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Abstract
In this paper we will discuss the new HGST

Shingled Magnetic Recording (SMR) drives, Ultrastar
Archive Ha10, which offers storage capacities of 10 TB
and beyond. With their high-density storage capacities,
these drives are well suited for large “active archive”
applications. In an active archive application, the data
is frequently read but seldom modified.

The SMR drives are host managed, meaning that
the developer must manage the data storage on the
drives. In this publication we introduce an open source
library, libzbc, which was developed by the HGST team
to assist developers who use SMR drives. The discus-
sions cover topics from the very basics like opening
a device, to more advanced topics like data padding.
The goal of this paper is to give readers the neces-
sary knowledge and tools to develop applications with
libzbc.

We will present an example, and then report sev-
eral benchmarks of I/O operations on the HGST SMR
drives, and discuss the SMR drive’s effectiveness as a
active archive solution.
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1 INTRODUCTION

1. INTRODUCTION

Big data is becoming increasingly important in a variety of areas. From astrophysical experiments
producing large amounts of scientific data, to companies storing information about all of its customers,
data storage requirements are increasing. This is especially the case for a group of applications called
“active archive” applications. In active archive applications, vast amounts of data is dumped into storage
devices, and this data is frequently read but seldom modified. With this need for ever larger quantities of
data for active archive applications, comes a problem: how to cost-efficiently store these massive quantities
of data? In theory, it is possible to store more data by simply adding more nodes to a data storage cluster.
However, this low storage density approach becomes unfeasible, especially for active archive applications,
as the cost of maintenance per byte increases rapidly with expanding data centers. Therefore, there is a
need for a high storage density solution to accommodate the growing storage demands of modern data
centers.

In order to fulfill this need by the active archive applications, hard drive capacity has made strides
in the recent decade to increase the storage density. To push the storage density to the next level, a new
technology called Shingled Magnetic Recording (SMR) has been developed. SMR allows for up to 2-3
trillion bits per square inch [2], and by utilizing this technology, HGST produced its first generation of
new SMR drives, the Ultrastar Archive Ha10 [3], which offers a massive storage capacity of 10 TB in
the standard 3.5 inch form factor. This is only the beginning in the SMR roadmap, thus data storage
solutions using the SMR drives will likely become increasingly more common in the domain of active
archive applications.

The SMR technology increases the storage density of drives by overlapping data tracks, in a way that
resembles the shingles on a roof (hence the name Shingled Magnetic Recording). As a consequence of
the overlapping data tracks, SMR drives are append-only. Therefore, applications with “write once, read
many times” policy, such as active archive applications, are a natural fit for the SMR drives.

In using the Ultrastar Archive Ha10 drives, one important thing to note is that they only support what
is called the “host managed” mode. Generally speaking, hard drive management can be divided into three
groups of varying developer involvement;

• Drive managed - All management is done by the drives. The low-level interactions with the drive is
hidden from the developer.

• Host managed - The developer manages the drives. If the commands are “incorrect”, the drives are
not able to handle it.

• Host aware - The developer manages the drives, however the drives are capable of handling some
“incorrect” commands at the cost of unpredictable performance.

The drive managed mode will have the least developer input (high-level abstraction), and the host managed
mode will have the most (low-level abstraction). Again, in the case of the HGST SMR drives, only the
“host managed” mode is supported. Thus, the developer must do the work of managing the data on the
drives. However, with the “host managed” mode, the developer has much finer grained control over the
performance and power consumption of the SMR drives.
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2 DRIVE ORGANIZATION: ZONES

In order to interact directly with the SMR drives, one must use Zoned Block Commands (ZBC) for
SAS drives and Zoned ATA Commands (ZAC) for SATA drives. But these commands can be too low-level
of an abstraction to easily develop an application with. To assist developers for the drives, the HGST team
abstracted the low level communication with ZBC into a open source library, libzbc [4], which can be
used to utilize the HGST SMR drives in the “host managed” mode. The primary purpose of this paper
is to introduce libzbc through a simple code example, explaining in detail how to use the library as well
as constraints to look out for. After the introduction of libzbc 2.0.0, we will present several bandwidth
benchmarks of the Ultrastar Archive Ha10 drives (HGST HMH7210A0ALE600) using libzbc in a variety
of data management scenarios.

2. DRIVE ORGANIZATION: ZONES

In order to properly discuss libzbc, it is important to introduce some details about the hardware or-
ganization of the HGST Ultrastar Archive Ha10 drives. The SAS drives are called Zoned Block Devices
(ZBD), and the SATA drives are called ZAC-enabled devices. With libzbc, the drives are organized in
regions called “zones”, and most libzbc operations will revolve around controlling these zones.

In the Ultrastar Archive Ha10 drives, there are total of 37256 zones (enumerated {0, 37255} in libzbc)
each with a capacity of 256 MiB. Thus, in total these drives provide 37256 ∗ 228 ≈ 10 TB of storage. Each
zone has an unique range of Logical Block Address (LBA) values associated with it, which describes the
location in the drive where the data resides. For the drive that is used in this paper (512e model) LBA has
a size of 512 Bytes, and each 512 B block on the drive has a unique LBA value associated with it. Note
however that other models of the drives may have a different size for LBA size (e.g. 4Kn model may have
4 KB sectors). Determining the LBA size for the drive is discussed in Section 3.1.

Of the 37256 zones, the first 378 zones ({0,377}) are special zones called “Conventional Zones”.
These zones behave like standard hard drives, and allow writes to any location. The remainder of the
zones ({378, 37255}) are called “Sequential Write Required Zones”. In this paper we will limit our
discussion to the sequential zones, because this is the non-conventional aspect of the SMR technology that
gives access to the huge capacity of these drives.

As the name suggests, these zones can only be written into sequentially. In other words, data is append-
only in a sequential zone, and the only way to reclaim space in a sequential zone is to clear the whole zone.
This is because the sequential zones are managed using “write pointers” (“wp” for short), which contains
the LBA value of the next logical block that can be written in the zone. Each sequential zone has its own
write pointer, and these write pointers are stored in special regions in the drive itself. When data with a
size equivalent to n logical blocks (n∗512 B) is written into a sequential zone, the write pointer advances
by n. The sequential zones are append only because the write pointers can change in only two ways;
advance or reset (see Section 3.3).

Figure 1 shows a schematic diagram of the zone structure.
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3 USING LIBZBC
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Figure 1: Zone organization of the HGST SMR drives.

Using the SMR drives with libzbc will necessarily revolve around using sequential zones. In fact,
most operations in libzbc will interact with a specific zone. Therefore, it is important to have a basic
understanding of how the zones function and are organized in order to take advantage of the SMR drives
and libzbc.

3. USING LIBZBC

In this section we will discuss how to use libzbc to develop a basic application that utilizes the SMR
drives. The general flow of using libzbc is:

• Open the device, then query information.

• Compile a list of zones.

• Write to and read from the drive.

• Close the device.

Listing 1 shows a simple application that writes some data into the SMR drives, then reads it back. In the
rest of the section, we will be discussing each component of this application in depth.
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3 USING LIBZBC

 #include <stdio.h>
 #include <stdlib.h>

 #include <mm_malloc.h>
 #include <libzbc/zbc.h>

 // User function to initialize data
 void PopulateData(void* write_buffer, int data_size);


 // User function to verify read data
 void VerifyData(void* read_buffer, int data_size);

 int main(int argc, char* argv[]) {
 struct zbc_device_info info;
 struct zbc_device *dev = NULL;
 struct zbc_zone *zones = NULL;
 unsigned int nr_zones;

 /* Opening and getting Information (see Section 3.1) */
 char *path = argv[1];
 unsigned int ret;
 ret = zbc_open(path, O_RDWR, &dev);
 ret = zbc_get_device_info(dev, &info);

 /* Allocating I/O buffers, and populating the data to be written. (see Section 3.3.1) */
 const int data_size = 1<<20; // writing 1MB then reading 1MB
 void* write_buffer = (void*) _mm_malloc(data_size, 4096);
 void* read_buffer = (void*) _mm_malloc(data_size, 4096);
 PopulateData(write_buffer, data_size); // Populate the data to be written

 /* Listing Zones and checking if there is enough space (see Section 3.2) */
 zbc_list_zones(dev, 0, ZBC_RO_ALL, &zones, &nr_zones);
 const int zone_id = atoi(argv[2]);
 const int rem_space_lba = zbc_zone_next_lba(&zones[zone_id]) - zbc_zone_wp_lba(&zones[zone_id]);
 const int rem_space_bytes = rem_space_lba * info.zbd_logical_block_size;
 if(rem_space_bytes < data_size || zbc_zone_full(&zones[zone_id]))
 { fprintf(stderr, "Not enough space in zone %d. Exiting\n", zone_id); exit(1); }
 printf("Space remaining in zone %d; %dB\n", zone_id, rem_space_bytes);

 /* Writing the data (see Section 3.3.2) */
 int written;
 const int lba_count = data_size / info.zbd_logical_block_size;
 written = zbc_write(dev, &zones[zone_id],(void*) write_buffer, lba_count);
 if(written != lba_count)
 { fprintf(stderr, "Write Failed. Written = %d. Exiting\n", written); exit(2); }

 /* Re-reading the data (see Section 3.3.2) */
 int read;
 const int lba_offset =
 zbc_zone_wp_lba(&zones[zone_id]) - zbc_zone_start_lba(&zones[zone_id]) - lba_count;
 read = zbc_pread(dev, &zones[zone_id],(void*) read_buffer, lba_count, lba_offset);
 if(read != lba_count)
 { fprintf(stderr, "Read Failed. Read = %d. Exiting\n", read); exit(3); }

 VerifyData(read_buffer, data_size);

 /* Closing the drive (see Section 3.1) */
 ret = zbc_close(dev);
 }

Listing 1: A simple example application for using the HGST SMR drive. The section numbers in parentheses refers to the
section where the topic is discussed. The full code will be available for download at []
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3.1 Opening and Querying the Drive 3 USING LIBZBC

3.1. OPENING AND QUERYING THE DRIVE

In this section, we will discuss how to open the SMR drive and get information about it. Listing 1
demonstrates a basic libzbc application, which we will use in the discussion.

The first step to using the HGST SMR drive is to open it using the zbc open() function, which is
called in line 22 in our example.

 int zbc_open(const char* filepath, int flags, struct zbc_device_t **dev);

Here, filepath is a char array which contains the path to the SMR drive. In our application, this
path is passed in as the first command line argument. In the case of our system, this was /dev/sg1. The
flags argument determines how the drive will be used. In our code example, we used O RDWR to set
it to read-write mode. O RDONLY will set it to read-only mode, and O WRONLY will set it to write-only
mode. Finally, the last argument dev is a pointer to the memory address of a zbc device structure (see
line 15). After opening a device, dev will act as the device handle to be used in all subsequent operations
on the drive.

To get various information about the open drive, use the zbc get device info() function (line
23).

 int zbc_get_device_info(struct zbc_device_t *dev, struct zbc_device_info_t *info);

The first argument is the device handle of the drive. Make certain that this handle was initialized with
zbc open(). The second argument, pointer to a zbc device info structure, will be populated with
variety of information such as the device model or the logical block size. For the full listing of the available
information, refer to include/libzbc/zbc.h located inside installation directory. In the case of our example
we use info to determine the logical block size of the SMR drives.

After all the operations with the drive are done, close the device using the zbc close() function
(line 57).

 int zbc_close(struct zbc_device_t *dev);

The argument for the zbc close() is simply the device handle of the drive to be closed.
Finally, note that each function returns 0 if it was successful. We did not implement a check for

completion in Listing 1 to keep the example simple, but it is generally a good practice to have the check
and exit if necessary.
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3.2 Zone Control 3 USING LIBZBC

3.2. ZONE CONTROL

In this section, we will introduce some utility functions for working with zones. Again, we will be
using Listing 1 as the example application.

To get the list of the zones, use the zbc list zones() function.

 zbc_list_zones(struct zbc_device *dev, uint64_t start_lba, enum zbc_reporting_options ro,
 struct zbc_zone **pzones, unsigned int *nr_zones)

dev is the drive to from which the list of zones is compiled. The second argument, start lba is
the LBA from which the zones are listed. In our example, we simply queried the whole drive by passing
in 0. Third argument, ro, acts as a filter for the zones. For example, it can be set to ZBC RO EMPTY to
only list the zones that are empty. In our example, we simply set it to ZBC RO ALL to list all zones. For
the full list of options, refer to include/libzbc/zbc.h. The fourth argument is the pointer for the array of
zbc zone structures. zbc list zones() uses an internal malloc to allocate the list of zones, which
is then populated and pzone is set to this newly allocated array. This array, for example, will be used in
reading and writing into zones (Section 3). The final argument, nr zones, will be set to the total number
of zones populated by list zones.

Again, note that zbc list zones() uses an internal malloc for the list of zones. If you call
this function multiple times in one application, you will need to use free() to deallocate zones to
avoid memory leaks. Alternatively the list of the zones can be updated without allocation using the
zbc report zones() function.

 zbc_report_zones(struct zbc_device *dev, uint64_t start_lba, enum zbc_reporting_options ro,
 struct zbc_zone *zones, unsigned int *nr_zones)

The argument list for this function is identical to zbc list zones except for the fourth argument,
which is the array of zbc zones structures to be updated.

All of the information necessary for working with zones can be gained by accessing the members
of the zbc zone structure. libzbc has a variety of utility accessor macros defined for this purpose. A
selection of these are shown in Listing 2.

 zbc_zone_sequential(struct zbc_zone *zone) // Returns true if the zone is sequential
 zbc_zone_empty(struct zbc_zone *zone) // Returns true if the zone is empty
 zbc_zone_full(struct zbc_zone *zone) // Returns true if the zone is full
 zbc_zone_start_lba(struct zbc_zone *zone) // Returns the starting LBA of the zone
 zbc_zone_length(struct zbc_zone *zone) // Returns the total size of the zone in units of LBA
 zbc_zone_wp_lba(struct zbc_zone *zone) // Returns the LBA of the write pointer
 zbc_zone_next_lba(struct zbc_zone *zone) // Returns the LBA of the next zone

Listing 2: Utility accessor macros for zones.
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3.3 I/O 3 USING LIBZBC

In Listing 1, we use these macros together with zbc list zones to determine how much space is
available in the zone to write into (see lines 34 to 37). Warning: there one caveat to this technique, which
is that if the zone is full, the write pointer will be at the start of the zone. Thus, to implement the check
for availability of space, we need to add an additional check to see if the zone is full (see line 36).

3.3. I/O

In this section, we will discuss how to do read/write operations on sequential zones in an HGST SMR
drive using libzbc. There are two stages to I/O operation with HGST SMR drives; data buffer preparation
and read/write.

3.3.1. DATA BUFFER PREPARATION

For write operations with HGST SMR drives, the size of data must be a multiple of 4 KiB. This is
because the smallest block of data that can be written is equal to the HGST SMR drive’s physical block
size, which is 4096 bytes. For read operations, the smallest size is the logical block size, which is 512 B.
Therefore if the data is not a multiple of 4096 or 512 bytes, then a technique known as padding is required.

With padding, extra elements are added to the end of a data buffer in order to ensure that its size is
of a multiple of 4096 or 512 bytes for writes and reads, respectively. Listing 3 demonstrates preparing a
memory buffer for a write operation.

 const int phys_blk_size = 4096/sizeof(DATA_TYPE);

 // n is the number of elements. Computing the padded n.
 n += (phys_blk_size-1) - ((n-1) % phys_blk_size);

 // Allocating aligned data with mm_malloc
 DATA_TYPE* data = (DATA_TYPE*) malloc(n*sizeof(DATA_TYPE));

Listing 3: Padding the data buffer to for the write operation.

The macro DATA TYPE is the type of the data (e.g. int, char, double, etc.). Recall that the requirement
is in bytes, not elements. So we must divide 4096 by the size of DATA TYPE in order to compute the
value that the number of elements must be a multiple of.

The memory buffer, data, in Listing 3 is a multiple of 4 KiB. Therefore it can now be used for I/O
withe the HGST SMR drives. In our example in Listing 1, to keep it simple we hard-coded the size to be
a multiple of 4096 B.

3.3.2. READ/WRITE

In this section we will discuss how to write to and read from the HGST SMR drives. Note that the drive
must be open (see Section 3.1) and you must have the list of the zones (see Section 3.2) before proceeding.
Again we will be using Listing 1 to demonstrate the usage of the libzbc functions.

To write into a sequential zone, use zbc write().
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3.3 I/O 3 USING LIBZBC

 int zbc_write(struct zbc_device *dev, struct zbc_zone *zone,
 const void *buf, uint32_t lba_count);

The first argument, dev, is the device handle of the drive to write into. The next argument, zone, is
the zbc zone structure of the zone to write into. Again, refer to Section 3.2 for more information. The
third argument, buf, is the memory buffer containing the data that will be written. Be certain that the
buffer was properly prepared (see Section 3.3.1). And the final argument, lba count, is the amount of
data to be written in units of LBA, which is 512 B.

Recall that location to write to on the drive is determined by the write pointer; zbc write() will
simply write the data into the blocks following the write pointer, and advance the write pointer appropri-
ately. If not enough space is available, the zbc write() will fail at run-time with “Input/Output” error
(error code -5). Thus with zbc write(), it is important to ensure that there is enough available space
in the zone. To determine the available space in a zone, query the write pointer address and compare it
with the start address of the next zone (see Listing 1). One exception to this is when the zone is already
full. In this case, there will not be a run-time error, and the data is simply not written. To be certain that
the write operation completed correctly, use the return value of zbc write(), which is the number of
logical blocks that were written. If the returned result is equal to lba count, then it completed properly.

There are two limitations to the sizes of the data that can be written. First, the write size must be
a multiple of 4096 bytes, or 8 logical blocks (e.g lba count%8 = 0). If this condition is not met,
zbc write will fail at run-time with “Input/Output” error (-5). If the size of the data is not a multiple
of 4096 B, padding will need to be implemented (see 3.3.1). The second limitation is that there is a
cap on the largest data size that can be written at once. For our particular system (see Section 4.1) this
limit is 5.25 MiB. This is not a limitation of the drives or libzbc, but of the “scatter gather list” which is
managed by the Linux operating system. If the data is larger than 5.25 MiB, then it needs to be partitioned
and written using multiple zbc write() operations. When zbc write() tries to write more than
5.25 MiB, it will fail with “Cannot allocate memory” error (error code 12).

To read from a sequential zone, use zbc pread().

 int zbc_pread(zbc_device_t *dev, zbc_zone_t *zone, void *buf,
 uint32_t lba_count, uint64_t lba_ofst)

The first argument, dev, is the device handle of the drive to read from. The next argument, zone,
is the zbc zone structure of the zone to read from. The third argument, buf, is the memory buffer to
which data will be placed. Just as the write case, be certain that the buffer was properly prepared (see
Section 3.3.1). The fourth argument, lba count, is the amount of data to be read in units of LBA, which
is 512 B. And the final argument, lba ofst, determines where the data is read from in terms of LBA
offset from the beginning of the zone.

Unlike zbc write(), with zbc pread() you are not limited to one zone; in other words, if the end
of the zone is reached, the zbc read() will continue to the next zone. Furthermore, the zbc pread()
can read from any LBA address, regardless of the write pointer location, by specifying the lba offset.
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3.3 I/O 3 USING LIBZBC

However, this also means that the developer is not protected from accidentally reading an uninitialized
data region. Thus, it is important to be certain that the zbc pread() is reading the correct range of
logical blocks. The output of the function, similarly to zbc write(), is the number of logical blocks
read. Again, it is recommended to implement a check to make certain the correct number of logical blocks
were read.

With zbc pread(), the granularity of read size is 1 logical block (512 B) because lba count is
an integer. Thus, make certain that the memory buffer to which data is read to is a multiple of 512 B (see
Section 3.3.1). Just as zbc write(), there is a limit on the largest data size that can be read at once.
Again, for our system the limit is 5.25 MiB. To read more than 5.25 MiB, multiple calls to zbc pread()
are needed. When zbc pread() tries to read more than 5.25 MiB, it will fail with “Cannot allocate
memory” error (error code 12).

In order to reclaim space on the SMR drives, you must reset the write pointer of a zone. This effectively
reclaims the space from the whole zone; i.e. the granularity of data reclamation on the SMR drives is
individual zones. To reset a write pointer of a zone, use zbc reset write pointer().

 int zbc_reset_write_pointer(zbc_device_t *dev, uint64_t start_lba);

The first argument, dev, is the device handle of the drive to write into. And the second argument,
start lba is the starting LBA of the zone to reset. To reset the whole drive, use start lba= −1.

Note that the the programmer must manually update zbc zone list using
zbc report zones() (see Section 3.2) before being able to write into the reclaimed zone.
Therefore, if the application will have another write into the same zone, be certain to update the zone
information first.

Although zbc reset write pointer() does not delete the data but only resets the write pointer,
the data will not be recoverable with zbc pread() once the reset pointer was called. Calling
zbc read() to read the same LBA location will succeed, but the read value will be different.

Finally, a few notes on caching. In order to expedite small writes, many modern hard drives have
temporary storage locations for the writes, known as “caches”. There are typically two types of caches;
the drive cache managed by the drive, and the host cache managed by the operating system. The HGST
HGST SMR drives is cached by the drive cache (256 MiB), but is not cached by the operating system.
The cache gets flushed automatically as it fills up, but it is possible to manually flush the cache by using
zbc flush().

 int zbc_flush(zbc_device_t *dev);

In our benchmarks, we have found that during continuous writes, the drive cache seems to flush at
approximately 40 MiB occupied.
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4. BENCHMARKING WITH LIBZBC

We developed several simple benchmark applications using libzbc, then benchmarked the HGST Ul-
trastar Archive Ha10 SMR drives (see Section 4.1) with them. Six different cases were benchmarked.

• Large contiguous write.
This operation represents a workload where one is writing a large chunk of data, large enough to
not fit in the drive cache. To simulate this type of workload, we will write 2 GiB (8 zones) of data
sequentially with variety of values for the individual write sizes.

• Small contiguous writes.
This operation represents a workload where one is infrequently writing small chunks of data multiple
times. In other words, this is the performance of writing into the drive cache, but not necessarily
writing into the drive itself. To simulate this, we will write 16 MiB (small enough to fit in cache)
sequentially with variety of sizes.

• Sequential cold reading.
This operation represents a workload where one is contiguously reading a large chunk of data. To
simulate this, we will read 2 GiB (4 zones) worth of contiguous sequential zones.

• Random cold read.
This operation represents a workload where one is reading multiple small chunks of data that is
scattered in memory. To simulate this, we will read randomly from 2 GiB (8 zones) memory region
with a range of read sizes.

• Sequential re-read.
This operation represents a workload where one is reading contiguously in a small memory region
multiple times. To simulate this, we will read from the a contiguous 32 MiB data regions multiple
times.

• Random re-read.
This operation represents a workload where one is randomly reading small chunks from a small
region of memory. To simulate this, we will read randomly from a 32 MiB data region with a range
of read sizes.

For timing, we used internal timers that were placed only around the I/O operations (read, write, flush)
in order to gauge the performance of just the I/O operations. The full source codes for benchmarking
scripts are available for download at the Colfax Research website[1].

4.1. SYSTEM CONFIGURATION

The system used was single socket Intel Xeon E5-1660 CPU (6 cores at 3.30GHz) running CentOS 7,
kernel build 3.19. Model of the Ultrastar Archive Ha10 drives was HGST HMH7210A0ALE600 (obtained
with hdparm), and we used libzbc 2.0.0 to write our benchmark applications. To compile the benchmark
applications, we used gcc version 4.8.3.
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4.2. PERFORMANCE RESULTS

4.2.1. WRITE BENCHMARKS

Figure 2 shows the average bandwidth and average latency of individual write operations. The band-
width was computed by dividing the read chunk size the average latency of the reads. The IOPS (I/O
per second = 1/latency) is the average value for a single write. For “Large Writes” we wrote 2 GiB of
data contiguously with write chunk sizes ranging between 4 KiB and 4 MiB in powers of 2. With “Small
Writes” we instead wrote 16 MiB of data contiguously with the same range of chunk sizes. The size chunk
size of 16 MiB was determined empirically to be the largest write chunk size before we began to see the
effects of flushing the cache. Furthermore, for small writes, between switching write sizes, we flushed the
device and added a sleep for 3 seconds in our benchmarking bash script in order to ensure that the cache
has enough time to flush its cache.

The maximum bandwidth for small infrequent writes was 136.4 MB/s (with 4 MiB write chunk size),
which is twice as better than the maximum bandwidth of large writes, which was 62.5 MB/s (with 4 MiB
write chunk size). This is the expected result because the total data size of 16 MiB is small enough to fit
in the drive cache. With the Ultrastar Archive Ha10 drives, writes to the drive are re-read and verified.
However this verification does not happen when the data is written to the cache, but when this data is
flushed to the media. The overhead from verification also contributes to the asymmetry in bandwidth for
read and write, as we will see in the next section. Some applications that use distributed storage may be
able to take advantage of the infrequent write bandwidth, however, for applications that require writing a
large volume of data continually, 62.5 MB/s will be the expected maximum bandwidth.
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Figure 2: The average bandwidth (left) and IOPS (right) of individual write operations.

Our benchmarks show that, as expected, writing small amounts of data has better bandwidth and
latency than writing large amounts of data. According to our result, the bandwidth for “large writes” tends
to be less than half of the bandwidth with “small writes” at every chunk size. Therefore applications that
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allow for infrequent writes, or distributed storage applications may be able to enjoy a better write latency
an bandwidth than an application that dumps a large amount of data into a single drive.

Another interesting property to note is that the bandwidth improves as write chunk size increases, for
both the “small writes” and “large writes”. This is most likely due to the fact that there is some latency in
starting to write into the drive. Therefore, if the application allows it, buffering the write data until 4 MiB
is gathered will likely improve the I/O performance of the application.

4.2.2. READ BENCHMARKS

Figure 3 shows the bandwidth and latency of “cold random read” as a function of individual read
chunk size. The dotted line in th bandwidth benchmark corresponds to the bandwidth of “cold sequential
read” with 4 MiB chunks. The bandwidth was computed by dividing the read chunk size by the average
latency of the reads. The IOPS is the average value for a single read. For “cold random read” the bench-
mark application read randomly from a 2 GiB region in memory that was pre-populated. The drive was
flushed and closed/reopened after the write benchmark, before carrying out the read benchmark. For “cold
sequential read” we only tested 4 MiB chunk sizes because this is simulating a workload where a large
amount (much larger than 4 MiB) of contiguous data is needed by the application. In such case, it would
not make sense to read the data in smaller chunk sizes. For cold random reads we tested the range of 4
KiB to 4 MiB in powers of 2.
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Figure 3: The average bandwidth (left) and IOPS (right) of individual read operations over a large data region (2 GiB).

According to our measurements, if the data is contiguous in the drive, the cold read bandwidth is
138.9 MB/s which is twice the bandwidth for writing the same size of data. However, if the data is
not contiguous but randomly distributed, then the bandwidth drops drastically to 66.4 MB/s maximum
bandwidth. This is to be expected because reading from distant locations on the drive requires the read-
and-write head to shift a large physical distance, which introduces overhead. The overhead will be more
significant for smaller the read chunk sizes, because this shift in the read-and-write head is more frequent.
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This is reflected in our measurements, in which we see that smaller chunk sizes have lower bandwidth. In
general, the more random the access pattern is, the lower the bandwidth performance. Therefore, when
working with large reads, it is extremely important to be mindful of the structure of the data stored and
avoid scattered drive access as much as possible.

Figure 4 shows the bandwidth and latency of “random re-read” as a function of individual read chunk
size. Again, the dotted line in th bandwidth benchmark corresponds to the bandwidth of “sequential re-
read” with 4 MiB chunks. Similar the cold read benchmarks, the bandwidth was computed by dividing
the read chunk size the average latency of the reads and the IOPS is the average value for a single read.
For these benchmarks, the drive accesses were limited to within a 32 MiB region that was pre-populated.
Again the drive was flushed and closed/reopened after the writes before proceeding to the read benchmark.
For “sequential re-read” we only tested 4 MiB chunk sizes, and for random re-read we tested the range
between 4 KiB to 4 MiB.
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Figure 4: The average bandwidth (left) and IOPS (right) of individual read operations over a small data region (32 MiB).

According to our measurements, for small re-reads both the sequential and random access patterns
was able to achieve 141.6 MB/s bandwidth when using 4 MiB chunk sizes. This is because 32 KiB is
small enough of a region that it fits within the drive cache, so the data is re-read from there. Therefore, the
latency of access is much smaller compared to “cold random read”. However, this does not mean that data
locality is not important. Random access only achieves 141.6 MB/s bandwidth when the data is in 4 MiB
chunks. Reading data chunks with smaller sizes has a much lower bandwidth. Thus, with small re-reads,
if contiguous data access can not be achieved, it is important to get data chunk to be as large as possible.

5. SUMMARY

In this publication we discussed the new HGST Ultrastar Archive Ha10 drives from an application
developer’s point of view. The SMR technology, which allows these drives to offer a massive 10 TB
storage capacity, require that these drives are host managed. As a consequence, the application developer
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must manage the data on the drive. To assist the developers, the HGST team created an open source library,
libzbc [4] (version 2.0.0 at the time of this writing), which has been the main focus of this paper.

Using a simple code example (see Listing 1) we discussed the general work flow of using the SMR
drives using libzbc. The code example (example.c) is available for download at REF. The steps demon-
strated were:

• Open the device, then query information.

• Compile a list of zones.

• Write to and read from the drive.

• Close the device.

We discussed each step in detail, including the functions used, and discussed some restrictions (e.g. al-
lowed write sizes) that a developer must be aware of. The topics ranged from very basic operations like
simply opening the drive, to more advanced topics like padding. The main goal of the section was to have
it serve as a general introductory reference for developers using libzbc.

Following the code examples, we presented several benchmarks of the HGST Ultrastar Archive Ha10
drives (model HMH7210A0ALE600) using a benchmarking application developed with libzbc. We first
benchmarked contiguous write of 2 GiB and 16 MiB data, and saw 62.5 MB/s and 136.4 MB/s maximum
bandwidth respectively. Then we benchmarked reading 2 GiB data sequentially and randomly. The maxi-
mum bandwidth for the sequential read was 138.9 MB/s, but with random access the bandwidth dropped
to 66.4 MB/s Finally we benchmarked reading from a 32 MiB data region both sequentially and randomly,
and found that both access patterns achieves 141.6 MB/s.

The 10 TB HGST Ultrastar Archive Ha10 drives are the first generation of high capacity SMR drives,
and the SMR technology is likely to keep pushing the limits of storage density further. As the demand
for storage space continue to grow, it is likely that SMR devices like HGST SMR drives will become
increasingly common, especially in the domain of active archive applications.
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