CSV file using data source object of type
CSVFeatureManager. Following example demonstrates how to load data from a CSV file using the
feature manager.

1|string dataFileName = "/path/to/file/datafile.csv";

2|const int nRows = 1000; // number of rows to be read

3| // Create the data source

i|FileDataSource<CSVFeatureManager> dataSource (dataFileName,

5 DataSource: :doAllocateNumericTable,

6 DataSource: :doDictionaryFromContext) ;
71 // Load data from the CSV file

8| dataSource.loadDataBlock (nRows) ;

10| // Extract NumericTable
11| services: :SharedPtr<NumericTable> sharedNTable;
12| sharedNTable = dataSource.getNumericTable();

Listing 2: Loading data from a CSV file.

Note that the CSV data source requires knowing how many rows are available in the CSV file to be
read. In Listing 2 we have hard-coded the value 1000 for the number of rows, but this generally should be
determined at runtime.

In Listing 2, we have wused the options doAllocateNumericTable and
doDictionaryFromContext when creating the data source. This is so that the NumericTable
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3.3 Data Extraction 3 DATA MANAGEMENT WITH INTEL DAAL

and the Dictionary is created automatically from the contents of the CSV file. Although it is not cov-
ered here, data source objects also allow for manual allocation of NumericTable and Dictionary
through allocateNumericTableImpl () and setDictionary () methods (see [3]).

If your data file has a separator (delimiter) that is not a comma, use the setDelimiter () method
of the data source object. Note that this must be set before the data is loaded with 1oadDataBlock ()
method.

dataSource.setDelimiter (";");

3.3. DATA EXTRACTION

After populating a numeric table, you may need to extract raw data from it. There are two methods for
getting the pointer to the raw data.

The most direct way is to simply use the getArray () method of the numeric table. Assuming that
the table was populated with double precision values, the following code allows us to recover the raw data.

services: :SharedPtr<NumericTable> dataTable;
// ... Populate dataTable ... //

doublex rawData = dataTable.getArray();

Alternatively, the pointer to the data can be acquired by transferring the data to a
BlockDescriptor<TYPE> object. The advantage of using the block object is that it allows one
to get a subset of the data set by using getBlockOfRows () or getBlockOfColumns ().

services: :SharedPtr<NumericTable> dataTable;
// ... Populate dataTable ... //

[

BlockDescriptor<double> block;
dataTable->getBlockOfRows (offset, numRows, readwrite, block);
doublex rawData = block.getBlockPtr();

Y O R W N

The arguments for getBlockOfRows () are as follows: offset is the index of the first
row to load, numRows is the number of rows, readwrite determines the access model to the
data (use DAAL presets, readOnly, writeOnly and readWrite), and finally, block is the
BlockDescriptor<TYPE> object which the data is written into. After loading, the pointer to the
array containing this data can be acquired by the getBlockPtr () method.
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4 EXAMPLE: LINEAR REGRESSION

4. EXAMPLE: LINEAR REGRESSION

In our example, we apply a special case of linear regression algorithm, called polynomial regression
(see Appendix A), to a single data set stored in CSV files. Linear regression requires three input data tables
(discussed later in Section 4.1), so there are three CSV files, one for each data table. The data set contains
all double-precision floating point values, and we only have a single compute node to do the regression.

Let us first analyze our situation in order to make decisions on the four choices presented in Figure 1.
For algorithms, we will of course choose the linear regression algorithm. For the computation mode since
all data is located in a single set of CSV files, and there is only one compute node, we will be using the
batch computation mode. Since the data is stored in CSV files, we the data source object for CSV files to
load data. Finally, as the data is all double-precision, we will use the homogeneous NumericTable.

4.1. HOW-TO: LINEAR REGRESSION

The basic workflow in linear regression consists of two steps;

e Training:
In this step, the algorithm is “trained” with a training data set (a large number of feature sets,
{Zy, 71, ..., Zy_1}, and the corresponding responses, {¥o, 71, ---, Un—1}). The algorithm accumulates
“knowledge” from analyzing this training set according to procedure described in Appendix A, and
uses this for prediction in the next step.

e Prediction:
Using the values learned from the training set, the algorithm takes an arbitrary set of test features,
Tyest> and predicts the response variable ;. for this set of features. Typically, the larger the training
set, the more accurate the prediction is.

The training part of linear regression requires two inputs: a numeric table containing sets of features
and and a numeric table containing the corresponding responses for training. The output is what is referred
to as “data model”. This model contains the “knowledge” that was accumulated in the training phase.

The prediction part also requires two inputs: the data model from the training phase, and a numeric
table containing sets of features to predict the response of. The output is the predictions of the responses
to the test features sets.

Figure 4 illustrates the inputs required for the training and prediction.

On the training side in Figure 4, p is the number of the features, n is the number of data points for
training, and £ is the number of responses. For the prediction side, p and k are the same as training, and
m 1s the number of data points for prediction. Note that n must be much greater than p for the linear
regression algorithm to produce an accurate result. There is no limitation otherwise, however note that
larger values of n, m, and p will all lead to a longer computation time.

In the remainder of the section, we demonstrate how to implement the training and prediction parts of
linear regression using code samples.

In the code samples to follow, we will be working in these namespaces:
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4.1 How-to: Linear Regression 4 EXAMPLE: LINEAR REGRESSION
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Figure 4: The inputs and output of the training and prediction .

using namespace daal;
using namespace daal::data_management;
using namespace daal::algorithms::linear_regression;

N

w

4.1.1. BATCH TRAINING

The general workflow for batch training is as follows: create an algorithm object, train the algorithm
with the training sets, then extract the trained model. Listing 3 demonstrates the training phase of the
linear regression algorithm in the batch mode.

1| // Setting up the training sets.
ol services: :SharedPtr<NumericTable> trnFeatures (trnFeatNumTable);
services: :SharedPtr<NumericTable> trnResponse (trnRespNumTable) ;

// Setting up the algorithm object

6|training: :Batch<> algorithm;

7lalgorithm.input.set (training::data, trnFeatures);
8lalgorithm.input.set (training: :dependentVariables, trnResponse);

10| // Training
11lalgorithm.compute () ;

3| // Extracting the result
14| services: :SharedPtr<training::Result> trainingResult;
5/ trainingResult = algorithm.getResult () ;

Listing 3: Training the linear regression algorithm in batch mode.
First, the features and the responses for the training set must be created (line 1-3 in Listing 3). For
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4.1 How-to: Linear Regression 4 EXAMPLE: LINEAR REGRESSION

more details on creating data tables, refer to Section 3.2.

The next step is to create an algorithm object. In our example, we have created the algorithm using
default settings by having empty Bat ch<>, but the options can be set inside the brackets. With linear
regression there are two options that can be set:

training: :Batch<algorithmFPType=TYPE, method=MTHD> algorithm;

e algorithmFPType — Floating-point precision to be used for the computation by the algorithm.
TYPE can be either f1oat or double. By default this is set to double.

e method — The mathematical algorithm to be used for computation. For linear regression, MTHD
can be defaultDense or grDense. By default this is set to defaultDense.

After creating the algorithm object, the inputs of the algorithm must be set (lines
6-8). The linear regression algorithms require two inputs, training::data and
training: :dependentVariables, which are the training features and the training responses
respectively. The inputs are set by using input.set () method of the algorithm object. Then to
train the algorithm with this data set, use the compute () method of the algorithm object. Recall that
with batch mode only supports one data set. If this procedure, setting the input data set and using the
compute () method, is repeated with different data sets but with the same algorithm object, then the
result will only reflect the last data set. To train with multiple data sets, distributed or online mode should
be used. These modes will be discussed in the 2nd and the 3rd papers.

Finally, to extract the result, use getResult () method of the algorithm object, which returns a
training: :Result object. This result object contains the “knowledge” that algorithm acquired (i.e.
the coefficients of linear regression), and will be used in the prediction phase.

4.1.2. PREDICTION

For the prediction phase, only the batch mode is supported. Listing 4 demonstrates the prediction
phase.

Colfax International, 2015 — http://research.colfaxinternational.com/ 10
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4.1 How-to: Linear Regression 4 EXAMPLE: LINEAR REGRESSION

1| // ... Set up: training algorithm (see Section 3.2) ... //

2| services: :SharedPtr<training::Result> trainingResult;

3| trainingResult = algorithm.getResult ();

1| services: :SharedPtr<NumericTable> testFeatures (tstFeatNumTable);
5| // ... Set up: populating testFeatures (see Section 2) ... //

71 // Creating the algorithm object

8|prediction: :Batch<> algorithm;

glalgorithm.input.set (prediction::data, testFeatures);
i0lalgorithm. input.set (prediction: ::model, trainingResult->get (training::model));

12| // Training
13]algorithm. compute () ;

15| // Extracting the result

16| services: :SharedPtr<prediction::Result> predictionResult;

17|predictionResult = algorithm.getResult () ;

18|BlockDescriptor<double> resultBlock;

19| predictionResult->get (prediction: :prediction) —>getBlockOfRows (0, numDepVariables,
20 readOnly, resultBlock);
21|doublex result = resultBlock.getBlockPtr();

Listing 4: Prediction using the computed result

Before the prediction stage, the training result must be acquired (see Section 4.1.1) and the test features
table must be created (see Section 3.2).

For prediction, we will be using a prediction: :Batch<> object. Note that this is different
from the training: :Batch<> object we used in Section 4.1.1. The prediction algorithm has two
input options algorithmFPType and method, which behave the same way as the options for training
object (see 4.1.1).

Just as the training objects, the inputs of the algorithm must be set using the input . set () method.
The prediction algorithm require two inputs, prediction::data and prediction: :model,
which are the test features and the model from training. The model can be acquired from the training re-
sult by invoking the method get (training: :model). After the inputs are set, use the compute ()
method of the training object to get the prediction of responses to the test feature vectors.

To get the predicted values, first extract the result object from the algorithm using the getResult ()
method. The result object contains a NumericTable with the result of the prediction, from which the
pointer to the resultant array can be recovered. For more on extracting data from numeric tables, refer to
Section 3.3.

The i-th element in every row of the prediction array corresponds to the predicted result for the i-th
test feature vector. If there are multiple responses, then, remember that the getBlockPtr () returns a
one-dimensional result; the prediction for j-th response (out of numResponses) to the i-th test feature
vector is in result [i*numResponses + j].
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4.2 Example implementation 4 EXAMPLE: LINEAR REGRESSION

4.2. EXAMPLE IMPLEMENTATION

The source file batch_polynomial_regression.cc implements polynomial regression using
batch mode. Polynomial regression is a special case of linear regression that fits the response to a poly-
nomial function of the features (see Appendix A). In this sample, we assume a workload where all data is
stored in one set of three CSV files on one compute node (see Section 4). For information on batch mode
and loading from CSV files, refer to 4.1.1 and 3.2.2 respectively.

To implement polynomial regression, the features must be expanded to a polynomial (e.g
{1,209, yxn} — {m, 223, .. 28, 29, 22, 23, ..., 2%} for some expansion order, €). Thus, we must
recover the data from the numeric table acquired from the CSV data source, expand it to multiple orders,
then repackage the expanded features into a numeric table. Listing 5 demonstrates this procedure.

1| // Getting data from the source

2|FileDataSource<CSVFeatureManager> featuresSrc(trainingFeaturesFile,

3 DataSource: :doAllocateNumericTable,
1 DataSource: :doDictionaryFromContext) ;
5| featuresSrc.loadDataBlock (nTrnVectors) ;

6|// Creating a block object to extract data

7|BlockDescriptor<double> features_block;

8| featuresSrc.getNumericTable () —>getBlockOfRows (0, nTrnVectors,

9 readOnly, features_block);

10| // Getting the pointer to the data

11|doublex featuresArray = features_block.getBlockPtr ();

12| // Expanding the data (see source for full implementation)

3lconst int features_count = nFeaturesxexpansionxnTrnVectors;

14| double * expanded_tstFeatures = (doublex) malloc (sizeof (double) xfeatures_count);
5| expand_feature_vector (trnFeatures_block.getBlockPtr (), expanded_trnFeatures,

16 nFeatures, nTrnVectors, expansion);

17| // Repackaging the result into a numeric table

18| HomogenNumericTable<double> expanded_table (expanded_trnFeatures,

19 nFeatures*expansion, nTrnVectors);
coltrainingFeaturesTable = services::SharedPtr<NumericTable> (expanded_table);

Listing 5: Expanding the features to a polynomial of order set by expansion.

Listing 5 only shows the expansion process for training features, however, both the training and test
feature vectors must be expanded. After the expanded numeric table is populated, the rest of the imple-
mentation is nearly identical to the example shown in Section 4, so it will not be reiterated here.

The final working source code, batch polynomial regression.cc was designed to be mod-
ular so that an user can input any (valid) set of the three input CSV files and perform linear regression on
the data set. For instruction on how to compile and run the example, refer to the included README file.

The code, batch_polynomial_regression.cc can be found at the Colfax Research website

[1].
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4.3 Results 4 EXAMPLE: LINEAR REGRESSION

Actual | Ist Order (error) | 2nd Order (error) | 3rd Order (error)
3.85 11.85 (+8.00) 2.82 (-1.03) 1.68 (-2.17)
8.04 17.46 (+9.42) 11.84 (3.80) 7.54 (-0.50)

7.95 18.67 (+10.72) 13.51 (5.56) 9.24 (1.29)

32.75 27.15 (-5.60) 34.40 (1.65) 34.97 (2.22)

33.97 27.17 (-6.80) 34.10 (0.13) 34.85 (0.88)

0.09 -10.42 (-10.51) 4.97 (4.88) -1.86 (-1.95)
1.97 5.96 (+3.99) -2.45 (-4.42) 0.65 (-1.32)

| RSME | +8.21 \ £3.63 \ +1.60 |

Table 1: Reference result vs prediction for 1st, 2nd and 3rd order expansions. RSME is the root-mean-squared-error.

4.3. RESULTS

The resultant example code was tested using a real-life data set; hydrodynamics of yachts. The features
of the data set are 5 parameters of the hull geometry of the yacht and a value called Froude number. The
response we want to predict is the residual resistance, which is a measure of how difficult it is to push
the yacht through water. Ability to determine this resistance value from features is extremely useful for
yacht designers, because it gives them information about the engine requirements of the yacht at the design
stage. For more information on the data set, refer to [4] and [3].

This data set was downloaded from the UCI Macine Learning Repository [6]. The data set has p=6
features and k=1 responses in 307 data points. The details of the data set can be found on the landing page
for this data set in UCI Machine Learning Repository [7]. The features, as listed on the page, are;

1. Longitudinal position of the center of buoyancy, adimentional.
2. Prismatic coefficient, adimentional.

3. Length-displacement ratio, adimentional.

4. Beam-draught ratio, adimentional.

5. Length-beam ratio, adimentional.

6. Froude number, adimentional.

To test our application, we split this data set of 307 data points. 7 data points are randomly selected to
be used as the test data set, and remaining 300 data points are used for training our model.

The algorithm was trained with the 1st, 2nd and 3rd order expansions of the features. Unfortunately,
the data set could not support 4th order expansion, and the DAAL linear regression algorithm exited with
an error at that expansion. Table 1 compares the prediction form the three data models to the actual
reference result. As evident from the root-mean-squared-error (RMSE) the data model produced from the
training becomes increasingly more accurate as we expand the features to 2nd and 3rd orders.

Figure 5 illustrates another test of the accuracy of the model. We generated a test feature set by keeping
x1, ..., T5 constant and varying xg, then used the model to predict the responses for this test data set. Then
we selected 14 data points from the real data set that have z, ..., x5 that matches our test set, and compared
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Figure 5: The predictions with 5 features (x1 to x5) held constant. The “Reference” values are actual values obtained from the
original data set.

the results. Just as Table 1, Figure 5 also shows the improvement in the accuracy of the model with the
higher order expansions.

5. CLOSING WORDS

This publication was the first part in a series of three white papers introducing Intel DAAL. In this part,
we discussed how to implement a basic linear regression application using Intel DAAL. In the next two
parts, we will cover more advanced topics. In part 2, we discuss distributed computation of linear regres-
sion algorithm using the distributed mode and MPI. In part 3 we discuss the online mode and streaming
data from a MySQL database. The source code for this series, as well as part 2 and 3 of the series, can be
found at the Colfax Research website [1].
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Appendix A. Mathematics of regression

The goal of regression is as follows: given a set of independent variables & (called “feature vector” or
“features”) and a dependent variable y (called “response”), predict the value of y given any arbitrary 7.
For example, regression can be used to predict the crop-yield of a farm (our dependent variable y), given
the size of the farmland and amount of fertilizer used (our independent vector 7).

In the rest of the section, we will look at the mathematical background of linear regression and poly-
nomial regression.

A.1. LINEAR REGRESSION

In its most basic form, linear regression is simply solving the equation;
y = bx + by (1)

In this case, to solve for the slope b and the intercept b, the minimum required number of dependent-
independent variables pair (let us call it n) is 2. Solving for these variables is the training phase. After
determining the values b and b, from the training data set, our algorithm can predict the response y from
any arbitrary feature x. This is the prediction phase. Of course, this is an over-simplification. In majority
of cases, there is some error (let us call it ) that is inherent to the problem, so the equation becomes.

With the error introduced, we need a larger training data set of « and y to determine the value of b and b,.
This type of problem is referred to as single linear regression, or simply linear regression.

However in real-life applications, it is often the case that a response depends on multiple features. If
there are p features that the response y depends on, the equation becomes;

p
y=bo+ Y bix; 0 3)

=1
The goal in such a problem is to determine the values by, b;...b,. This workload is called multiple linear

regression. To solve such a problem, we need multiple responses y, produced from different feature vectors
Z. Let’s assume that we have n such data points, and we will call this the training set.
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A.2 Polynomial regression A  MATHEMATICS OF REGRESSION

Determining the values of by, b;...b, with the training set is similar to solving a system of equations.
We can represent this workload as;
y=A-bxtd 4)

Here, ¥/ is the response vector of size n, and b= {bo, b1...b,} is a vector of size p + 1 that we are solving
for. Note that we have included the intercept, by in b to adhere to the convention. X is an X (p+1) matrix;
the first column is all 1 for the by and the following p columns represents the p features.

There are several methods for determining the values of b that will most accurately approximate the
data set (e.g. “least squares optimization”). Implementation of these methods are beyond the scope of this
paper.

In theory, the number of independent variables p can be any arbitrarily high number. But the larger the
p, the larger the required training set (e.g. greater n) for an accurate prediction.

A.2. POLYNOMIAL REGRESSION

In many real applications, the response may not change linearly with a given feature. To make more
accurate predictions in such applications, a special case of linear regression called polynomial regression
can be used. In polynomial regression, we assume that the response changes as a polynomial function of
a give n feature. In the case of one feature, x, the problem becomes.

y=0_ ba')£6 (5)
=0

Of course, we cannot compute to the upper limit of oo. Thus, a finite upper-bound, call it e, has to be
picked. Also, as in the case of linear regression, a single feature may not be sufficient. We can extend this
regression to p features. The final equation for b; ; becomes:

y=0_ bijal)£6 (6)

j=1 i=0

At first glance this may appear much more complex than the linear regression case, however this
is in fact equivalent to equation (3). The only difference with the linear case is that we have pow-
ers of x in the equation, but recall that x is the feature (i.e., this is the input). Given the set of p
features and the expansion e, we can construct a single feature vector ¥ of length e x p such that
T = {xy, 27,23, .25, 29, 3,23, ..., x5 }. Substituting this in and collapsing the summations, the equa-

tion becomes;
e*p

y=bo+ () bix;) £ 7)
=1

Which is identical to equation (3). (Note that all constants by ; got combined into a single bg)

Just like in linear regression, in theory e X p can be arbitrarily high. But once again, large value of
the product e x p will require a correspondingly large number of training data points, n, for an accurate
prediction.
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